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Abstract

Chemical processes in porous media often cause a change of the microstructure of
the porous material due to interaction with the solid matrix, by reaction or adsorp-
tion, e.g. We consider a reaction–diffusion problem where a solid matrix constituent
is converted into another one of different density. Thus, the solid matrix locally
grows or shrinks in volume, which in turn changes the pore-air volume. This af-
fects the transport of reactants in the pore air. The homogenization of this problem
with evolving microstructure is performed using the method of transformation to
a periodic reference domain, which has recently been put forward by the author.
The final system to be homogenized consists of three coupled partial differential
equations for the concentrations coupled to one ordinary differential equation for a
quantity describing the evolution of the pore-air volume.

Key words: Homogenization, evolution of the microstructure, reaction–diffusion
system, concrete carbonation

1 Introduction

We consider the problem of reaction, diffusion and interfacial exchange of two
species in a porous medium Ω made up of three phases: pore air Ωa, pore water
Ωw and solid matrix Ωs. The first species, A, diffuses through the pore air and
dissolves in the pore water. The second species, B, is part of the solid matrix
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and dissolves in the pore water. The two species may react in a reaction of
the form

A + B −→ C + . . . , (1)

where the reaction product C is of low solubility and can hence be associated
with the solid matrix again. The special feature of the problem under consid-
eration is that solid B is of highly different density compared to solid C so
that the reaction causes a local growing or shrinking of the solid matrix. In
turn, this changes the shape of pore air and pore water. Therefore, the volume
occupied by the porous medium Ω is time-independent while its parts, Ωa, Ωw

and Ωs, may evolve owing to the conversion of B to C.

A particular application exhibiting these features is concrete carbonation. The
main process of this chemical degradation mechanism can be described by at-
mospheric carbon dioxide (A) diffusing in the pore air of the concrete and dis-
solving in the pore water. There it reacts with certain concrete constituents,
most importantly with calcium hydroxide (B). Calcium carbonate (C) is pro-
duced in this reaction, which causes a decrease of pH in the concrete and an
increase of volume of solid matrix since the calcium carbonate takes up more
volume than the reactant calcium hydroxide. The drop in pH facilitates the
corrosion of reinforcing steel bars and thus decreases the service-life of the
structure. More information about concrete carbonation can be found in [1, 2]
and in [3, 4] in the context of multi-scale approaches.

Denoting the mass concentration of A by u and of B by v, the above problem
can be described by

∂tu
a(x, t)−∇ · (Da∇ua) = 0, x ∈ Ωa(t), t ∈ S,

∂tu
w(x, t)−∇ · (Dw∇uw) = −ruf r, x ∈ Ωw(t), t ∈ S,

∂tv
w(x, t)−∇ · (Ew∇vw) = +rvf r, x ∈ Ωw(t), t ∈ S,

(2a)

−(Da∇ua) · na = (Dw∇uw) · nw, x ∈ ∂Ωa(t) ∩ ∂Ωw(t), t ∈ S,
−(Da∇ua) · na = a(ua − uw), x ∈ ∂Ωa(t) ∩ ∂Ωw(t), t ∈ S,
−(Da∇ua) · na = 0, x ∈ ∂Ωa(t) ∩ ∂Ωs(t), t ∈ S,
−(Dw∇uw) · nw = 0, x ∈ ∂Ωw(t) ∩ ∂Ωs(t), t ∈ S,
−(Ew∇vw) · nw = 0, x ∈ ∂Ωw(t), t ∈ S,

(2b)

where we have used superscripts a and w in order to distinguish quantities as-
sociated with pore air and pore water, respectively. We prescribe homogeneous
Neumann boundary conditions at the exterior boundary ∂Ω for simplicity as
well as initial conditions (ua(0), uw(0), vw(0)) = (ua

0, u
w
0 , v

w
0 ).

In order to upscale the problem using periodic homogenization, we want to
employ the ideas of homogenization in domains with evolving microstructure
described in [5], i.e. it is assumed that there exists a reference configuration,
which is ε-periodic. By this, we mean that there exists a reference cell Y =
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(0, 1)N with Y = Za ∪ Zw ∪ Zs and Za ∩ Zw ∩ Zs = ∅, such that Ωi
∗ =

Ω ∩ int
⋃
k∈ZN ε(Z

i + k) is a reference configuration of Ωi, i ∈ {a,w, s}.

For simplicity, we assume the geometry at t = 0 coincides with this reference
configuration. Furthermore, the evolution of the three parts of Ω can be de-
scribed by orientation-preserving mappings ψiε( · , t) : Ωi

ε → Ωi(t), i ∈ {a,w, s},
for each t ∈ S. Here, we have written Ωi

ε for Ωi(0) = Ωi
∗ in order to emphasize

the ε-periodicity of the geometry. For future use, we introduce the character-
istic function of Zi, χi, i ∈ {a,w, s}, and χiε(x) = χi(x/ε) (having periodically
extended χi to RN).

Defining Ψi
ε = ∇ψiε and J iε = det Ψi

ε, i ∈ {a,w, s}, the system of equations (2)
may be written in the reference configuration (cf. [5]):

∂t(J
a
ε û

a
ε)−∇ · (Ja

εΨa
ε
−1D̂a

εΨ
a
ε
−T∇ûa

ε) = 0, x ∈ Ωa
ε, t ∈ S,

∂t(J
w
ε û

w
ε )−∇ · (εlJw

ε Ψw
ε
−1D̂w

ε Ψw
ε
−T∇ûw

ε ) = −ru
ε f̂

r
ε, x ∈ Ωw

ε , t ∈ S,
∂t(J

w
ε v̂

w
ε )−∇ · (εlJw

ε Ψw
ε
−1Êw

ε Ψw
ε
−T∇v̂w

ε ) = +rv
ε f̂

r
ε, x ∈ Ωw

ε , t ∈ S,
(3a)

−(Ja
εΨa

ε
−1D̂a

εΨ
a
ε
−T∇ûa

ε) · νa
ε = (εlJw

ε Ψw
ε
−1D̂w

ε Ψw
ε
−T∇ûw

ε ) · νw
ε , x ∈ ∂Ωa

ε ∩ ∂Ωw
ε , t ∈ S,

−(Ja
εΨa

ε
−1D̂a

εΨ
a
ε
−T∇ûa

ε) · νa
ε = εâε‖Ψw

ε
−Tνw

ε ‖Jw
ε (ûa

ε − ûw
ε ), x ∈ ∂Ωa

ε ∩ ∂Ωw
ε , t ∈ S,

−(Ja
εΨa

ε
−1D̂a

εΨ
a
ε
−T∇ûa

ε) · νa
ε = 0, x ∈ ∂Ωa

ε ∩ ∂Ωs
ε, t ∈ S,

−(εlJw
ε Ψw

ε
−1D̂w

ε Ψw
ε
−T∇ûw

ε ) · νw
ε = 0, x ∈ ∂Ωw

ε ∩ ∂Ωs
ε, t ∈ S,

−(εlJw
ε Ψw

ε
−1Êw

ε Ψw
ε
−T∇v̂w

ε ) · νw
ε = 0, x ∈ ∂Ωw

ε , t ∈ S,
(3b)

where quantities with a hat in the reference configuration correspond to the
same quantities without a hat in the current configuration, f̂ r

ε(X, t) = f r
ε(ψ

w
ε (X, t), t),

e.g. The scaling factor εl, where l ∈ [0, 2], associated with Dw
ε and Ew

ε , arises
from a nondimensionalization. It is related to the characteristic macroscopic
and microscopic length scales as well as the diffusion times. Similar consid-
erations motivate the scaling of the interfacial-exchange coefficient aε. To be
more general, it would be necessary to use different scaling exponents for Dw

ε

and Ew
ε and to also scale Da

ε and aε with arbitrary powers of ε. It might also
be of interest to consider more general nonlinear interfacial-exchange kinetics
such as those considered in [6]. Since this is not the focus of this work, we
retain this semi-general scaling and the linear interfacial-exchange term and
we also refer to [7, 8] for more details on the influence and choice of different
scaling exponents.

