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Abstract—Spectrogram representations of acoustic scenes have
achieved competitive performance for acoustic scene classifica-
tion. Yet, the spectrogram alone does not take into account
a substantial amount of time-frequency information. In this
study, we present an approach for exploring the benefits of
deep scalogram representations, extracted in segments from an
audio stream. The approach presented firstly transforms the
segmented acoustic scenes into bump and morse scalograms, as
well as spectrograms; secondly, the spectrograms or scalograms
are sent into pre-trained convolutional neural networks; thirdly,
the features extracted from a subsequent fully connected layer are
fed into (bidirectional) gated recurrent neural networks, which
are followed by a single highway layer and a softmax layer;
finally, predictions from these three systems are fused by a margin
sampling value strategy. We then evaluate the proposed approach
using the acoustic scene classification data set of 2017 IEEE AASP
Challenge on Detection and Classification of Acoustic Scenes and
Events (DCASE). On the evaluation set, an accuracy of 64.0%%%
from bidirectional gated recurrent neural networks is obtained
when fusing the spectrogram and the bump scalogram, which is
an improvement on the 61.0%%% baseline result provided by the
DCASE 2017 organisers. This result shows that extracted bump
scalograms are capable of improving the classification accuracy,
when fusing with a spectrogram-based system.

Index Terms—Acoustic scene classification (ASC), (bidirec-
tional) gated recurrent neural networks ((B) GRNNs), convolu-
tional neural networks (CNNs), deep scalogram representation,
spectrogram representation.
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ACOUSTIC scene classification (ASC) aims at the identifi-
cation of the class (such as ‘train station’, or ‘restaurant’)

of a given acoustic environment. ASC can be a challenging
task, since the sounds within certain scenes can have similar
qualities, and sound events can overlap one another [1]. Its
applications are manifold, such as robot hearing or context-
aware human-robot interaction [2].

In recent years, several hand-crafted acoustic features have
been investigated for the task of ASC, including frequency,
energy, and cepstral features [3]. Despite such year-long
efforts, recently, representations automatically extracted from
spectrogram images with deep learning methods [4], [5] are
shown to perform better than hand-crafted acoustic features
when the number of acoustic scene classes is large [6], [7].
Further, compared with a Fourier transformation for obtaining
spectrograms, the wavelet transformation has the ability to
incorporate multiple scales, and for this reason locally can
reach the optimal time-frequency resolution [8] concerning
the Heisenberg uncertainty of optimal time and frequency
resolution at the same time. Accordingly, wavelet features
have already been applied successfully for many acoustic
tasks [9]−[13] , but often, the greater effort in calculating
a wavelet transformation is considered not worth the extra
effort if gains are not outstanding. In the theory of wavelet
transformation, the scalogram is the time-frequency repre-
sentation of the signal by wavelet transformation, where the
brightness or the colour can be used to indicate coefficient
values at corresponding time-frequency locations. Compared
to spectrograms, which offer (only) a fixed time and frequency
resolution, a scalogram is better suited for the task of ASC due
to its detailed representation of the signal. Hence, a scalogram-
based approach is proposed in this work.

We use convolutional neural networks (CNNs) to extract
deep features from spectrograms or scalograms, as CNNs have
proven to be effective for visual recognition tasks [14], and
ultimately, spectrograms and scalograms are images. Several
specific CNNs are designed for the ASC task, in which
spectrograms are fed as an input [7], [15], [16]. Unfortu-
nately, those approaches are not robust and it can also be
time-consuming to design CNN structures manually for each
dataset. Using pre-trained CNNs from large scale datasets
[17] is a potential way to break this bottleneck. ImageNet1

is a suited such big database promoting a number of CNNs
each year, such as ‘AlexNet’ [18] and ‘VGG’ [19]. It seems
promising to apply transfer learning [20] through extracting

1http://www.image-net.org/
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features from these pre-trained neural networks for the ASC
task — the approach taken in the following.

