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ABSTRACT One of the major obstacles that has to be faced when applying automatic emotion recognition
to realistic human–machine interaction systems is the scarcity of labeled data for training a robust model.
Motivated by this concern, this paper seeks to utmost exploit unlabeled data that are pervasively available
in the real-world and easy to be collected, by means of novel semi-supervised learning (SSL) approaches.
Conventional SSL methods such as self-training, suffer from their inherent drawback of error accumulation,
i.e., the samples that are misclassified by the system are continuously employed to train the model in the
following learning iterations. To address this major issue, we first propose an enhanced learning strategy,
by which we re-evaluate the previously automatically labeled samples in each learning iteration, in order
to update the training set by correcting the mislabeled samples. We further exploit multiple modalities and
models in the SSL system, by using collaborative SSL, where all modalities and models are considered
simultaneously; samples are selected by means of minimizing the joint entropy. This strategy is supposed
to not only improve the performance of the model for data annotation and consequently enhance the
trustability of the automatically labeled data, but also to elevate the diversity of selected data. To evaluate the
effectiveness of the proposed approaches, we performed extensive experiments on the remote collaborative
and affective database, which includes multimodal recordings of spontaneous affective interactions of dyads.
The empirical results show that the proposed approaches significantly outperform recently well-established
SSL methods.

INDEX TERMS Enhanced semi-supervised learning, collaborative learning, audiovisual emotion
recognition.

I. INTRODUCTION
Automatic emotion recognition has attracted wide attention
in artificial intelligence over the past decade, since it plays
an essential role in achieving natural and friendly human–
machine interactions [1]–[5]. However, one major obstacle
that impedes its broad applications in real-life settings is
the lack of sufficient labeled data in terms of quantity and
diversity, which is regarded to be of high importance to build
a robust and efficient recognition model [6]–[8].

Because of the public availability of massive unlabeled
data that can be easily collected via pervasive electronic

devices [8], [9], one natural solution comes to leveraging
the value of these data in an effective way. Semi-Supervised
Learning (SSL) has been emerged as a promising approach
since it aims to efficiently make use of machines (i. e., recog-
nition models) to automatically ‘annotate’ unlabeled data,
with (almost) no need of manual intervention. Over the past
few years, some efforts have been made and have shown the
benefits of SSL for emotion recognition.

In [10], Wu et al. introduced a graphic-based SSL model
for emotion recognition from music, by which the super-
vision knowledge (or the label information) is propagated
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from the labeled data to the unlabeled data by calculat-
ing the acoustic and tag similarity among songs. In [11],
Schels et al. employed a density estimation of all available
data to transfer the label information to unlabeled data. Sim-
ilar work was further reported in [12], but for the text-based
emotion classification.

In contrast to these transductive SSL approaches where
both labeled and unlabeled data are considered to perform
a prediction on the unlabeled data, more research efforts
need to follow an inductive SSL paradigm, mainly due to
the fact that the powerful capability of discriminative models
(e. g., Neural Networks) for emotion recognition has been
frequently shown over the past decade [13]. In the inductive
paradigm, a predictive model is pre-built only on the labeled
data and then used for predicting the unlabeled data. As an
example, Zhang et al. [14] employed a typical inductive
SSL approach called self-training to explore the unlabeled
data from different databases for emotion recognition from
speech. In addition, co-training was proposed to exploit
two views (feature sets) for emotion recognition. For exam-
ple, Zhang et al. [15] and [16] split the acoustic features
into two groups (e. g., energy- or spectral-related), each of
which is regarded as one ‘view’ for emotion recognition
from speech. Likewise, Li et al. [17] took the personal
and impersonal (i. e., the sentence whose subject is not a
person) opinions as two ‘views’ for emotion recognition from
text. Recently, deep neural network-based SSL has emerged
a great potential method owing to its capability to distil
high-level representations. Most recently, Deng et al. [18]
introduced a shared-hidden-layer framework with multi-task
learning, which consists of two tasks – reconstructing inputs
(autoencoder path) and predicting emotions (classification
path). It is expected that the knowledge can be transferred
from unlabeled data to labeled data through the autoencoder
path.

However, most of these studies merely focused on a signal
modality, i. e., either audio [19], video [20], [21], or text [17].
Nowadays, recognising emotion via multiple modalities
emerges to be prominent [22]–[27], not only due to the broad
usage of cameras and microphones as aforementioned, but
also due to the fact that the combination of various modal-
ities can often offer better performance than unimodality
for emotion recognition [23]–[25], [28], [29]. Nevertheless,
multimodal information is often ignored in most previous
SSL research. Different from previous studies, in this article
we intend to make efficient use of multiple modalities in SSL
for emotion recognition.

Furthermore, traditional SSL approaches often suffer from
a problem of performance degradation. That is, when
adding more automatically annotated data to the train-
ing set often results in worse, rather than better, perfor-
mance of recognition models [30]–[32]. Largely because
the automated annotations (model predictions) are often not
totally correct, the mislabeled samples (i. e., error or noise)
are potentially taken into account when updating train-
ing models and sequentially accumulated in the follow-up

learning iterations, leading to a gradual decrease of model
performance [30]–[32]. The occurrence of this issue is
supposed to highly relate to two factors: model good-
ness, and correctness and diversity of selected data when
updating training data [33]. A poorly performed model
reduces the reliability of the automated annotations, and
increases the risk of adding mislabeled samples into the
updated training set. In addition, as to the intrinsic pre-
diction inclination of a model, the diversity of selected
data in SSL might be limited [32], [34]. Adding more
selected data from one model probably leads to a higher mis-
matched distribution between the updated training set and test
set [32].