We assume Ωa
ε and, if l = 0, Ωw

ε to be connected. Since the evolution of the
domains is assumed to be induced by the reaction (1), the evolution mappings
describing the evolution, ψiε, are not known beforehand, but are coupled to
the reaction–diffusion process itself. This connection is discussed in the next
subsection.
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1.1 Modelling the functions related to the evolution of the domain

The reaction (1) consumes a matrix constituent and produces another one.
Therefore, we need to model the evolution of the subdomains depending on
the reaction. Since the functions ψiε do not appear in any of the equations,
but only the functions J iε and Ψi

ε, i ∈ {a,w}, we only need to model these
latter quantities. The exact evolution of all subdomains, i.e. the functions ψiε,
i ∈ {a,w, s}, are not required. For this, we note that Ψi

ε relates the length
and orientation of a material fibre in the reference configuration to its length
and orientation in the current configuration and J iε describes the change of
volume.

We consider the case where it is reasonable to assume that changes in geom-
etry other than the volumetric changes do not have a large influence on the
problem, i.e. we can assume Ψi

ε ≈ Id in (3). Since it is reasonable to assume
the water incompressible, we have Jw ≡ 1 for all times. In particular, this
implies |Zw(t)| = |Zw(0)|. Therefore, we are left with deriving an equation for
Ja. We assume the dissolution of B and the precipitation of C to be instanta-
neous in order to keep things simple. Because we need to relate the change of
pore-air volume to the reaction in the pore water, we only obtain a (non-local)
relation of the average quantities. Since Ω is given as a union of the ε-periodic
domains Ωa

ε, Ωw
ε and Ωs

ε, it is reasonable to consider the averages with respect
to each scaled cell. It is worth noting that this averaging is an important step
in enabling the analysis of the next section.

Considering one cell Y , the amount (i.e. mass) of constituent B being used up
and of constituent C being produced at time t is given by∫

Zw(t)
mBf̃

r(x, t) dx and
∫
Zw(t)

mCf̃
r(x, t) dx, (4)

respectively, where f̃ r is the production rate associated with the reaction of
B and C in Y and mB and mC are their molar weights. This corresponds to a
change of volume of

|Za|Cm
∫
Zw(t)

f̃ r(x, t) dx, where Cm =
1

|Za|

(
mC

ρC

− mB

ρB

)
(5)

and ρB and ρC are the densities of constituents B and C, respectively. On the
other hand, the change of volume of the pore-air space is given by

d

dt

∫
Za(t)

1 dx. (6)

Noting that the an increase of total volume of constituents B and C implies a
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decrease of volume of pore air, we have

d

dt

∫
Za(t)

1 dx = −|Za|Cm
∫
Zw(t)

f̃ r(x, t) dx (7)

for each instant in time. This can be transformed to the reference configuration
and since J̃w ≡ 1, we obtain∫

Za(0)
∂tJ̃

a(X, t) dX = −|Za|Cm
∫
Zw(0)

ˆ̃f r(X, t) dX, Ja
1 (X, 0) = 1. (8)

J̃a and ˆ̃f r are defined on different spatial domains (that is Za and Zw, respec-
tively). Consequently, (8) only determines the average (or the total change)
of Ja with respect to each cell.

In order to obtain an equation in Ω, we use the periodic unfolding operator
Tε [9]: writing [x]Y for the unique integer combination

∑n
i=1 kiei of the periods

such that {x}Y = x− [y]Y belongs to [0, 1)N (where ei is the ith unit vector),
Tε L2(Ω) → L2(Ω × Y ) is defined by Tε(u)(x, y) = u(ε[x/ε]Y + εy). Thus,
equation (8) can be written as∫

Y
χa(y)Tε(∂tJ̃a)(x, y, t) dy = −|Za|Cm

∫
Y
χw(y)Tε(f̂ r

ε)(x, y, t) dy (9)

for a.e. x ∈ Ω. Since we do not expect Ja (the limit of Ja
ε as ε → 0) to vary

within one cell (and since we do not know any better), we define Ja
ε (x, t) =

Tε(J̃a)(x, t), which we assume constant with respect to y. Integration with
respect to x and using that ∂tJ

a is constant in each cell, we obtain

|Za|
∫

Ω
∂tJ

a
ε (x, t) dx = −|Za|Cm

∫
Ω

∫
Zw
Tε(f̂ r

ε)(x, y, t) dy dx. (10)

Thus, the problem for Ja
ε is as follows: find Ja

ε : Ω× S → R such that

∂tJ
a
ε (x, t) = −Cmf̄ r

ε(x, t), Ja
ε (0) ≡ 1, (11)

where we have written

f̄ r
ε(x, t) =

∫
Zw
Tε(f̂ r

ε)(x, y, t) dy (12)

for ease of notation.

1.2 Some remarks about the assumptions and on previous works

In the derivation of (11), it was assumed that the change of volume of the
solid matrix occurs at the same (macroscopic) place where the dissolution
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of constituent B and the precipitation (and attachment) of the product C
happens. In other words, dissolution, reaction and precipitation occur in the
same macroscopic place. Using the above approach, it would also be possible to
derive an equation for Ja accounting for these processes occurring in different
places. Then, the right-hand side of the balance equation (7) would have to
incorporate the amount of dissolved and precipitated constituent in the cell
under consideration (as opposed to the production rate by reaction).

Furthermore, this approach neglects possible fluxes due to the change of vol-
ume. For example, if the solid matrix grows in one place, the air might be
pushed away and, in turn, carry away gaseous reactants in it. Such a trans-
port is neglected in this approach.

Similar macroscopic equations for the evolution of the porosity can be found
in the literature. Most similar are the equations derived by Logan [10]. He
considers a related problem where reactions in mineral rocks cause a change
to the volume fraction of the solid matrix. Also, Muntean [11] derived an equa-
tion for the change of the porosity in concrete using very similar arguments.
However, he starts from the assumption that the porosity does not depend
on the spatial variable and, in turn, he obtains an equation which can be
considered as an (macroscopically) averaged version of (11). It is important
to note that both authors model the evolution of the porosity from a purely
macroscopic point of view. Consequently, they do not come by equations of
the type of (11).

An equation for the porosity incorporating microscopic effects was derived by
Wilmański [12]. However, these considerations are rather abstract and there-
fore, the terms appearing in the balance equation (cf. eq. (10.51) in [12]),
namely macroscopical and microscopical velocities of the matrix skeleton, are
usually unknown and need to be related to the other unknowns by additional
constitutive relations or assumptions. Nevertheless, it is worth noting that his
balance equation is of parabolic type where the elliptic part incorporates the
(macroscopic) bulk velocity of the skeleton. In subsequent chapters, he adjusts
(simplifies, that is) the equation for specific problems and arrives at similar
observations as the ones obtained in the above derivation. However, changes
due to chemical reactions are not considered in [12] and, consequently, an
equation comparable to (11) is not obtained.

It was stated previously that we want to concentrate on the evolution of Ja
ε

and assume Ψa
ε = Ψw

ε = Id. Of course, this is a rather strong assumption. Nev-
ertheless, the resulting limit systems of equations are of a form which is often
found in the engineering literature, namely the effective diffusivity is a product
of the molecular diffusivity (the microscopic diffusivity in our terminology), a
fixed factor accounting for the cell geometry (this corresponds to the tensor
P a calculated with unit diffusivity; it is sometimes called tortuosity) and an
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evolving volume factor which directly corresponds to Ja, cf. [13, 14], for ex-
ample. Moreover, the resulting type of macroscopic system of equations yields
good agreement with experimental data in the case of concrete carbonation
[8].