As to handling of audio besides considering ‘images’
(the spectrograms and/or scalograms) by pre-trained deep
networks, we further aim to respect its nature as a time-
series. In this respect, sequential learning performs better for
time-series problems than static classifiers such as support
vector machines (SVMs) [21] or extreme learning machines
(ELMs) [17]. Likewise, hidden Markov models (HMMs) [22],
recurrent neural networks (RNNs) [23], and in the more recent
years in particular long short-term memory (LSTM) RNNs
[24] are proven effective for acoustic tasks [25], [26]. As gated
recurrent neural networks (GRNNs) [27] — a reduction in
computational complexity over LSTM-RNNs — are shown
to perform well in [13], [28], we not only use GRNNs as
the classifier rather than LSTM-RNNs, but also extend the
classification approach with bidirectional GRNNs (BGRNNs),
which are trained forward and then backward within a spe-
cific time frame. Likewise, we are able to capture ‘forward’
and ‘backward’ temporal contexts, or simply said the whole
sequence of interest. Unless moving with the microphone or
changes of context, acoustic scenes in the real-world usually
prevail for longer amounts of time, however, with potentially
highly varying acoustics during such stretches of time. This
allows to consider static chunk lengths for ASC, despite
modelling these as a time series to preserve the order of events,
even though being only interested in the ‘larger picture’ of
the scene than in details of events within that scene. In the
data considered in this study based on the dataset of 2017
IEEE AASP Challenge on Detection and Classification of
Acoustic Scenes And Events (DCASE), the instances have a
(pre-)specified duration (10 s per sample in the [29]).

In this article, we make three main contributions. First,
we propose the use of scalogram images to help improve
the performance of only a single spectrogram extraction for
the ASC task. Second, we extract deep representations from
the scalogram images using pre-trained CNNs, which is much
faster and more efficient in terms of conservative data require-
ments than manually designed CNNs. Third, we investigate
the performance improvement obtained through the use of (B)
GRNNs for classification.

The remainder of this paper is structured as follows: some
related work for the ASC task is introduced in Section II; in
Section III, we describe the proposed approach, the pipeline
of which is shown in Fig. 1; the database description, exper-
imental set up, and results are then presented in Section IV;
finally, conclusions are given in Section VI.

II. RELATED WORK

In the following, let us outline point by point related work to
the points of interest in this article, namely using spectrogram-
type images as network input for audio analysis, using CNNs
in a transfer-learning setting, using wavelets rather or in
addition to spectral information, and finally the usage of
memory-enhanced recurrent topologies for optimal treatment
of the audio stream as time series data.

Extracting spectrograms from audio clips is well known
for the ASC task [7], [30]. This explains why a lion’s share

of the existing work using non-time-signal input to deep
network architectures and particularly CNNs use spectrograms
or derived forms as input. For example, spectrograms were
used to extract features by autoencoders in [31]. Predictions
were obtained by CNNs from mel spectrograms in [32],
[33]. Feeding analysed images from spectrograms into CNNs
has also shown success. Two image-type features based on
a spectrogram, namely covariance matrix, and a secondary
frequency analysis were fed into CNNs for classification in
[34].

Further, extracting features from pre-trained CNNs has been
widely used in transfer learning. To name but two examples, a
pre-trained ‘VGGFace’ model was applied to extract features
from face images and a pre-trained ‘VGG’ was used to extract
features from images in [17]. Further, in [6], deep features of
audio waveforms were extracted by a pre-trained ‘AlexNet’
model [18].

Wavelet features are applied extensively in acoustic signal
classification, but in fact, in their history they were broadly
used also in other contexts such as for electroencephalo-
gram (EEG), electrooculogram (EOG), and electrocardiogram
(ECG) signals [35]. Recent examples particularly in the do-
main of sound analysis include for example successful applica-
tion for snore sound classification [10], [11] , besides wavelet
transform energy and wavelet packet transform energy having
also been proven to be effective in the ASC task [12].