To address the performance degradation problem of SSL,
many efforts have been made in the context of machine
learning. In [20] and [32], Cohen et al. used unlabeled data
to search for a better structure of Bayesian Network. This
algorithm can effectively alleviate the problem, but it is only
designed for probabilistic models. In [35], Nigam et al. sug-
gested to assign different weights to unlabeled data accord-
ing to their prediction probabilities (i. e., confidence). Their
approach then trains a new model using the combination of
original labeled and new weighted-unlabeled data, and iter-
ates. This method effectively reduces the detrimental effect
of poorly labeled data by machines [35]. Further, rather
than such a soft-weighted strategy, its binary version was
frequently used as well. That is, only a few most confidently
predicted data are added to the labeled data set [30]. Besides,
another enhanced version was introduced by Li et al. [36],
by which the unlabeled data are actively identified with the
help of some local information in a neighbourhood graph.
By doing this, it keeps those mislabeled data from being
added to the training set; hence, a less noisy training set is
obtained [36].

In this article, we propose a novel SSL approach called
enhanced collaborative SSL (ecSSL), with the purpose to
address the performance degradation problem by leveraging
multiple modalities and models with a re-evaluation process
on selected data. Compared with previous work, the proposed
approach can utmost upgrade the goodness of the recognition
model as well as the ‘correctness’ and diversity of selected
data. In general, our main contributions can be summarised
as follows.
• We exploit the complementary of multiple modalities
(i. e., audio and video) and classification models for
SSL. This combination is crucial and assumed to offer
at least two benefits: to build an enhanced and robust
emotion recognition model, and to select more accurate
and diverse data in the SSL process. Taking advantage
of multiple models is originally motivated by the work
presented in [37], [38], where different machine learning
models can be learnt mutually.

• We propose to sequentially re-evaluate previously
selected data to increase the correctness of selected
data. It is supposed to correct possibly mislabeled
data in previous iterative learning stages and this
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further enhances the overall confidence of the system
predictions.

• We demonstrate the superiority of the proposed ecSSL
approach on a multimodal database and provide insight-
ful analysis.

The remainder of this article is organised as follows.
In Section II, we describe the proposed enhanced collabo-
rative SSL in detail. Then, we perform extensive empirical
evaluations on the RECOLA database in Section III. Finally,
we draw conclusions and point out some potential research
directions in Section IV.

II. ENHANCED COLLABORATIVE SEMI-SUPERVISED
LEARNING
Let L = {(xi, yi), i = 1, . . . , nl} denote the small set of
labeled data and U = {xi, i = 1, . . . , nu} denote the large set
of unlabeled data, where x ∈ X indicates the feature vector
in the input feature space; y ∈ Y indicates the label of the
emotional label space; and nl and nu are the total number of
labeled and unlabeled data, respectively. It is assumed that nl
is lower than nu (nl � nu) due to the limited availability of
labeled data as discussed in Section I.

In this article, we conduct SSL in an inductive paradigm.
To select the data in each SSL iterations, we follow up
the classic strategy based on prediction confidence (aka
prediction uncertainty). Only the samples predicted most
confidently are selected. To evaluate the confidence value,
we employ the entropy E(p) as a measure, which is calculated
from the discrete probability distribution of predictions in our
classification case, as

E(p) =
C∑
i=1

pilog(pi), (1)

where pi indicates the prediction probability for class i, and
C is the number of classes. In this sense, a higher confi-
dence value refers to a lower entropy. Henceforth, we use the
entropy of the prediction probability E(·) as a criterion for
data selection.

Further, as mentioned, for emotion recognition it is a com-
mon case that the prepared samples are in an imbalanced
category distribution. Those imbalanced training data prob-
ably lead to a model prediction bias: The samples pertaining
to the dominant categories (e. g., neutral speech) are easily
classified with high confidence [39]. Such a prediction bias
consequentially gives rise to a vicious circle in which the
dominant categories are recognised increasingly better, while
the opposite observation holds for the less represented cat-
egories [16]. According to the findings presented in [40],
we employ the same number of samples per class to build
the initial labeled-training-set. Moreover, we equally select
the samples per class in each learning iteration. Compared
with the ‘traditional’ SSL methods that are only based on
the prediction confidence, the proposed balanced selection
can effectively avoid the selection bias towards the dominant
categories [16], [40].

A. SELF-TRAINING AND CO-TRAINING
As mentioned in Section I, self-training and co-training are
the two widely used inductive SSL approaches for emotion
recognition. For self-training [31], a classifier is firstly trained
with an ‘original’ human- labeled data set L. After that,
the classifier is used to recognise the unlabeled data set U .
Typically, the unlabeled data S that are recognised with high
confidence (or low entropy E(yx)), together with their pre-
dicted labels, are added to the original training set (L∪S), and
removed from the unlabeled data set (U r S). The classifier
is then retrained with the updated training set. This process is
repeated several times until a predefined stopping criterion is
met.