It is noteworthy that the results for a simplified version of the system con-
sidered here have recently been published in a short note [15]. There, the
reaction–diffusion system consists of only two equations but the evolution of
Ja
ε is modelled in the same way as it is here. The rigorous proofs missing in

the short note can be obtained in exact analogy to those presented here.

1.3 Outline of what follows

In the next section, the reaction–diffusion system under consideration is stated
concisely in strong and weak form and the assumptions on the data are given.
The macroscopic system obtained in the homogenization limit as ε → 0 is
stated in §3. The subsequent sections are concerned with rigorously proving
these results: Existence of solutions of the microscopic system, ε-independent
a-priori estimates and the convergence of the sequences of micro-solutions are
shown in §4. Using these results, §5 is concerned with the identification of the
homogenized limit problems summarized in §3.

2 The reaction–diffusion system

We want to investigate the reaction–diffusion problem with evolving micro-
structure, i.e. problem (3), where the evolution of the air-filled volume is de-
termined by reaction as is modelled by (11). Recall that we have Jw

ε ≡ 1.
We assume ∂Ωa

ε ∩ ∂Ωs
ε = ∅ for simplicity. Note that this does not induce

any restriction from a modelling point of view since nothing happens across
this boundary. Moreover, we write Γε = ∂Ωa

ε ∩ ∂Ωw
ε , Γws

ε = ∂Ωw
ε ∩ ∂Ωs

ε and
Γw
ε = ∂Ωw

ε \∂Ω.

Dropping the hats for notational convenience, the reaction–diffusion problem
under consideration is thus given by

∂t(J
a
εu

a
ε(x, t))−∇ · (Ja

εD
a
ε∇ua

ε) = 0, x ∈ Ωa
ε, t ∈ S,

∂tu
w
ε (x, t)−∇ · (εlDw

ε ∇uw
ε ) = −ru

εf
r
ε , x ∈ Ωw

ε , t ∈ S,
∂tv

w
ε (x, t)−∇ · (εlEw

ε ∇vw
ε ) = +rv

εf
r
ε , x ∈ Ωw

ε , t ∈ S,
(13a)
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−(Ja
εD

a
ε∇ua

ε) · νa
ε = (εlDw

ε ∇uw
ε ) · νw

ε , x ∈ Γε, t ∈ S,
−(Ja

εD
a
ε∇ua

ε) · νa
ε = εaε(u

a
ε − uw

ε ), x ∈ Γε, t ∈ S,
−(εlDw

ε ∇uw
ε ) · νw

ε = 0, x ∈ Γws
ε , t ∈ S,

−(εlEw
ε ∇vw

ε ) · νw
ε = 0, x ∈ Γw

ε , t ∈ S,

(13b)

subject to homogeneous Neumann conditions at the exterior boundary ∂Ω and
initial conditions and we assume that the evolution of the porosity factor Ja

ε

can be described by an equation of the form (11),

∂tJ
a
ε (x, t) = −Cmf̄ r

ε, Ja
ε (0) ≡ 1, (13c)

where we have used the notation introduced in (12).

Let V(Ω) = L2(0, T ;W 1,2(Ω)),

(u(t) | v(t))Ω =
∫

Ω
u(x, t)v(x, t) dx, (u | v)Ω,t =

∫ t

0
(u(t) | v(t))Ω dt, (14)

|u(t)|2Ω = (u(t) |u(t))Ω and |u|2Ω,t = (u |u)Ω,t. For the coefficients of the system,
we assume that their space variable can be split into a macroscopic and a
microscopic one (often called slow and fast component): For α ∈ {a,w}, we
assume that there exist functions Dα = Dα(x, y, t), x ∈ Ωα

ε , y ∈ Zα, t ∈ S,
bounded from above and from below by numbers Dα

max and Dα
min, respectively,

and periodically extended in y, such that Dα
ε (x, t) = Dα(x, x/ε, t). We further

assume

lim
ε→0
|Dα

ε (t)|2Ω = |Dα(t)|2Ω×Y (15)

and analogously for Ew
ε , aε, r

u
ε and rv

ε . These function are extended to all of Ω
by zero. Furthermore, we assume ru

min, r
v
min ≥ 0 and Dα

min, E
w
min, amin > 0 and

that

lim
ε→0

ε|aε(t)|2Γε = |a(t)|2Ω×Γ (16)

holds for a instead of (15). We also require ∂tD
α
ε , ∂tE

w
ε , ∂taε bounded from

above.

We assume that the function f r
ε(x, t) is given and bounded independently of

ε in L2(Ωw
ε × S). For some results, it will turn out that we moreover need f r

ε

to be bounded in L∞(S;L2(Ωw
ε )) if Cm > 0.

Therefore, the complete weak form of the problem under consideration reads
as follows: Given ε > 0, Cm ∈ R and f r

ε ∈ L2(Ωw
ε × S), find (ua

ε, u
w
ε , v

w
ε ) ∈

V(Ωa
ε) × [V(Ωw

ε )]2 and Ja
ε ∈ W 1,2(S;L2(Ω)) such that (ua

ε(0), uw
ε (0), vw

ε (0)) =
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(ua
0, u

w
0 , v

w
0 ) ∈ [L2(Ω)]3, Ja

ε (0) = 1 and

(∂tJ
a
ε (t) |ϕJ(t))Ω = −Cm(f̄ r

ε(t) |ϕJ(t))Ω, (17a)

(∂t(J
a
ε (t)ua

ε(t)) |φa(t))Ωa
ε

+ (Ja
ε (t)Da

ε∇ua
ε(t) | ∇φa(t))Ωa

ε

= −ε(aε(t)(ua
ε(t)− uw

ε (t)) |φa(t))Γε ,
(17b)

(∂tu
w
ε (t) |φw(t))Ωw

ε
+ εl(Dw

ε ∇uw
ε (t) | ∇φw(t))Ωw

ε

= −(ru
ε (t)f r

ε(t) |φw(t))Ωw
ε

+ ε(aε(u
a
ε(t)− uw

ε (t)) |φw(t))Γε ,
(17c)

(∂tv
w
ε (t) |ϕw(t))Ωw

ε
+ εl(Ew

ε (t)∇vw
ε (t) | ∇ϕw(t))Ωw

ε

= +(rv
ε (t)f

r
ε(t) |ϕw(t))Ωw

ε

(17d)

for all (φa, φw, ϕw, ϕJ) ∈ V(Ωa
ε)× [V(Ωw

ε )]2 × L2(Ω× S) and a.e. t ∈ S.

For the proof of existence of microsolutions, we make use of an abstract theory
for degenerate problems, developed in [16], in §2. It is worth noting that the
particular modelling of Ja

ε , that is assuming it constant in each cell, permits
the analysis carried out here as it allows to proof the boundedness of Ja

ε in
almost every point of Ω. This result is quite essential for the existence proofs.
Moreover, the case that the pore-air volume shrinks is more difficult than
the case of increasing pore-air volume. This is due to the fact that, for a
constant amount of molecules in a given volume, the concentration increases
for decreasing volume while the concentration decreases for increasing volume.

We begin the analysis with the investigation of the equation for Ja
ε . Then, the

existence of microsolutions is proven before showing a-priori estimates and
discussing the convergence using the notions of two-scale convergence.