Various types of sequential learning are repeatedly and
frequently applied for the ASC task. For example, in [36],
experimental results have shown superiority when employing
RNNs for classification. There are also some special types of
RNNs that have been applied for classification in this context.
As an example, LSTM-RNNs were combined with CNNs
using early-fusion in [25]. In [37], GRNNs were utilised as
the classifier, and achieved a significant improvement using a
Gaussian mixture model (GMM).

To sum the above up, while similar methods mostly use
spectrograms or mel spectrograms, minimal research has been
done about the performance of scalogram representations
extracted by pre-trained CNNs on sequential learning for audio
analysis. This work does so and is introduced next.

III. PROPOSED METHODOLOGY

A. Audio-to-Image Pre-Processing
In this work, we first seek to extract the time-frequency

information which is hidden in the acoustic scenes. Hence,
the following three types of representations are used in this
study, which is a foundation of the following process.

1) Spectrogram: The spectrogram as a time-frequency rep-
resentation of the audio signal is generated by a short-time
Fourier transform (STFT) [38]. We generate the spectrograms
with a Hamming window computing the power spectral den-
sity by the dB power scale. We use Hamming windows of size
40 ms with an overlap of 20 ms.

2) ‘Bump’ Scalogram: The bump scalogram is generated
by the bump wavelet [39] transformation, which is defined by

Ψ(sω) = e

(
1− 1

1− (sω−µ)2

σ2

)

1[ µ−σ
s , µ+σ

s ] (1)
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Fig. 1. Framework of the proposed approach. First, spectrograms and scalograms (bump and morse) are generated from segmented audio waveforms. Then,
one of these is fed into the pre-trained CNNs, in which further features are extracted at a subsequent fully connected layer fc7. Finally, the predictions
(predicted labels and probabilities) are obtained by (B) GRNNs with a highway network layer and a softmax layer with the deep features as the input.

Fig. 2. The spectrogram and two types of scalograms are extracted from the acoustic scenes. All of the images are extracted from the first audio sequence
of DCASE2017’s ‘a001 10 20.wav’ with a label ‘residential area’.

where s stands for the scale, µ and σ are two constant param-
eters, in which σ affects the frequency and time localisation,
and Ψ(sω) is the transformed signal.

3) ‘Morse’ Scalogram: The morse scalogram [40] genera-
tion is defined by

ΨP,γ(ω) = u(ω)αP,γω
P2
γ e−ωγ

(2)

where u(ω) is the unit step, P is the time-bandwidth product,
γ is the symmetry, αP,γ stands for a normalising constant, and
ΨP,γ(ω) means the morse wavelet signal.

The three image representations of one instance are shown
in Fig. 2. While the STFT focuses on analysing stationary
signals and gives a uniform resolution, the wavelet transforma-
tion is good at localising transients in non-stationary signals,
since it can provide a detailed time-frequency analysis. In our
study, the training model is proposed based on the above three
representations and comparisons of them are provided in the
following sections.

B. Pre-Trained Convolutional Neural Networks

By transfer learning, the pre-trained CNNs are transfered to
our ASC task for extracting the deep spectrum features. For
the pre-trained CNNs, we choose ‘AlexNet’ [18], ‘VGG16’,
and ‘VGG19’ [19], since they have proven to be successful in
a large number of natural image classification tasks, including
the ImageNet Challenge2. ‘AlexNet’ consists of five convolu-
tional layers with [96, 256, 384, 384, 256] kernels of size [11,
5, 3, 3, 3], and three maxpooling layers. ‘VGG’ networks have
13 ([2, 2, 3, 3, 3], ‘VGG16’), or 16 ([2, 2, 4, 4, 4], ‘VGG19’)

convolutional layers with [64, 128, 128, 256, 256] kernels and
five maxpooling layers. All of the convolutional layers in the
‘VGG’ networks use the common kernel size ‘three’. In these
three networks, the convolutional and maxpooling layers are
followed by three fully connected layers {fc6, fc7, fc}, and
a soft-max layer for 1000 labelled classifications according to
the ImageNet challenge, in which fc7 is employed to extract
deep features with 4096 attributes. More details on the CNNs
are given in Table I. We obtain the pre-trained ‘AlexNet’
network from MATLAB R2017a3, and ‘VGG16’ and ‘VGG-