To cease the learning process, several criteria can be imple-
mented: e. g., (i) no performance improvement is shown
on the evaluation set, (ii) a predefined iteration number is
matched, or (iii) no target data remains in the unlabeled data
set. Note that, in this article, the second stopping criterion is
chosen throughout all of the experiments for an easy perfor-
mance comparison.

Compared with self-training, where the classifier uses its
own prediction to teach itself, co-training [41] tries to exploit
the mutual information between two models trained on dif-
ferent feature domains (‘views’) – Xv1 and Xv2, each of
which uses its predictions to teach not only itself but also
the other one. Specifically, each ‘view’ is used to create one
‘good’ classifier hv1 or hv2, and each classifier is tested on
the unlabeled data set U . The unlabeled data (S = Sv1 ∪Sv2)
predicted with high confidence values (or low entropy E(yx))
are then added (together with the new label) to the training
set (L∪S) and removed from the unlabeled data set (U rS).
Afterwards, the two classifiers are retrained from the updated
training set based on the corresponding feature domain. The
whole process repeats several times as self-training does.

Co-training relies on two assumptions [41]: (a) suffi-
ciency–each ‘view’ is sufficient for classification on its
own. That is, the two hypotheses fv1 : Xv1 7→ Y
and fv2 : Xv2 7→ Y are good enough for recognition;
(b) conditional independence–the ‘views’ are conditionally
independent given the class label [41], that is, p(yi|x) ←
p(yi|xv1)p(yi|xv2), where x = [xv1, xv2].

B. ENHANCED SSL
One main drawback of SSL is error accumulation, as men-
tioned in Section I. For traditional SSL, the data selected by
the machine are fully trusted and pooled into the training
set. However, some of these data are inevitably mislabeled
in practise, and result in a noisy training set (cf. Section I).

To tackle this problem, we propose to not always trust the
automatically labeled data, and call this approach enhanced
SSL. The pseudocode describing the algorithm is shown in
Algorithm 1. The core idea of this approach is to retain the
previously selected data in the original unlabeled data set at
each learning iteration. In doing this, the previously selected
data will be re-evaluated by the following enhanced model.
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Algorithm 1 Enhanced Semi-Supervised Learning
Initialise:
nl : number of initial labeled training samples;
nu: number of unlabeled samples;
n: incremental number of selected samples per learning
iteration;
h: classification model;
x: feature set, i. e., xa, xv, or xav

1 for i = 1, ..., I do % iterate learning process
2 Train classifier hi := f (Li(x, y));
3 Predict (y′x, E(y

′
x))← hi(∀x ∈ U);

4 % re-evaluate the whole original unlabeled set
5 Split U = {Uc, c = 1, . . . ,C}, where ∀x ∈ Uc,

y′x = c;
6 for c = 1, ...,C do % equally selected per

class by the strategy of minimum entropy
7 Set ni = i× bn/Cc;
8 Copy Sc from Uc, size(Sc) = ni, and satisfy

E(y′xc )
∀xc∈Sc

≤ E(y′x′c )
∀x′c∈(U crSc)

;

9 S i =
⋃

Sc;
10 end
11 Li+1 = L0

∪ S i;
12 end

Therefore, it is possible to correct mislabeled data in future
iterations with an improved model. Naturally, the previously
selected samples may not be selected again in the following
learning process, i. e., S i 6⊂ S j, i < j.

Specifically, given the incremental number of selected
samples per learning iteration n, the i-th learning iteration
will select i × n samples in total, while the unlabeled data
collection U remains the size of nu, in our case.

C. MODALITY-BASED COLLABORATIVE SSL
The proposed collaborative SSL (cSSL) in this article can
be considered an extension of co-training, where the views
involve not only the feature domains (i. e., modality-based
cSSL), but also the recognition models (i. e., model-based
cSSL, discussed in Section II-D). When integrated with the
enhanced SSL, the new algorithm is named as enhanced
cSSL.
The pseudocode describing the algorithm of enhanced

cSSL based on multimodality is displayed in
Algorithm 2. Compared with self-training, modality-based
cSSL (e. g., audio, video, text, and physiology) employs mul-
tiple modalities as independent ‘views’ for training different
models. Compared with co-training, it can implement multi-
ple, rather than two, modalities in the learning system, which
is similar to multi-view learning with less restriction in terms
of conditional independence (For more details, the reader is
referred to [42]).

Besides, in contrast to conventional co-training where
different views individually select the samples that are

Algorithm 2 Enhanced Collaborative Semi-Supervised
Learning Based on Multi-Modality or Multi-Model.
Initialise:
nl : number of initial labeled training samples;
nu: number of unlabeled samples;
n: incremental number of selected samples per learning
iteration;
h: classification model

1 for i = 1, ..., I do % iterate learning process
2 • either based on multi-modality
3 for p = 1, ...,P do % use P modalities
4 Train classifier based on the p-th modality,

hip := f (Li(xp, y));
5 Classification (y′xp , E(y

′
xp ))← hip(∀xp ∈ U);

6 end
7 Merge predictions y′x← M (y′x1 , · · · , y

′
xp );

8 Average entropies Ē(y′x)←
1
P

∑P
p=1 E(y

′
xp );

9 • or based on multi-model
10 for q = 1, ...,Q do % use Q models
11 Train the q-th classifier hiq := fq(Li(x, y));
12 Classification (y′qx , E(y