3 The macroscopic limit problem

We state the macroscopic limit problem of (13) as ε → 0. We first define a
generic cell problem: Let the functions ςj, j = 1, . . . , N , be the Y -periodic
solution of the cell problem

−∇y · (A(x, y, t)(∇yςj(x, y, t) + ej)) = 0, y ∈ Zα, x ∈ Ω, t ∈ S,
−A(x, y, t)(∇yςj(x, y, t) + ej) · να = 0, y ∈ Γ, x ∈ Ω, t ∈ S, (18)

the weak form of which is given by

(A(x, · , t)(∇yςj(x, · , t) + ej) | ∇yφ)Zα = 0 (19)

for all Y -periodic test functions φ. The vector ej is the jth unit vector in
N -dimensional Euclidean space. We will specify A and α to our needs below.
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The limit problem corresponding to Ja is given by

∂tJ
a(x, t) = −Cm

∫
Zw
f r dy, x ∈ Ω, t ∈ S, (20a)

with initial condition Ja(0) = 1. The limit equation for ua states

∂t(J
aua(x, t))−∇ · (P a∇ua) = −

∫
Γ
a(ua − uw) dσy, x ∈ Ω, t ∈ S, (20b)

with homogeneous Neumann conditions at ∂Ω and initial condition ua(0) = ua
0,

where P a = [pa
ij]ij is defined by

pa
ij(x, t) =

∫
Za
Ja(x, t)Da(x, y, t)(δij + ∂yiς

a
j (x, y, t)) dy. (20c)

The functions ςa
j , j = 1, . . . , N , are the Y -periodic solutions of (18) with

A = JaDa and α = a and δij is the Kronecker delta.

The limit equations for uw and vw depend on the particular choice of the
scaling exponent l. If l < 2, the limit equations are given by

∂tu
w(x, t)− δ0l∇ · (Pw∇uw) = −

∫
Zw
ruf r dy +

∫
Γ
a(ua − uw) dσy, x ∈ Ω, t ∈ S,

(20d)

∂tv
w(x, t)− δ0l∇ · (Qw∇vw) = +

∫
Zw
rvf r dy, x ∈ Ω, t ∈ S,

(20e)

where Pw = [pw
ij]ij and Qw = [qw

ij]ij are defined by

pw
ij(x, t) =

∫
Zw
Dw(x, y, t)(δij + ∂yiς

w
j (x, y, t)) dy, (20f)

qw
ij(x, t) =

∫
Zw
Ew(x, y, t)(δij + ∂yiσ

w
j (x, y, t)) dy, (20g)

where ςw
j and σw

j , j = 1, . . . , N , are the Y -periodic solutions of (18) with
A = Dw and A = Ew, respectively, as well as α = w. If l = 2, the limit
equations are given by

∂tu
w(x, y, t)−∇y · (Dw∇yu

w) = −ruf r, x ∈ Ω, y ∈ Zw, t ∈ S,
(20h)

∂tv
w(x, y, t)−∇y · (Ew∇yv

w) = +rvf r, x ∈ Ω, y ∈ Zw, t ∈ S,
(20i)

−Dw∇yu
w · νw = a(ua − uw), x ∈ Ω, y ∈ Γ, t ∈ S, (20j)

−Dw∇yu
w · νw = 0, x ∈ Ω, y ∈ Γws, t ∈ S,

(20k)

−Ew∇yv
w · νw = 0, x ∈ Ω, y ∈ Γw, t ∈ S.

(20`)
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For all choices of l, homogeneous Neumann conditions apply at the exterior
boundaries and (uw(0), vw(0)) = (uw

0 , u
w
0 ).

4 Existence, a-priori estimates, convergence

4.1 Existence and a-priori estimates for Ja
ε

Since the equation for Ja
ε is decoupled from the rest of the system, we can

discuss it independently.

Lemma 4.1
For each ε > 0, there exists a unique solution Ja

ε (x, t) of (17a) given by

Ja
ε (x, t) = 1− Cm

∫ t

0

∫
Y
Tε(f r

ε)(x, y, s) dy ds, (21)

which satisfies
|Ja
ε (t)|2Ω ≤ C, |∂tJa

ε |2Ω,t ≤ C (22)

for a.e. t ∈ S. Moreover, Ja
ε ∈ L∞(Ω × S) and, if f r

ε ∈ Lp(S;L2(Ω)) for a
1 ≤ p ≤ ∞, we have |∂tJa

ε (x, t)| ≤ Kε(t) for a.e. x ∈ Ω and t ∈ S with
Kε ∈ Lp(S).

Proof The form of the solution (21), and, hence, its existence and unique-
ness, follow by simple integration with respect to time.

Testing of (17a) with Ja
ε gives

1
2

d
dt
|Ja
ε (t)|2Ω = −Cm(f̄ r

ε(t) | Ja
ε (t))Ω.

Application of the Cauchy–Schwarz and Young inequalities, integration with
respect to time, and noting that |Tε(f r

ε(t))|Ω×Y = |f r
ε(t)|Ω yields

|Ja
ε (t)|2Ω ≤ Cm

(
|f r
ε |2Ω,t + |Ja

ε |2Ω,t
)

+ |Ω|.

Application of Gronwall’s inequality and using the assumptions of f r
ε gives the

first estimate in (22).

Testing with ∂tJ
a
ε gives

|∂tJa
ε (t)|2Ω = −Cm(f̄ r

ε(t) | ∂tJa
ε (t))Ω.

For δ > 0, we obtain

|∂tJa
ε (t)|2Ω = C

(
δ−1|f r

ε(t)|2Ω + δ|∂tJa
ε (t)|2Ω

)
.

11



Integration with respect to time and choosing δ small enough yields the second
estimate in (22).

Moreover, for given ε and t, Ja
ε (t) and ∂tJ

a
ε (t) take a finite number of values

in Ω. Since Ja
ε (t) is also continuous with respect to t, it belongs to L∞(Ω×S).

Furthermore,

|∂tJa
ε (x, t)| = |Cm

∫
Y
Tε(f r

ε)(x, y, t) dy| = Cm
∫
Y
Tε(f r

ε)(x, y, t) dy ≤ Kε(t),

where, defining Mε = {midpoints of the cells in Ω} (note that this set has a
finite number of elements for given ε > 0),

Kε(t) = Cm max
x∈Mε

∫
Y
Tε(f r

ε)(x, y, t) dy.

It remains to be shown that Kε ∈ Lp(S). For p =∞, this is clear. For p <∞,
note that the space (R#Mε , ‖ · ‖1) is continuously embedded in (R#Mε , ‖ · ‖max).
Denoting the embedding constant by C̃ε and noting that f r

ε is non-negative,
we obtain∫ T

0
(Kε(t))

p dt = (Cm)p
( ∫ T

0
max
x∈Mε

∫
Y
Tε(f r

ε)(x, y, t) dy dt
)p

≤ (Cm)pT
p
p′
∫ T

0

(
max
x∈Mε

∫
Y
Tε(f r

ε)(x, y, t) dy
)p

dt

≤ (Cm)pT
p
p′ (#Mε)

p
p′ C̃p

ε

∫ T

0

∑
x∈Mε

( ∫
Y
Tε(f r

ε)(x, y, t) dy
)p

dt

≤ (Cm)pT
p
p′ (#Mε)

p
p′ C̃p

ε

∑
x∈Mε

∫
Y
Tε
( ∫ T

0
(f r
ε( · , t))p dt

)
(x, y) dy <∞,

where we have made extensive use of Hölder’s inequality and the boundedness
follows from the fact that f r

ε(x, · ) ∈ Lp(S) for a.e. x. Note that, in general,
the L∞-norms depend on ε and they may not be bounded for ε→ 0. J

If Cm > 0, it is clear from (21) that the maximum time of applicability of this
model is such that Ja

ε does not become negative. The model could be altered
such that Ja

ε remains zero after it has reached zero. We do not want to follow
this direction here. Instead, we demand that T is chosen small enough to allow
Ja
ε (x, t) ≥ Ja

min for a.e. x ∈ Ω and t ∈ S for some Ja
min > 0 independent of ε.