TABLE I
CONFIGURATIONS OF THE CONVOLUTIONAL NEURAL

NETWORKS. ‘ALEXNET’, ‘VGG16’, AND ‘VGG19’ ARE USED

TO EXTRACT DEEP FEATURES OF THE SPECTROGRAM, ‘BUMP’,
AND ‘MORSE’ SCALOGRAMS. ‘CONV’ STANDS FOR THE

CONVOLUTIONAL LAYER

AlexNet VGG16 VGG19
input: RGB image

1×conv11-96 2×conv3-64 2×conv3-64
maxpooling

1×conv5-256 2×conv3-128 2×conv3-128
maxpooling

1×conv3-384 3×conv3-256 4×conv3-256
maxpooling

1×conv3-384 3×conv3-512 4×conv3-512
maxpooling

1×conv3-256 3×conv3-512 4×conv3-512
maxpooling

fully connected layer fc6-4096
fully connected layer fc7-4096
fully connected layer fc-1000

output: soft-max

2http://www.image-net.org/challenges/LSVRC/
3https://de.mathworks.com/help/nnet/ref/alexnet.html
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19’ from MatConvNet [41]. As outlined, we exploit the
spectrogram and two types of scalograms as the input for these
three CNNs separately and extract the deep representations
from the activations on the second fully connected layer fc7.

C. (Bidirectional) Gated Recurrent Neural Networks
As a special type of RNNs, GRNNs contain a gated re-

current unit (GRU) [27], which features an update gate u, a
reset gate r, an activation h, and a candidate activation h̃. For
each ith GRU at a time t, the update gate u and reset gate r
activations are defined by

ui
t = σ(Wuxt + Uuht−1)i (3)

ri
t = σ(Wrxt + Urht−1)i (4)

where σ is a logistic sigmoid function, Wu, Wr, Uu, and Ur

are the weight matrices, and ht−1 stands for the activation
function. At time t, the activation function and candidate
activation function are defined by

hi
t = (1− ui

t)h
i
t−1 + ui

th̃
i
t (5)

h̃i
t = tanh(Wxt + U(rt ¯ ht−1))i. (6)

The information flows inside the GRU with gating units,
similarly to, but with separate memory cells in the LSTM.
However, there is not an input gate, forget gate, and output
gate which are included in the LSTM structure. Rather, there
are a reset and an update gate, with overall less parameters
in a GRU than in a LSTM unit so that GRNNs usually
converge faster than LSTM-RNNs [27]. GRNNs have been
observed to be comparable and even better than LSTM-RNNs
sometimes in accuracies, as shown in [42]. To gain more time
information from the extracted deep feature sequences, bidi-
rectional GRNNs (BGRNNs) are an efficient tool to improve
the performance of GRNNs (and in fact of course similarly
for LSTM-type RNNs), as shown in [43], [44]. Therefore,
BGRNNs are used in this study, in which context inter-
dependences of features are learnt in both temporal directions
[45]. For classification, a highway network layer and a softmax
layer follow the (B) GRNNs, as highway networks are often
found to be more efficient than fully connected layers for very
deep neural networks [46].