′q
x ))← hiq(∀x ∈ U);

13 end
14 Merge predictions y′x← M (y′1x , · · · , y′Qx );
15 Average entropies Ē(y′x)←

1
Q

∑Q
q=1 E(y

′q
x );

16 Split U = {Uc, c = 1, . . . ,C}, where ∀x ∈ Uc,
y′x = c;

17 for c = 1, ...,C do
18 Set ni = i× bn/Cc;
19 Copy Sc from Uc, size(Sc) = ni, and satisfy

Ē(y′xc )
∀xc∈Sc

≤ Ē(y′x′c )
∀x′c∈(U crSc)

;

20 S i =
⋃

Sc;
21 end
22 Li+1 = L0

∪ S i;
23 end

classified with lowest entropies and then fuse them together
(i. e., minimum-individual-entropy strategy) [15], [41], cSSL
takes a minimum-joint-entropy strategy. That is, all predic-
tions obtained by various views for each sample will be
merged as one by means of majority voting. Particularly,
in the even cases, the final decision is assigned to the category
classified with the least entropy. This algorithm improvement
can not only avoid the prediction-conflict caused by different
views but also potentially increase the automated annotation
correctness of the selected data [43]. Furthermore, the final
entropy is calculated by averaging all entropies obtained by
different views. These merged predictions and entropies will
be then relied on for the following data selecting operation.

For the sake of simplicity, in this article we took audio
and video as two representative modalities. In this case,
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the parameter P in Algorithm 2 equals to two, and both audio
and video feature vectors can serve as different ‘views’, i. e.,
xa ∈ Xa = X1, and xv ∈ Xv = X2. The complete feature
vector can be expressed as x = [xa, xv].

D. MODEL-BASED COLLABORATIVE SSL
In contrast to modality-based cSSL, the model-based cSSL
seeks the benefits from multiple diverse classifiers, which
are trained on the same feature sets. The pseudocode of its
enhanced approach is shown in Algorithm 2 as well.

When combining multiple models (classifiers) into a
strong one, it normally requires the individual ones to be
sufficiently effective and diverse [44]. Again, for the sake
of simplicity, we choose two models for evaluation in this
article (i. e., Q = 2 in Algorithm 2). The two models are Sup-
port Vector Machines (SVM) and Recurrent Neural Networks
(RNN), each of which are widely applied to emotion recogni-
tion [13], [23], [38]. In detail, SVM is a convex optimisation
function, the characteristics of which offer it the capability to
capture the global optimisation. Moreover, SVM is learnt by
minimizing an upper bound on the expected risk, as opposed
to the neural networks that are trained by minimizing the
errors on all training data, which endows SVM a superior
ability to generalise [45]. By contrast, the RNN model is eas-
ily trapped in a local minimum which can be hardly avoided
and has a risk of overfitting, whilst it is good at capturing
the context. Particularly, a memory-enhanced variation of
RNN, namely Long Short-TermMemory RNN (LSTM-RNN),
holds amuchmore powerful capability of learning long-range
contextual information.

Thus, it is supposed that combining the two models could
provide an opportunity for them to learn the strength from
each other and avoid the weaknesses. Encouraged by the
success of such a combination for continuous emotion recog-
nition [26], [38], we believe that this algorithm could further
enhance the correctness and the diversity of the selected data
in each learning iteration. Analogous to the modality-based
cSSL, a minimum-joint-entropy strategy is taken as well for
data selection in this case.

E. ENHANCED COLLABORATIVE SSL BASED
ON MULTI-MODALITY AND -MODEL
An enhanced cSSL based on multi-modality and -model is
illustrated in Fig. 1, which integrates the enhanced modality-
based cSSL (cf. Section II-C) and the enhanced model-based
cSSL (cf. Section II-D). By this approach, the data from the
audio and video domains are respectively utilised to build
RNN and SVM models. For each sample, predictions via
various modalities and models are merged to one by majority
voting

y′x = M
(
y′1x1 , · · · , y

′q
xp , · · · , y

′Q
xP

)
, (2)

where y′qxp denotes the prediction from the q-thmodel by using
the p-th modality. In case of a draw, the decision is then
made by the category that holds the least entropy.Meanwhile,

FIGURE 1. Flowchart of enhanced collaborative Semi-Supervised
Learning based on multi-modality (i. e., audio [a] and video [v]) and
multi-model (i. e., RNN [r] and SVM [s]).

the joint prediction entropy is calculated by

Ē(y′x) =
1

Q · P

Q∑
q=1

P∑
p=1

E(y′qxp ), (3)

where E(·) indicates the prediction entropy. After that,
the data selection process is conducted by the minimum-
joint entropy strategy for each category as described in
Section II-C, such that the sample x with pseudo-label c in
the selected subset S satisfies

Ē(y′xc )
∀xc∈Sc

≤ Ē(y′x′c )
∀x′c∈(U crSc)

. (4)

It is worth noting that the size of the selected subset is
incrementally increased to i× n, whereas the unlabeled data
set always remains the same size nu, and the updated training
set becomes nl + i× n, at the i-th learning iteration.

III. EXPERIMENTS AND RESULTS
In this section, we perform an empirical evaluation of the pro-
posed SSL approaches on the audiovisual RECOLA database
for emotion recognition.