This is equivalent to∫ t

0

∫
Y
Tε(f r

ε)(x, y, s) dy ds ≤ 1− Ja
min

Cm
, t ∈ (0, T ). (23)

Of course, this maximum time depends on the availability of the reactants
and may never be reached. For example, if not enough reactant is initially
available and no new reactant enters the sample, such clogging of the pores
cannot occur.
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4.2 Existence of solutions for the complete microproblem

We want to show existence of solutions of the full problem (17) for given
ε > 0. Note that the existence of Ja

ε satisfying (17a) is already ensured by
lemma 4.1. Since we want to use the abstract theory contained in [16], an
operator formulation of (17b)–(17d) is necessary. It is worth noting that this
abstract theory has already been used to prove existence of solutions of a
microscopic system of equations, which was then homogenized, in [17]. In
their considerations, the coefficient in the time-derivative term was only space
dependent, however. First of all, we recall the results of [16].

Definition 4.2
Let W be a separable Hilbert space. The family of operators {B(t) | t ∈ S} with
B(t) ∈ L(W,W ′) for each t ∈ S and B( · )u(v) ∈ L∞(S) for each pair u, v ∈ W
is called regular if for each pair u, v ∈ W , the function B( · )u(v) is absolutely
continuous on S̄ and there is a K ∈ L1(S) such that

| d
dt
B(t)u(v)| ≤ K(t)‖u‖‖v‖, u, v ∈ W, for a.e. t ∈ S. (24)

Theorem 4.3
Let the separable Hilbert spaces V and V = L2(S;V ) with duals V ′ and V ′ =
L2(S;V ′) be given. Suppose that W is a Hilbert space containing V and the
injection V ↪→ W is continuous with V dense in W . Assume that for each
t ∈ S̄, we are given an operator A(t) ∈ L(V, V ′) such that A( · )u(v) ∈ L∞(S)
for each pair u, v ∈ V . Likewise, we are given a regular family of self-adjoint
operators B(t) ∈ L(W,W ′) with B( · )u(v) ∈ L∞(S) for each pair u, v ∈ W .
Furthermore, suppose that B(0) is monotone and there are numbers κ, λ > 0
such that

2A(t)v(v) + λB(t)v(v) + µB′(t)v(v) ≥ κ‖v‖2, v ∈ V, 0 ≤ t ≤ T, (25)

is satisfied with µ = 1. Then, for given u0 ∈ W and f ∈ V ′, the problem

u ∈ V : d
dt

(B(t)u(t)) +A(t)u(t) = f(t) in V ′, (Bu)(0) = B(0)u0, (26)

possesses at least one solution which satisfies

‖u‖V ≤ C(κ, λ)
(
‖f‖2

V ′ + B(0)u0(u0)
) 1

2 . (27)

If, in addition, each B(t) is monotone, A(t) is a regular family of self-adjoint
operators and (25) is also satisfied with µ = 0, then the solution is unique.

Proof The existence follows from proposition 3.2 while the uniqueness is
given by proposition 3.3 in chapter III.3 of [16]. J
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In order to use theorem 4.3 for problem (17b)–(17d), we define the following
operators.

We set V (Ω) = W 1,2(Ω), W (Ω) = L2(Ω) and V = V (Ωa
ε)× [V (Ωw

ε )]2 and W =
W (Ωa

ε) × [W (Ωw
ε )]2. For each t ∈ S̄ and u = (u1, u2, u3), v = (v1, v2, v3) ∈ V ,

define Aε(t) : V → V ′ by

(Aε(t)u)(v) =
∫

Ωa
ε

Ja
ε (x, t)Da

ε(x, t)∇u1(x)∇v1(x) dx

+ εl
∫

Ωw
ε

Dw
ε (x, t)∇u2(x)∇v2(x) dx

+ εl
∫

Ωw
ε

Ew
ε (x, t)∇u3(x)∇v3(x) dx

+ ε
∫

Γε
aε(x, t)(u1(x)− u2(x))(v1(x)− v2(x)) dσx (28)

as well as fε : V → R by

fε(v) = −
∫ T

0

∫
Ωw
ε

ru
ε (x, s)f r

ε(x, s)v2(x, s) dx dt

−
∫ T

0

∫
Ωw
ε

rv
ε (x, s)f

r
ε(x, s)v3(x, s) dx dt (29)

for ∈ V . For u = (u1, u2, u3), v = (v1, v2, v3) ∈ W , define Bε(t) : W → W ′ by

(Bε(t)u)(v) =
∫

Ωa
ε

Ja
ε (x, t)u1(x)v1(x) dx+

∫
Ωw
ε

u2(x)v2(x) dx+
∫

Ωw
ε

u3(x)v3(x) dx.

(30)
It is clear that fε ∈ V ′ and for each t ∈ S̄, Aε(t) ∈ L(V, V ′), Bε(t) ∈ L(W,W ′).
Furthermore, problem (17b)–(17d) is equivalent to

u ∈ V :
d

dt
(Bε(t)u(t)) +Aε(t)u(t) = fε(t) in V ′, (Bεu)(0) = Bε(0)u0. (31)

In order to obtain existence of solutions by theorem 4.3, we remark that we
have Aε( · )u(v) ∈ L∞(S) for each pair u, v ∈ V and Bε( · )u(v) ∈ L∞(S) for
each pair u, v ∈ W by the regularity assumptions on Da

ε , D
w
ε , Ew

ε and aε
and what we know about Ja

ε from lemma 4.1. For the existence of solutions,
it remains to be shown that the Bε(t) form a regular family of self-adjoint
operators with Bε(0) monotone and that (25) is satisfied with µ = 1. For
uniqueness, we further need to show that the Aε(t) form a regular family of
self-adjoint operators, that the Bε(t) are monotone and that (25) is satisfied
with µ = 0.

Lemma 4.4
The families of operators Aε(t) (defined by (28)) and Bε(t) (defined by (30))
form regular families of self-adjoint operators in V and W , respectively. More-
over, Bε(t) and Bε(0) are monotone.
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Proof It is clear from the structure of Aε(t) and Bε(t) that these operators
are self-adjoint for each t. The Bε(t) are monotone owing to the linearity and
the non-negativity of Ja

ε . In particular, Ja
ε (x, 0) = 1, so Bε(0) = Id which is

clearly monotone.

We proceed by proving that the Bε(t) form a regular family of operators in W
(cf. definition 4.2). Let u, v ∈ W . Since Ja

ε (x, · ) is in W 1,2(S) for a.e. x and
W 1,2(S) ↪→ W 1,1(S) ∼= AC(S̄), Bε( · )u(v) is absolutely continuous. Moreover,

| d
dt
Bε(t)u(v)| = |

∫
Ωa
ε

∂tJ
a
ε (x, t)u1(x)v1(x) dx|

≤ Kε(t)|u1|Ωa
ε
|v1|Ωa

ε
≤ Kε(t)‖u‖W‖v‖W ,

since |∂tJa
ε (x, t)| ≤ Kε(t) with Kε ∈ L1(S) by lemma 4.1.