D. Decision Fusion Strategy
It was found in a recent work that the margin sampling

value (MSV) [47] method, which is a late-fusion method, was
effective for fusing training models [48]. Hence, based on
the predictions from (B) GRNNs for multiple types of deep
features, MSV is applied to improve the performance. For each
prediction {Lj , pj}, j = 1, . . . , n, in which Lj is the predicted
label, and pj is the probability of the corresponding label, n
is the total number of models, MSV is defined by

L =
{

Lk|dk =
n

max
j=1

(
p1

j − p2
j

)}
(7)

where p1
j and p2

j are the first and second highest probabilities,
dk is the MSV of the kth model, which is the most confident
for the corresponding sample.

IV. EXPERIMENTS AND RESULTS

A. Database

As mentioned, our proposed approach is evaluated on the
dataset provided by the DCASE 2017 Challenge [29]. The
dataset contains 15 classes, which include ‘beach’, ‘bus’, ‘cafe/
restaurant’, ‘car’, ‘city centre’, ‘forest path’, ‘grocery store’,
‘home’, ‘library’, ‘metro station’, ‘office’, ‘park’, ‘residential
area’, ‘train’, and ‘tram’. As further mentioned above, the
organisers split each recording into several independent 10 s
segments to increase the task difficulty and increase the num-
ber of instances. We train our model using a cross validation on
the officially provided 4-fold development set, and evaluate on
the official evaluation set. The development set contains 312
segments of audio recordings for each class and the evaluation
set includes 108 segments of audio recordings for each class.
Accuracy is used as the final evaluation metric.

B. Experimental Setup

First, we segment each audio clip into a sequence of 19
audio instances with 1000 ms and a 50 % overlap. Then, two
types of representations are extracted: hand-crafted features for
comparison, and deep image-based features, which have been
described in Section III. Hand-crafted features are as follows:

Two kinds of low-level descriptors (LLDs) are extracted due
to their previous success in ASC [29], [49], including Mel-
frequency cepstral coefficient (MFCC) 1−14 and logarithmic
Mel-frequency band (MFB) 1−8. According to feature sets
provided in the INTERSPEECH COMPUTATIONAL PAR-
ALINGUISTICS CHALLENGE (COMPARE) [50], in total 100
functionals are applied to each LLD, yielding 14×100 = 1400
MFCCs features and 8× 100 = 800 log MFBs features. The
details of hand-crafted features and the feature extraction tool
openSMILE can be found in [3].

These representations are then fed into the (B) GRNNs with
120 and 160 GRU nodes respectively with a ‘tanh’ activation,
followed by a single highway network layer with a ‘linear’
activation function, which is able to ease gradient-based train-
ing of deep networks, and a softmax layer. Empirically, we
implement this network using TensorFlow4 and TFLearn5 with
a fixed learning rate of 0.0002 (optimiser ‘rmsprop’) and a
batch size of 65. We evaluate the performance of the model
at the kth training epoch, k ∈ {23, 30, . . . , 120}. Finally, the
MSV decision fusion strategy is applied to combine the (B)
GRNNs models for the final predictions.

C. Results

We compute the mean accuracy on the 4-fold partitioned de-
velopment set for evaluation according to the official protocols.
Fig. 3 presents the performance of both GRNNs and BGRNNs
on different feature sets when stopping at the multiple training
epochs. From this we can see that, the accuracies of both
GRNNs and BGRNNs on MFCCs, and log MFBs features are
lower than the baseline. However, the performances of deep

4https://github.com/tensorflow/tensorflow
5https://github.com/tflearn
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Fig. 3. The performances of GRNNs and BGRNNs on different features. (a) MFCCs (MF) and log MFBs (lg) features. The performances of features from
the spectrogram and scalograms (bump and morse) extracted by three CNNs. (b) AlexNet. (c) VGG16. (d) VGG19.

features extracted by pre-trained CNNs are comparable with
the baseline result, especially the representations extracted
by the ‘VGG16’ and the ‘VGG19’ from spectrograms. This
indicates the effectiveness of deep image-based features for
this task.