A. RECOLA DATABASE
The multimodal corpus REmote COLlaborative and Affec-
tive interactions (RECOLA) [46] (the standard database of
the AVEC challenges for audiovisual emotion recognition
in 2015 and 2016 [29]) was selected for our experiments
due to its widespread use in this area. This database was
created to study socio-affective behaviours from multimodal
data in the context of remote collaborative tasks. Spontaneous
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and natural interactions were proceeded from 46 French-
speaking participants (27 females and 19 males with a mean
age of 22 years and a standard deviation of 3 years) whilst
solving a collaborative task conducted in dyads via video
conferencing.

In total, the database includes 9.5 hours multimodal
recordings, i. e., audio, video, electrocardiogram, and electro-
dermal activity, which were obtained synchronously and con-
tinuously over time. Due to the consent of the participants to
share their data, the data set is reduced to a subset of 34 par-
ticipants with an overall duration of 7.0 hours.

TABLE 1. Distribution of speakers and instances per partition of the
RECOLA database. spk: speakers, POS: positive, NEG: negative.

After the data collection process, six gender-balanced
French-speaking assistants were asked for annotating the
time-continuous ratings of emotional arousal for the first five
minutes of all recordings via the ANNEMOweb-based anno-
tation toolkit. For the purpose of this study, these continuous
ratings for arousal dimension are further discretised into a
binary category – POSitive andNEGative. To do this, the con-
tinuous audiovisual signals were firstly split into sequential
short segments (instances) via voice activity detection. Then,
we assigned POS or NEG to each of them if the average
rating value of the segment is above or under zero. These
data were finally divided into pool set (unlabeled data set)
and test set assuring a speaker independence. The details of
the speaker and instance distribution of RECOLA used in
this article are shown in Table 1. More information on the
RECOLA database can be found in [46].

B. ACOUSTIC AND VISUAL FEATURES
Regarding the acoustic features, we kept in line with
the standard statistical feature set for the past four
INTERSPEECH Computational Paralinguistic ChallengEs
(COMPARE 2013-2017) [47]. This feature set is obtained by
applying various functionals (segment level) on the Low-
Level Descriptors (LLDs, frame level). Specifically, it con-
tains 4 energy related LLDs (loudness, RASTA spectrum,
RMS energy, and zero-crossing rate), 55 spectral related
LLDs (spectrum bands, MFCC 1-14, spectral energy, spec-
tral flux/centroid/entropy/slope, psychoacoustic sharpness,
harmonicity, and spectral variance/skewness/kurtosis), and
6 voicing related LLDs (F0, probability of voicing, logHNR,
jitter, and shimmer). These 65 LLDs of speech with their
first order derivate leads to 130 LLDs in total (for more
details, please refer to [48]). After that, 5 functionals (min,
max, range, mean, and variance) are applied over each LLD
contour. Thus, the complete acoustic feature set includes
650 attributes per segment.

Regarding the visual features, we extracted 20 LLDs and
their first order derivate (40 LLDs in total) for each frame
in the video recordings. The 20 LLDs contain 15 facial
actions units (AU1-2, 4-7, 9, 11-12, 15, 17, 20, and 23-25),
head-pose in three dimensions, and the mean and standard
deviation of the optical flow in the region around the head
(for more details, please refer to [49]). Similar to acoustic
features, the same 5 functionals are applied over the extracted
frame-based LLD contours per video segment, which leads to
200 visual attributes per segment in total.

C. EXPERIMENTAL SETUP AND EVALUATION METRICS
Following on previous work [33], we kept taking the binary
arousal recognition as a representative emotion recognition
task. For SSL, we considered audio, video, audio+video
(i. e., combined audio and video) as three independent modal-
ities, respectively leading to an acoustic (650), a visual (200),
and an audiovisual (850) feature set. As to the modality-
based cSSL, the acoustic and visual feature sets were sepa-
rately split into two pseudo ‘views’ (feature subsets) based
on the property of the LLDs – the efficiency of this rule
was frequently demonstrated in our previous work [15], [16].
That is, the acoustic feature set was divided by the rule of
MFCC-related or not, and the visual feature set was par-
titioned by original or first derived delta features. For the
audiovisual feature set, nevertheless, it was split as usual into
individual acoustic and visual feature sets as two ‘views’.

As to the model-based cSSL, we chose two of the most
popular and robust models, i. e., RNNs and SVMs, as exem-
plary ones, since both of them i) are widely used for emotion
recognition (see [29], [47], [50]); ii) are considered to be
highly distinct in principle, and frequently employed in an
ensemble learning paradigm [38], [51]. Specifically, the RNN
model was constructed in the Tensorflow platform [52] with
40 hidden neurons of one hidden layer. To accelerate the RNN
learning process, we employed amini batch of eight instances
as network inputs. Additionally, we trained the RNN models
with Adam Stochastic Gradient Descent with a learning rate
of 10−4. Meanwhile, the SVM model used for our experi-
ments was implemented with the LibSVM toolbox [53], and
was optimised with a polynomial kernel and a fixed penalty
factor of 0.05.

