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Figure 1. Error decay for different dual degrees, originally pre-
sented in [1]. Left: Mesh and domain partitioning. Middle: Error
of the primal variable in the broken H1 norm. Right: Error of
the dual variable in the L2 norm.

[4] O. Steinbach, B. Wohlmuth, L. Wunderlich, Trace and flux a priori error estimates in finite
element approximations of Signorni-type problems, IMA J. Numer. Anal. (2015), published
online.

Multiscale Petrov-Galerkin Finite Element Method for
High-Frequency Acoustic Scattering

Dietmar Gallistl

(joint work with Daniel Peterseim)

The Helmholtz equation in an open bounded Lipschitz polygon Ω ⊆ Rd (d ∈
{1, 2, 3}) with outer unit normal ν reads

(1)

−∆u− κ2u = f in Ω,

u = 0 on ΓD,

∇u · ν − iκu = g on ΓR.

Here, the boundary ∂Ω is decomposed into disjoint parts ∂Ω = ΓD ∪ ΓR. Typi-
cally, the Dirichlet boundary ΓD refers to a sound-soft obstacle whereas the Robin
boundary ΓR results from truncation of the full space problem to the bounded
domain Ω. It is well known that standard finite element approximations to (1) ex-
hibit the so-called pollution effect [1], which means that the ratio of the error of the
finite element method and the best possible approximation in the finite element
space becomes arbitrarily large as the real parameter κ > 0 (the wavenumber)
increases. The mesh-size H for an accurate representation of the wave usually
requires a fixed number of grid points per wavelength, written κH ≈ 1. The sta-
bility of the finite element method, however, requires a much finer mesh-size h
with hκα ≈ 1 for some α > 1. This makes high-frequency scattering simulations
with standard methods problems computationally costly.

The talk presents a pollution-free Petrov-Galerkin multiscale finite element
method for the Helmholtz problem with large wave number κ. The proposed
method employs standard continuous Q1 finite elements at a coarse discretization
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scale H as trial functions, whereas the test functions are computed as the solu-
tions of local problems at a finer scale h. The diameter of the support of the test
functions behaves like mH for some oversampling parameter m. Provided m is
of the order of log(κ) and h is sufficiently small, the resulting method is stable
and quasi-optimal in the regime where H is proportional to κ−1. In homogeneous
(or more general periodic) media, the fine scale test functions depend only on lo-
cal mesh-configurations. Therefore, the seemingly high cost for the computation
of the test functions can be drastically reduced on structured meshes. Numeri-
cal experiments in two and three space dimensions give empirical insight in the
dependence of the parameters H , h, and m.

The talk is based on the recent works [2, 3].
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A Plane Wave Virtual Element Method for the Helmholtz Problem

Ilaria Perugia

(joint work with Paola Pietra, Alessandro Russo)

The virtual element method (VEM) is a generalisation of the finite element method
recently introduced in [2, 3], which takes inspiration from mimetic finite difference
schemes, and allows to use very general polygonal/polyhedral meshes.

My talk was concerned with a new method introduced in [15], based on inserting
plane wave basis functions within the VEM framework in order to construct anH1-
conforming, high-order method for the discretisation of the Helmholtz problem, in
the spirit of the partition of unity method (PUM, see e.g., [12, 13]).

Plane wave functions are a particular case of Trefftz functions for the Helmholtz
problem, i.e., functions belonging to the kernel of the Helmholtz operator. In-
serting Trefftz basis functions within the approximating spaces in finite element
discretisations of the Helmholtz problem allows to obtain, compared to standard
polynomial spaces, similar accuracy with less degrees of freedom, mitigating the
the strong requirements in terms of number of degrees of freedom per wavelength
due to the pollution effect [1]. There are in the literature several finite element
methods for the Helmholtz problem which make use of Trefftz functions (for de-
tails, see the recent survey [8]). Besides the above mentioned PUM, which is
H1-conforming, other approaches use discontinuous Trefftz basis functions and
impose interelement continuity with different strategies: by least square formu-
lations [17, 14]); within a discontinuous Galerkin (DG) framework, like the ultra
weak variational formulation [5, 4] or its Trefftz-DG generalisation [9]; by the use