Similarly, Ja
ε (x, · )Da

ε(x, · ), Dw
ε (x, · ) and Ea

ε (x, · ) are absolutely continuous
and, therefore, Aε( · )u(v) is for arbitrary u, v ∈ V . Furthermore, we have

| d
dt
Aε(t)u(v)| ≤

∫
Ωa
ε

|∂t(Ja
ε (x, t)Da

ε(x, t))||∇u1(x)∇v1(x)| dx

+ εl
∫

Ωw
ε

|∂tDw
ε ||∇u2∇v2| dx+ εl

∫
Ωw
ε

|∂tEw
ε ||∇u3∇v3| dx

+ ε
∫

Γε
|∂taε||(u1 − u2)(v1 − v2)| dσx.

Since

|∂t(Ja
ε (x, t)Da

ε(x, t))| ≤ Kε(t)‖Da
ε‖L∞(Ωa

ε×S) + ‖Ja
ε ‖L∞(Ωa

ε×S)‖∂tDa
ε‖L∞(Ω×S)

and

ε
∫

Γε
|∂taε||(u1 − u2)(v1 − v2)| dσx

≤ ε‖∂taε‖L∞(Γε×S)(|u1|Γε + |u2|Γε)(|v1|Γε + |v2|Γε)
≤ C‖∂taε‖L∞(Γε×S)

(
((|u1|Ωa

ε
+ |u2|Ωw

ε
) + ε(|∇u1|Ωa

ε
+ |∇u2|Ωw

ε
)
)

×
(
(|v1|Ωa

ε
+ |v2|Ωw

ε
) + ε(|∇v1|Ωa

ε
+ |∇v2|Ωw

ε
)
)

≤ Cε‖u‖V ‖v‖V ,

where we have made use of the trace lemma, (24) is also satisfied for Aε(t) in
V . J

Lemma 4.5
The families of operators Aε(t) and Bε(t) defined by (28) and (30), respec-
tively, satisfy (25) for µ = 0. For µ = 1, (25) holds if one of the following two
conditions is satisfied:

I ∂tJ
a
ε is non-negative.
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I ∂tJ
a
ε ∈ L∞(Ω× S).

Note that the latter condition is satisfied if f r
ε ∈ L∞(S;L2(Ω)).

Proof In order to show the estimate (25), we consider the elliptic term first.
Let v ∈ V . Then, we have

2(Aε(t)v)(v) = 2
∫

Ωa
ε

Ja
ε (x, t)Da

ε(x, t)|∇v1(x)|2 dx

+ 2εl
∫

Ωw
ε

Dw
ε (x, t)|∇v2(x)|2 dx+ εl

∫
Ωw
ε

Ew
ε (x, t)|∇v3(x)|2 dx

+ 2ε
∫

Γε
aε(x, t)|v1(x)− v2(x)|2 dσx

≥ Ja
minD

a
min|∇v1|2Ωa

ε
+ εlDw

min|∇v2|2Ωw
ε

+ εlEw
min|∇v3|2Ωw

ε
.

Moreover, for λ, µ ≥ 0, we have

λ(Bε(t)v)(v) = λ
∫

Ωa
ε

Ja
ε (x, t)|v1(x)|2 dx+ λ

∫
Ωw
ε

|v2(x)|2 dx+ λ
∫

Ωw
ε

|v3(x)|2 dx,

µ(B′ε(t)v)(v) = µ
∫

Ωa
ε

∂tJ
a
ε (x, t)|v1(x)|2 dx.

Therefore,

λBε(t)v(v) + µB′ε(t)v(v)

≥
∫

Ωa
ε

(λJa
ε (x, t) + µ∂tJ

a
ε (x, t))|v1(x)|2 dx+ λ|v2|2Ωw

ε
+ λ|v3|2Ωw

ε
.

Since Ja
ε (x, t) is positive and bounded away from zero, (25) is satisfied for

µ = 0 and any positive λ.

Now, consider the case µ = 1. If we can then choose λ large enough so that
there exists a δ > 0 such that

λJa
ε (x, t) + ∂tJ

a
ε (x, t) ≥ δ (†)

for a.e. x and t, we can further estimate

λ(Bε(t)v)(v) + (B′ε(t)v)(v) ≥ δ|v1|2Ωa
ε

+ λ|v2|2Ωw
ε

+ λ|v3|2Ωw
ε
.

Then, (25) is satisfied. If ∂tJ
a
ε ≥ 0, it is clear that we can just choose λ = 1.

If this is not the case, we estimate as follows,

λJa
ε (x, t) + ∂tJ

a
ε (x, t) ≥ λJa

min − |∂tJa
ε (x, t)| ≥ λJa

min − ‖∂tJa
ε ‖L∞(Ω×S).

Choosing λ > (δ + ‖∂tJa
ε ‖L∞)/Ja

min yields (†). J

The above results can be summarized as follows.
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Theorem 4.6
For given ε > 0, there exists a unique solution of problem (17).

Proof The existence of the solution to (17a) is given by lemma 4.1. The
above considerations (particularly lemmas 4.4 and 4.5) show that the require-
ments of theorem 4.3 are satisfied which yields the existence and uniqueness
of a solution for problem (17b)–(17d). J

4.3 Some ε-independent a-priori estimates

We have already obtained the a-priori estimates (22) and (27). While the
estimate (22) for Ja

ε is already ε-independent, this is not directly the case for
the estimate (27) on ua

ε, u
w
ε and vw

ε . This section is concerned with finding
ε-independent estimates for the concentrations.

Lemma 4.7
The solution (ua

ε, u
w
ε , v

w
ε ) ∈ V(Ωa

ε)× [V(Ωw
ε )]2 of problem (17b)–(17d) satisfies

|ua
ε(t)|Ωa

ε
+ |∇ua

ε|Ωa
ε,t + |uw

ε (t)|Ωw
ε

+ εl/2|∇uw
ε |Ωw

ε ,t + ε1/2|ua
ε − uw

ε |Γε,t ≤ C,
(32a)

|vw
ε (t)|Ωw

ε
+ εl/2|∇vw

ε |Ωw
ε ,t ≤ C (32b)

for a.e. t ∈ S, where the constant C depends on T and the data but not on ε
if ∂tJ

a
ε is non-negative or bounded independently of ε in L∞(Ω× S).

Proof We begin with the equations for ua
ε and uw

ε . Addition of equations
(17b) and (17c) gives

(∂t(J
a
ε (t)ua

ε(t)) |φa(t))Ωa
ε

+ (∂tu
w
ε (t) |φw(t))Ωw

ε
+ (Ja

ε (t)Da
ε(t)∇ua

ε(t) | ∇φa(t))Ωa
ε

+ εl(Dw
ε (t)∇uw

ε (t) | ∇φw(t))Ωw
ε

+ ε(aε(t)(u
a
ε(t)− uw

ε (t)) |φa(t)− φw(t))Γε

= −(ru
ε (t)f r

ε(t) |φw(t))Ωw
ε
.

Choosing the test function as

φ(x, t) =

ua
ε(x, t), x ∈ Ωa

ε, t ∈ (0, T ),

uw
ε (x, t), x ∈ Ωw

ε , t ∈ (0, T ),

and noting that

(∂t(J
a
ε (t)ua

ε(t)) |ua
ε(t))Ωa

ε
= 1

2
d
dt

(Ja
ε (t)ua

ε(t) |ua
ε(t))Ωa

ε
+ 1

2
(∂tJ

a
ε (t)ua

ε(t) |ua
ε(t))Ωa

ε

17



gives

1
2

d
dt

(Ja
ε (t)ua

ε(t) |ua
ε(t))Ωa

ε
+ (∂tu

w
ε (t) |uw

ε (t))Ωw
ε

+ (Ja
ε (t)Da

ε(t)∇ua
ε(t) | ∇ua

ε(t))Ωa
ε

+ εl(Dw
ε (t)∇uw

ε (t) | ∇uw
ε (t))Ωs

ε
+ ε(aε(t)(u

a
ε(t)− uw

ε (t)) |ua
ε(t)− uw

ε (t))Γε

= −(ru
ε (t)f r

ε(t) |uw
ε (t))Ωw

ε
− 1

2
(∂tJ

a
ε (t)ua

ε(t) |ua
ε(t))Ωa

ε

for a.e. t.