To carry out the SSL experiments, we first randomly
and equally selected 20 instances per class from the pool
set, i. e., nl = 40 in total, with the annotations obtained
from human raters as an initial training set, which resembles
approximately 4% of the whole pool set. The remaining
instances in the pool set were regarded as the unlabeled
data set. At each SSL iteration, we incrementally selected
n = 40 instances (20 instances per class based on the pseudo
(automated) annotations by a pre-trained model). (Note that
because the unlabeled data set always remains the same in
each learning iteration, selecting a fixed number instances
is equal to selecting a fixed ratio of the whole pool set.)
More specifically, at the i-th learning iteration, 40 instances
were selected in total for our baseline SSL approaches
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without the enhancement strategy, whilst 40×i instanceswere
picked in total for the SSL with the enhancement strategy
as the previously selected instances remain in the pool set
for re-evaluation by an updated model (cf. Section II-B).
Further, the learning iteration time was set to be I = 20
for better performance comparison. To ease the influence of
random selection for the initial training set, we repeated the
initial selection 20 times with different random initialisations
(‘seeds’), leading to 20 independent learning runs throughout
all the following experiments.

For performance evaluation, we utilised the widely used
metric in the context of emotion recognition – Unweighted
Average Recall (UAR). It is calculated by the sum of recalls
per class divided by the class number as

UAR =

∑K
i=1 Recall i

K
, (5)

whereK is the number of classes. Thus, UARwell reflects the
overall accuracy in the presence of class imbalances. Further,
to assess the statistical difference of the performance obtained
between two approaches, we employed a paired t-test in what
follows. Moreover, to estimate the diversity of selected data,
we took euclidean distance measurement that is calculated by

D(X ) =

√√√√√
 n∑
i=1,j=1

(xi − xj)2/n

, (6)

where n is the instance number in data set X .

D. ENHANCED vs NON-ENHANCED SSL
Fig. 2 and 3 illustrate the performance of enhanced SSL and
non-enhanced SSL evaluated by the models of the RNN and
SVM, respectively. Note that for the multi-modalities based
cSSL, the audio and video feature sets are partitioned into
two pseudo ‘views’ as mentioned in Section III-C. For the
multi-model based cSSL, both the RNN and SVM models
are jointly considered for data selection, but the learning
process is assessed by either the RNN (cf. Fig. 2) or the SVM
(cf. Fig. 3).

From the figures, it can be seen that the enhanced SSL
(black solid lines) performs better than the non-enhanced SSL
(black dash lines) in a majority of experimental settings either
by the models of RNN (cf. Fig. 2) or SVM (cf. Fig. 3). Specif-
ically, all the scenarios where the enhanced SSL significantly
outperforms the non-enhanced SSL are indicated by p < .05
at the bottom of each subfigure.

To find out the reason behind the performance improve-
ment, we further calculate the UAR of the predictions on the
selected data set, which is presented by the blue lines in Fig. 2
and 3. From these subfigures, it is interesting to notice that the
enhanced SSL (solid lines) is able to select more accurately
predicted samples than the non-enhanced SSL (dash lines) in
most settings. In addition, one can further observe that the
performance gain obtained on the selected set highly relates
to the gain on the test set. Intuitively, the figures show that
the cases where the selected set predicted more accurately

(in black lines) are largely overlapped to the cases where the
test set is recognised more precisely (in blue lines). Such a
accuracy increase on the selected set potentially attributes to
the fact that the updated models are likely to have corrected
part of the previously selected samples that are misclassi-
fied by previous weak-models or have dismissed them in
the subsequent data selection steps. These re-evaluation and
re-selection operations on the pre-selected data set, there-
fore, partially mitigate the error accumulation problem of
SSL and consequentially deliver a more efficient model. The
conclusion is consistent with the assumption proposed in
Section I and II-B.

Furthermore, the enhanced SSL strategy sounds to perform
more effectively when integrating with cSSL approaches
(cf. the subfigures in the second, third, and fourth rows
of Fig. 2 and 3) than integrating with self-training (cf. the
subfigures in the first row of Fig. 2 and 3). This implies
that for the better models we obtain in the SSL process,
a higher performance gain can be yielded by the enhanced
SSL strategy.

E. COLLABORATIVE vs NON-COLLABORATIVE SSL
According to the findings presented in Section III-D,
we henceforth concentrate on the enhanced SSL for analysing
the collaborative learning strategy. In Fig. 4 and 5, we com-
pare the proposed collaborative SSL approaches with the
non-collaborative SSL (self-training), evaluated on the
modalities of audio, video, or audio+video, and by the mod-
els of RNN (Fig. 4) and SVM (Fig. 5). Specifically, the sub-
figures in the first rows of Fig. 4 and 5 plot the averagedUARs
(test set) over 20 independent runs in each learning iteration,
achieved by three cSSL approaches and self-training. Gen-
erally speaking, all exemplary SSL approaches remarkably
further the original UAR gained by the initial training model.

The modality-based cSSL (green lines) significantly out-
performs self-training (red lines) in almost all chosen modal-
ities and models by performing a paired t-test, which keeps
in line with the findings reported in our previous work
merely with audio as modality [15], [16]. Similar observa-
tions are further made for the model-based cSSL (blue lines),
which implicitly indicate that employing multiple models
in a mutual learning paradigm is quite helpful to boost the
performance of SSL. We further discover that the modality-
based approach performs better than the model-based one
when using the classification model of the RNN, and vice
versa for the SVM. This outcome is partially due to the initial
UAR gap gained by the RNN model and the SVM model
(more details will be found in Section III-F).