Table II presents the accuracy of each model from each
type of feature. For the development set, the accuracy of each
type of feature is denoted as the highest one of all epochs. For
the evaluation set, we choose the consistency epoch number of
the development set. We find that the accuracies after decision
fusion achieve an improvement based on a single spectrogram
or scalogram image. In the results, the performances of
BGRNNs and GRNNs are comparable on the development
set but the accuracies on the BGRNNs are slightly higher
than those of the GRNNs on the evaluation set, presumably
because the BGRNNs cover the overall information in both the
forward and backward time direction. The best performance
of 84.4 % on the development set is obtained when extracting
features from the spectrogram and the bump scalogram by the
‘VGG19’ and classifying by GRNNs at epoch 20. This is an
improvement of 8.6 % over the baseline of the DCASE 2017
challenge (p < 0.001 by a one-tailed z-test). The best result of
64.0 % on the evaluation set is also obtained when extracting
features from the spectrogram and bump scalogram by the
‘VGG19’, but classifying by BGRNNs at epoch 20. The
performance on the evaluation set is also an improvement upon

the 61.0 % baseline.

V. DISCUSSION

The proposed approach in our study improves on the
baseline performance given for the ASC task in the DCASE
2017 Challenge for sound scene classification and performs
better than (B) GRNNs based on a hand-crafted feature set.
The accuracy of (B) GRNNs on deep learnt features from a
spectrogram, bump, and morse scalograms outperform MFCC
and log MFB in Fig. 3. The performance of fused (B) GRNNs
on deep learnt features is also considerably better than on
hand-crafted features in Table II. Hence, the feature extraction
method based on CNNs has proven itself to be efficient for
the ASC task. We also investigate the performance when
combining different spectrogram or scalogram representations.
In Table II, the bump scalogram is validated as being capable
of improving the performance of the spectrogram alone.

Fig. 4 shows the confusion matrix of the best results on
the evaluation set. The model performs well on some classes,
such as ‘forest path’, ‘home’, and ‘metro station’. Yet, other
classes such as ‘library’ and ‘residential area’ are hard to
recognise. We think this difficulty is caused by noises or that
the waveforms have similar environments within the acoustic
scene.

To investigate the performance of each spectrogram or
scalogram on different classes, a performance comparison of
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TABLE II
PERFORMANCE COMPARISONS ON THE DEVELOPMENT AND THE EVALUATION SET BY GRNNS AND BGRNNS ON HAND-CRAFTED

FEATURES (MFCCS (MF) AND LOG MFBS (LG)) AND FEATURES EXTRACTED BY PRE-TRAINED CNNS FROM

THE SPECTROGRAM (S), BUMP SCALOGRAM (B), AND MORSE SCALOGRAM (M)

GRNNs BGRNNs
Development set Evaluation set Development set Evaluation set

MF lg MF + lg MF lg MF + lg MF lg MF + lg MF lg MF + lg
acc (%) 68.6 70.0 75.6 49.3 56.0 56.9 68.6 69.8 74.7 48.7 53.7 52.1

acc (%) AlexNet VGG16 VGG19 AlexNet VGG16 VGG19 AlexNet VGG16 VGG19 AlexNet VGG16 VGG19
S 72.0 76.5 76.7 56.3 57.7 57.3 70.2 76.5 76.1 54.3 60.3 56.2
B 73.2 75.2 73.7 52.1 48.8 50.4 72.7 73.3 73.9 50.9 53.9 52.0
M 69.5 73.0 72.3 46.1 51.1 49.0 67.6 72.5 71.9 46.1 50.4 49.7

S + B 78.9 84.4 82.3 55.9 61.7 61.4 78.0 81.9 83.4 58.5 64.0 59.4
S + M 76.8 82.6 81.5 54.6 61.0 57.8 76.5 82.4 82.1 57.2 60.7 59.5
B + M 76.1 77.4 80.1 47.5 54.1 54.8 73.7 76.8 78.6 48.5 53.4 53.0