Integration with respect to time from 0 to t gives

1
2
|
√
Ja
ε (t)ua

ε(t)|2Ωa
ε

+ 1
2
|uw
ε (t)|2Ωw

ε

+ |
√
Ja
εD

a
ε∇ua

ε|2Ωa
ε,t

+ εl|
√
Dw
ε ∇uw

ε |2Ωs
ε

+ ε|
√
aε(u

a
ε − uw

ε )|2Γε,t
= −(ru

εf
r
ε |uw

ε )Ωw
ε ,t + 1

2
|
√
Ja
ε (0)ua

ε(0)|2Ωa
ε

+ 1
2
|uw
ε (0)|2Ωw

ε
− 1

2
(∂tJ

a
εu

a
ε |ua

ε)Ωa
ε,t.

Making use of the assumptions on Ja
ε , Da

ε , D
w
ε , aε and ru

ε and utilizing the
Cauchy–Schwarz and Young inequalities for the reaction term gives

1
2
Ja

min|ua
ε(t)|2Ωa

ε
+1

2
|uw
ε (t)|2Ωw

ε
+Ja

minD
a
min|∇ua

ε|2Ωa
ε,t

+εlDw
min|∇uw

ε |2Ωs
ε
+εamin|ua

ε−uw
ε |2Γε,t

≤ 1
2
(ru

max)2|f r
ε |2Ωw

ε ,t
+ 1

2
|uw
ε |2Ωw

ε ,t
+ 1

2
|ua
ε(0)|2Ωa

ε
+ 1

2
|uw
ε (0)|2Ωw

ε
+ 1

2
‖∂tJa

ε ‖L∞|ua
ε|2Ωa

ε,t
.

Note that if ∂tJ
a
ε is non-negative, the last term on the right-hand side can be

omitted. Otherwise, the boundedness independently of ε is required. Collection
of all constants,

|ua
ε(t)|2Ωa

ε
+ |uw

ε (t)|2Ωw
ε

+ |∇ua
ε|2Ωa

ε,t
+ εl|∇uw

ε |2Ωw
ε ,t

+ ε|ua
ε − uw

ε |2Γε,t
≤ C(|f r

ε |2Ωw
ε ,t

+ |ua
ε|2Ωw

ε ,t
+ |uw

ε |2Ωw
ε ,t

+ |ua
ε(0)|2Ωa

ε
+ |uw

ε (0)|2Ωw
ε
),

and application of Gronwall’s inequality gives (32a).

Testing of equation (17d) with vw
ε and integration with respect to time gives

1
2
|vw
ε (t)|2Ωw

ε
+ εl|∇vw

ε |2Ωw
ε ,t

= (rv
εf

r
ε | vw

ε )Ωw
ε ,t + 1

2
|vw

0 |2Ωw
ε
.

Utilizing the Cauchy–Schwarz and Young inequalities for the reaction term
and application of Gronwall’s inequality gives (32b). J

4.4 Convergence

In this section, we want to investigate the convergence of the sequences of
solutions as ε → 0. We use the notion of two-scale convergence. For details
concerning classical results we refer to [18], [19], [20], [21], [22] and [23]. For
simplicity, we discuss the two-scale convergence for sequences independent of
time. Since time is only a parameter with respect to two-scale convergence,
this is no restriction, cf. [24], e.g.
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Definition 4.8 (Two-scale convergence)
A sequence of functions vε in L2(Ω) is said to two-scale converge to a limit
function v0(x, y) ∈ L2(Ω× Y ) iff

lim
ε→0

∫
Ω
vε(x)φ(x, x/ε) dx =

∫
Ω

∫
Y
v0(x, y)φ(x, y) dy dx (33)

for all φ ∈ C∞0 (Ω;C∞# (Y )) where the subscript # denotes periodicity. A se-
quence of functions vε in L2(Γε) is said to two-scale converge to a limit function
v0(x, y) ∈ L2(Ω× Γ) iff

lim
ε→0

ε
∫

Γε
vε(x)φ(x, x/ε) dσx =

∫
Ω

∫
Γ
v0(x, y)φ(x, y) dσy dx (34)

for all φ ∈ C∞0 (Ω;C∞# (Y )).

The following theorem is fundamental to the notion of two-scale convergence
(cf. theorem 1 in [18] or theorem 1.2 in [19]). In particular, it applies to Ja

ε .

Theorem 4.9
Let uε be a bounded sequence in L2(Ω). Then, there exists a subsequence such
that uε two-scale converges to a limit function u0 ∈ L2(Ω× Y ).

The a-priori estimates (32) ensure that standard two-scale convergence results
apply to the sequences ua

ε, u
w
ε and vw

ε , whose limits we denote by ua, uw and vw,
respectively. Therefore, we only state the results required here. The proofs can
be found in [19, 25], e.g. For the formulation of the next theorem, the following
notation is introduces: For a function vα ∈ L2(Ωα

ε ), its zero extension to Ω is
denoted by ṽα. Clearly: ṽα ∈ L2(Ω).

Theorem 4.10
Let α ∈ {a,w}, 0 ≤ λ ≤ 2 and uα ∈ W 1,2(Ωα

ε ) satisfy the estimate

|uαε |Ωαε + ελ/2|∇uαε |Ωαε ≤ C, (35)

with C independent of ε. Then, the following statements hold:

(a) Let λ = 0 and Ωα
ε be connected. Then, there exist limit functions uα ∈

W 1,2(Ω) as well as uα1 ∈ L2(Ω;W 1,2
# (Y )/R) such that for a subsequence the

following convergence results hold in two-scale sense:

ũαε −→ χαuα and ∇̃xu
α
ε −→ χα(∇xu

α +∇yu
α
1 ) (36)

(b) Let 0 < λ < 2. Then, there exists limit functions uα ∈ L2(Ω) and uα1 ∈
L2(Ω;W 1,2

# (Y )/R) such that, at least for a subsequence, the following con-
vergence results hold in two-scale sense:

ũαε −→ χαuα and ελ/2∇̃xu
α
ε −→ χα∇yu

α
1 (37)
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(c) Let λ = 2. Then, there exists a limit function uα ∈ L2(Ω;W 1,2
# (Y )) such

that, at least for a subsequence, the following convergence results hold in
two-scale sense:

ũαε −→ χαuα and ε∇̃xu
α
ε −→ χα∇yu

α (38)

(d) In any of the above cases the trace of uαε on Γε two-scale converges to the
trace of the limit function on Γ in the sense of (34).

We also cite a result stating when the product of two two-scale convergent
sequences converges to the product of their limits (cf. theorem 1.8 of [19]):

Theorem 4.11
Assume that uε and vε are two bounded sequences of functions in L2(Ω) which
two-scale converge to limits u0 and v0 in L2(Ω × Y ), respectively. Assume
further that

lim
ε→0
|uε|Ω = |u0|Ω×Y . (39)

Then, we have

uεvε −→
∫
Y

u0(x, y)v0(x, y) dy (40)

weakly in C∞0 (Ω)′.

A sufficient condition for (39) to hold, is that uε is a sum of functions belonging
to the following classes,

I functions being continuous with respect to one space variable,
I functions being a product of functions which depend on one space variable

and time only.