When combining the modality- and model-based cSSL
(black lines), it can be seen that better performance can
be delivered in three out of six cases (see the first rows
of Fig. 4 and 5). To quantitatively analyse the performance
improvement of cSSL, we calculated the averaged initial, last,
maximum, mean (over the 20 learning iterations) UARs as
well as their corresponding standard deviation across 20 inde-
pendent runs for each SSL approach (see Table 2). Generally
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FIGURE 2. Performance (averaged UAR over 20 independent runs) comparison between enhanced and non-enhanced
(collaborative) Semi-Supervised Learning (SSL), evaluated by Recurrent Neural Networks (RNNs). The left (black) and right
(blue) y-axes indicate the obtained performance on the test set and the selected set, respectively. Four subfigure-rows from
top to bottom refer to the performance of traditional self-training, multi-modality based, multi-model based, and
multi-modality and -model based collaborative SSL, respectively. Three subfigure-columns from left to right denote the
performance on acoustic (audio), visual (video), and audiovisual (audio+video) features, respectively. (Note: the missing
x-axes, left y-axes, and right y-axes are aligned with the bottom, left, and right ones, respectively.)

speaking, for RNN or SVM, themodality-based or themodel-
based cSSL can yield better performance than self-training
according to the averaged maximum and mean UARs. For
example, the highest maximum UARs were achieved at
76.0% on average by applying the multi-modality based SSL
to audio+video modality when using RNN, and achieved
at 72.1% on average by applying multi-model based SSL
to audio+video modality when using SVM. When further
fusing the modality- and model-based cSSL, we can observe
that the models become more robust as the obtained UARs
in 20 independent runs are with lower standard deviation.

This is important in realistic applications since the SSL pro-
cess is often undertaken only limited times, normally once.
However, we obverse that the models cannot always achieve
the highest UARs throughout all experimental scenarios, for
example, 74.8% and 70.3% of UARs were obtained by using
RNN or SVMas classifiers, respectively, for the audio+video
modality, which are lower than the best results delivered
by multi-modality or multi-modal based SSL. These excep-
tions possibly attribute to the limited sample number of the
database we employed for experiments. Despite of this obser-
vation, it can be seen that the fused approach outperforms
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FIGURE 3. Performance (averaged UAR over 20 independent runs) comparison between enhanced and non-enhanced
(collaborative) Semi-Supervised Learning (SSL), evaluated by Support Vector Machines (SVMs). The left (black) and right
(blue) y-axes indicate the obtained performance on the test set and the selected set, respectively. Four subfigure-rows from
top to bottom refer to the performance of traditional self-training, multi-modality based, multi-model based, and
multi-modality and -model based collaborative SSL, respectively. Three subfigure-columns from left to right denote the
performance on acoustic (audio), visual (video), and audiovisual (audio+video) features, respectively. (Note: the missing
x-axes, left y-axes, and right y-axes are aligned with the bottom, left, and right ones, respectively.)

the ones based on either multi-modality or multi-model for
audio, video, or audio+video modalities in four out of six
cases when using RNN or SVM. Therefore, the fused multi-
modality & -model based SSL is particularly attractive when
without knowing which modality or model fits the data best.

We further compared the enhanced cSSL (ecSSL)
with two traditional SSL approaches (i. e., Label Spread-
ing (LS) [54] and Label Propagation (LP) [55]), as well as
two recently proposed deep-learning based SSL approaches
(i. e., based on either Generative Adversarial Network
(GAN) [56] or AutoEncoder (AE) [18]). The former two

approaches belong to transductive SSL, which take the dis-
tribution of the unlabeled and labeled data into account as
introduced in Section I. For more details, the readers can
be referred to [54] and [55]. The later two approaches have
recently attracted increasing interest due to the rise of deep
learning. GANwas first proposed in [57], where a deep gener-
ative model is learnt to model the data distribution of target,
when training jointly with another discriminative model as
two players in a minimax game. The GAN-based SSL is
particularly designed to address the data sparsity problem–
the generator aims to simulate sufficient data as real as
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FIGURE 4. Comparison between the proposed collaborative Semi-Supervised Learning approaches and
self-training, evaluated by Recurrent Neural Networks (RNNs). Three rows from top to bottom denote the
obtained UARs on the test set, the obtained UARs on the selected set, and the euclidean distance among the data
of the selected set, respectively. Three columns from left to right indicate the obtained UARs or euclidean
distance on acoustic (audio), visual (video), and audiovisual (audio+video) features, respectively. (Note: the
missing x-axes and y-axes are aligned with the bottom and left ones, respectively.)

possible to augment the training set, whereas the discrimina-
tor not only detects the sources where its input samples come
from, but also performs a classification [56]. Besides, the
AE-based SSLwas reported in [18], where a multi-task learn-
ing framework was implemented. On the one hand, it classi-
fies the emotions in a supervised manner; on the other hand,
it simultaneously reconstructs the input in an unsupervised
manner. Themotivation of taking this framework is to explore
the underlying representations shared among the unlabeled
and labeled data, so that the knowledge can be transferred
from the massive unlabeled data to the limited labeled data.
For a fair performance comparison, we implemented the same
network structure with the one used in our approach for both
two recently proposed approaches, and the same learning rate
and batch size when training the networks. The performance
comparison is shown in Table 3. When comparing with
the two transductive SSL approaches (i. e., LS and LP),
we find that ecSSL significantly improves the performance
with the video or the fused audio+video modalities when
performing a statistical one-tailed z-test (p < 0.05). When
comparing with the deep-learning based SSL approaches

(i. e., GAN-based and AE-based), we observe that the pro-
posed approach also yields performance gain in a large
margin by using RNN as a classifier.