S + B + M 79.7 82.6 83.7 56.5 60.7 61.3 78.1 81.3 82.8 57.1 62.2 59.0

TABLE III
PERFORMANCE COMPARISONS ON THE EVALUATION SET FROM BEFORE AND AFTER LATE-FUSION OF BGRNNS ON

THE FEATURES EXTRACTED FROM THE SPECTROGRAM (S) AND THE BUMP SCALOGRAM (B)

Precision (%) beach bus cafe car city forest groc. home library metro office park resid. train tram
S 54.6 30.6 52.8 64.8 51.9 81.5 62.0 69.4 35.2 83.3 88.0 48.1 58.3 71.3 52.8
B 10.2 62.0 61.1 47.2 65.7 88.0 36.1 98.1 25.0 87.0 17.6 24.1 49.1 88.0 49.1

S + B 40.7 55.6 66.7 58.3 63.0 88.0 54.6 92.6 30.6 89.8 74.1 41.7 59.3 88.0 57.4

the spectrogram and the bump scalogram from the best result
on evaluation set is shown in Table III. We can see that,
the spectrogram performs better than the bump scalogram for
‘beach’, ‘grocery store’, ‘office’, and ‘park’. However, the
bump scalogram is optimal for the ‘bus’, ‘city’, ‘home’, and
‘train’ scenes. After fusion, the precision of some classes is im-
proved, such as ‘cafe/restaurant’, ‘metro station’, ‘residential
area’, and ‘tram’. Overall, it appears worth using the scalogram
as an assistance to the spectrogram, to obtain more accurate
prediction.

Fig. 4. Confusion matrix of the best performance of 64.0 % on the evaluation
set. Late-fusion of BGRNNs on the features extracted from the spectrogram
and the bump scalogram by ‘VGG16’.

The result from the champion on the ASC task of the
DCASE challenge 2017 is 87.1 % on the development set and

83.3 % on the evaluation set [51], using a generative adver-
sarial network (GAN) for training set augmentation. There is
a significant difference between the best result reached by the
methods proposed herein which omit data augmentation, as
we focus on a comparison of feature representations, and this
result of the winning DCASE contribution in 2017 (p < 0.001
by one-tailed z-test). We believe that in particular the GAN
part in combination with the proposed method shown herein
holds promise to lead to an even higher overall result. Hence,
it appears to be highly promising to re-investigate the proposed
method in combination with data augmentation before training
in future work.

VI. CONCLUSIONS

We have proposed an approach using pre-trained convo-
lutional neural networks (CNNs) and (bidirectional) gated
recurrent neural networks ((B) GRNNs) on the spectrogram,
bump, and morse scalograms of audio clips, to achieve the task
of acoustic scene classification (ASC). This approach is able to
improve the performance on the 4-fold development set of the
2017 IEEE AASP Challenge on Detection and Classification
of Acoustic Scenes and Events (DCASE), achieving an accu-
racy of 83.4 % for the ASC task, compared with the baseline
of 74.8 % of the DCASE challenge (P < 0.001, one-tailed
z-test). On the evaluation set, the performance is improved
from the baseline of 61.0 % to 64.0 %. The highest accuracy
on the evaluation set is obtained when combining models from
both the spectrogram and the scalogram images; therefore, the
scalogram appears helpful to improve the performance reached
by spectrogram images for the task of ASC. We focussed on
the comparison of feature types in this contribution, rather
than trying to reach overall best results by combination of
‘tweaking on all available screws’ such as is usually done
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by entries into challenges. Likewise, we did for example not
consider data augmentation by generative adversarial networks
(GANs) or similar topologies as for example the DCASE 2017
winning contribution did. In future studies on the task of
ASC, we will thus include further optimisation steps as the
named data augmentation [52], [53]. In particular, we also
aim to use evolutionary learning to generate adaptive ‘self-
shaping’ CNNs automatically. This avoids having to hand-pick
architectures in cumbersome optimisation runs.
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