An analogous result holds for sequences given on Γε, cf. [20], where condition
(39) needs to be replaced by

lim
ε→0

ε|uε|2Γε = |u0|2Ω×Γ. (41)

5 Identification of the limit problems

Let f r(x, y, t) be the two-scale limit of f r
ε(x, t) in L2(Ω × S). Theorem 4.9

ensures that, at least for a subsequence, Ja
ε two-scale converges to a limit

function Ja while theorem 4.10 yields the existence of two-scale limit functions
ua, uw and vw of ua

ε, u
w
ε and vw

ε , respectively.

We begin with the limit problem for Ja
ε .
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Proposition 5.1
The limit function Ja of Ja

ε as ε→ 0 satisfies (20a).

Proof Choosing the test function in (17a) as ϕJ(x, y, t) with ϕJ ∈ L2(Ω×
Y × S) and integrating over Y , we obtain

∫ T

0

∫
Ω

∫
Y
Tε(∂tJa

ε )(x, t)ϕJ(x, y, t) dy dx dt

= −Cm
∫ T

0

∫
Ω

∫
Y

∫
Zw
Tε(f r

ε)(x, z, t) dz ϕJ(x, y, t) dy dx dt, (42)

where we have used the fact that Ja
ε is constant in each cell, and, therefore,

∂tJ
a
ε = Tε(∂tJa

ε ) is independent of y. Since the sequences are independent of
y, the limit equation as ε→ 0 is given by∫ T

0

∫
Ω
∂tJ

a(x, t)
∫
Y
ϕJ(x, y, t) dy dx dt

= −Cm
∫ T

0

∫
Ω

∫
Zw
f r(x, z, t) dz

∫
Y
ϕJ(x, y, t) dy dx dt. (43)

By periodic unfolding, these are also the two-scale limits and, moreover, it
suffices to take ϕJ independent of y. Therefore,∫ T

0

∫
Ω
∂tJ

a(x, t)ϕJ(x, t) dx dt = −Cm
∫ T

0

∫
Ω

∫
Zw
f r(x, y, t) dy ϕJ(x, t) dx dt

(44)
for all ϕJ ∈ L2(Ω× S). J

Proposition 5.2
The limit function ua associated with the sequence of solutions ua

ε satisfies the
weak macromodel equation (20b).

Proof Integration of the weak micromodel equation (17b) for ua
ε with re-

spect to the time variable, integration by parts in the time-derivative term
and choosing the test function to be of the form

φ(x, y, t) = φ0(x, t) + εφ1(x, x/ε, t)

with (φ0, φ1) ∈ C∞0 (S;C∞(Ω))× C∞0 (S;C∞(Ω;C∞# (Y ))) gives

−
∫
S×Ω

Ja
ε (x, t)ua

ε(x, t)χ
a(x/ε)∂t[φ0(x, t) + εφ1(x, x/ε, t)] dx dt

+
∫
S×Ω

Ja
ε (x, t)Da(x, x/ε, t)∇xu

a
ε(x, t)χ

a(x/ε)

× [∇xφ0(x, t) + ε∇xφ1(x, x/ε, t) +∇yφ1(x, x/ε, t)] dx dt

+ ε
∫
S×Γε

a(x, x/ε, t)[ua
ε(x, t)− uw

ε (x, t)][φ0(y, t) + εφ1(x, x/ε, t)] dσx dt = 0.

(†)
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The limit as ε tends to zero is now determined. The functions ua and ua
1

appearing in this proof are always understood as the limit functions provided
by proposition 5.1 and theorem 4.10.

The limits of the three terms in (†) can be computed individually. For the
first two terms, we note that the fact that the limit of the product is equal to
the product of the limits follows from theorem 4.11 as well as the fact that Ja

ε

does not depend on the microvariable. The third term can be handled using
part (d) theorem 4.10.

Putting everything together,

|Za|
∫
S×Ω

∂t(J
a(x, t)ua(x, t))φ0(x, t) dx dt

+
∫
S×Ω

∫
Za
Ja(x, t)Da(x, y, t)(∇xu

a(x, t) +∇yu
a
1(x, y, t))

× [∇xφ0(x, t) +∇yφ1(x, y, t)] dy dx dt

+
∫
S×Ω

∫
Γ
a(x, y, t)(ua(x, t)− uw(x, y, t)) dσy φ0(x, t) dx dt = 0

for all (φ0, φ1) is obtained, where we have already integrated by parts again
in the time-derivative term. Also, note that uw does not depend on y if λ < 2.
Choosing φ0 ≡ 0 yields∫
S×Ω

∫
Za
Ja(x, t)Da(x, y, t)(∇xu

a(x, t)+∇yu
a
1(x, y, t))∇yφ1(x, y, t) dy dx dt = 0

for all φ1 ∈ C∞0 (S;C∞(Ω;C∞# (Y ))). Assuming ua
1 =

∑N
j=1 ∂xju

a(x, t) ςa
j (x, y, t),

the equation is satisfied if ςa
j is the solution of the cell problem (18) because

0 =
∫
S×Ω

∫
Za
Ja(x, t)Da(x, y, t)

×
[ N∑
j=1

∂xju
a(x, t)∇yς

a
j (x, y, t)∇yφ1(x, y, t) +∇xu

a(x, t)∇yφ1(x, y, t)
]

dy dx dt

=
∫
S×Ω

∫
Za
Ja(x, t)Da(x, y, t)

×
[
−

N∑
j=1

∂xju
a(x, t)ej∇yφ1(x, y, t) +∇xu

a(x, t)∇yφ1(x, y, t)
]

dy dx dt,

which is obviously true for all φ1. On the other hand, if ςa
j is the solution of the

cell problem (18), the equation is satisfied if ua
1 =

∑N
j=1 ∂xju

a(x, t) ςa
j (x, y, t).

Choosing φ1 ≡ 0 gives

|Za|
∫
S×Ω

∂t(J
a(x, t)ua(x, t))φ0(x, t) dx dt

+
∫
S×Ω

∫
Za
Ja(x, t)Da(x, y, t)(∇xu

a(x, t) +∇yu
a
1(x, y, t))∇xφ0(x, t) dy dx dt
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+
∫
S×Ω

∫
Γ
a(x, y, t)(ua(x, t)− uw(x, y, t)) dσy φ0(x, t) dx dt = 0

for all φ0 ∈ C∞0 (S;C∞(Ω)). Using ua
1 =

∑N
j=1 ∂xju

a(x, t) ςa
j (x, y, t), the second

term can be rewritten,

∫
S×Ω

∫
Za
Ja(x, t)Da(x, y, t)(∇xu

a(x, t) +∇yu
a
1(x, y, t))∇xφ0(x, t) dy dx dt

=
∫
S×Ω

P a(x, t)∇xu
a(x, t)∇xφ0(x, t) dx dt,

where the tensor P a is defined in (20c). Thus,

|Za|
∫
S×Ω

∂t(J
a(x, t)ua(x, t))φ0(x, t) dx dt

+
∫
S×Ω

P a(x, t)∇xu
a(x, t)∇xφ0(x, t) dx dt

= −
∫
S×Ω

∫
Γ
a(x, y, t)(ua(x, t)− uw(x, y, t)) dσy φ0(x, t) dx dt

for all φ0 ∈ C∞0 (S;C∞(Ω)). J

Proposition 5.3
The limit functions uw and vw associated with the sequences of solutions uw

ε

and vw
ε , respectively, satisfy the weak macromodel equations (20d) and (20e).

Proof The proof can be obtained analogously to that of proposition 5.2.
For λ < 2, the test function needs to be chosen as

φ(x, t) = φ0(x, t) + ε1−λ/2φ1(x, x/ε, t)

with (φ0, φ1) ∈ C∞0 (S;C∞(Ω)) × C∞0 (S;C∞(Ω;C∞# (Y ))) while, for λ ≥ 2,
φ(x, t) = φ1(x, x/ε, t) is the appropriate test function. J
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