F. DISCUSSION
To demonstrate the observations shown in Section III-E,
we further investigate the quality of the selected data set in
terms of accuracy (second rows) and diversity (third rows)
in both Fig. 4 and 5. As to the accuracy, it can be seen
that all three proposed cSSL approaches can achieve higher
averaged UARs than self-training on the selected data set
in most, if not all, scenarios. Interestingly, the UAR curves
obtained on the selected set for each SSL approach have an
almost identical order with the UAR curves obtained on the
test set, which again explicitly indicates the importance of
prediction accuracy of the selected data as aforementioned
(cf. Section III-D). Further, as we expected, the averaged
UARs are to decrease when incrementally adding more auto-
matically labeled instances by the machine in the SSL pro-
cess. This clearly reveals the intrinsic problem of SSL where
errors will be accumulated along with the learning iterations.
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FIGURE 5. Comparison between the proposed collaborative Semi-Supervised Learning approaches and
self-training, evaluated by Support Vector Machines (SVMs). Three rows from top to bottom denote the obtained
UARs on the test set, the obtained UARs on the selected set, and the euclidean distance among the data of the
selected set, respectively. Three columns from left to right indicate the obtained UARs or euclidean distance on
acoustic (audio), visual (video), and audiovisual (audio+video) features, respectively. (Note: the missing x-axes
and y-axes are aligned with the bottom and left ones, respectively.).

TABLE 2. Statistical performance (averaged UARs and corresponding standard deviation [std]) comparison between the enhanced collaborative
semi-supervise learning (based on multi-modality and/or multi-modal) and the enhanced self-training (based on unimodality and unimodel), evaluated
by a Recurrent Neural Network (RNN) and a Suport Vector Machine (SVM). The initial, last, maximum, and mean of the UARs over the 20 learning
iterations are shown. All values are averaged across 20 independent runs.

As a consequence, themodel performancewill decreasewhen
the detrimental effect that the selected data cause surpasses
the benefit that they offer.

As to the diversity, Fig. 4 (third row) shows the averaged
euclidean distance among all data-pairs in the selected set,
by using the RNN classification model. Obviously, cSSL is

capable of choosing diverse data, which potentially provide a
plethora of feature variations and sufficiently cover the whole
picture of a data distribution. More concretely, the model-
based cSSL as well as its integrated approach with modality-
based cSSL can provide much more diverse data than the
modality-only-based cSSL. However, these observations are
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TABLE 3. Performance comparison in terms of UAR between enhanced
collaborative Semi-supervised Learning (ecSSL) and traditional
approaches in 20 independent runs.

not seen in Fig. 5 (third row) where self-training provides
relatively more diverse data. This might largely attribute to
the principle of SVMs for classification: The data far away
from the decision hyperplanes are often predicted with high
confidence, which gives rise to a high diversity of the selected
data.

To compare the performance of the modality-based cSSL
and the model-based cSSL when using RNN or SVM recog-
nition models, we discover that for the RNN recognition
model (cf. Fig. 4), the preferably selected data by SVM are
more diverse than the ones just provided by RNN; in the third
subfigure-row of Fig. 4, the blue lines are obviously higher
than the green lines. Nevertheless, for the SVM recognition
model (cf. Fig. 5), the preferably selected data by the RNN
are more precise than the ones just provided by the SVM; in
the second subfigure-row of Fig. 5, the blue lines are obvi-
ously higher than the green lines. Therefore, combining the
two models in a mutually learning paradigm can efficiently
exploit the strengths of each model, whilst avoiding their
weaknesses.

Moreover, to compare the SSL performance between uni-
modality (i. e., audio or video, the first and second columns of
Fig. 4 and 5) and multi-modality (i. e., audio+video, the third
column of Fig. 4 and 5), one can notice that combining the
multiple modalities is able to boost the performance in almost
all cases. A more quantitative performance comparison can
be found in Table 2 as well. These findings are in consistence
with the ones reported by previous studies [38], [49].

IV. CONCLUSION
To leverage the ubiquitous unlabeled data for automatic emo-
tion recognition, this article proposed enhanced collaborative
Semi-Supervised Learning (SSL). Dissimilar to traditional
SSL, it performs a data re-evaluation process on previously
selected data (enhanced strategy) on one hand. On the other
hand it takes a mutual learning process among multiple
modalities and models (collaborative strategy). The proposed
approaches have been systematically evaluated on the widely
used audiovisual affective database RECOLA in various set-
tings. The experimental results demonstrate that the proposed
approaches significantly improve the system performance by
enhancing the correctness and diversity of selected data.

More recently, deep learning algorithms have attracted
tremendous attention and achieved a great success in the

context of machine learning. This will form one of the main
research directions in the future, by considering diverse deep
learning architectures in the SSL systems.
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