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Numerical upscaling of eigenvalue problems

Axel Målqvist

(joint work with Daniel Peterseim)

1. Introduction

We present a numerical upscaling technique for computing eigenpairs of self-
adjoint linear elliptic second order differential operators with arbitrary positive
bounded coefficients. The precise setting is as follows. Let Ω ⊂ R

d be a bounded
Lipschitz domain with piecewise flat boundary and let A ∈ L∞(Ω,Rd×d

sym) be a
matrix-valued coefficient with uniform spectral bounds. Consider the self-adjoint
eigenvalue problem: find eigenpairs (u, λ) such that

(1) −∇ · (A∇u) = λu.

A standard finite element approximation of these eigenvalues and eigenfunctions
is constructed using a shape regular mesh Th of Ω with a corresponding finite

element space Vh ⊂ V := H1
0 (Ω): find eigenpairs u

(ℓ)
h ∈ Vh and λ

(ℓ)
h ∈ R such that,

(2) a(u
(ℓ)
h , v) := (A∇u(ℓ)h ,∇v) = λ

(ℓ)
h (u

(ℓ)
h , v), ∀v ∈ Vh.

We are mainly interested in the small eigenvalues. Popular approaches for the
computation of these eigenvalues include e.g. Lanczos/Arnoldi-type iterations or
the QR-algorithm applied directly to the Nh-dimensional finite element matrices,
where Nh = dim(Vh).

In our approach we avoid the application of an eigenvalue solver to the large-
scale problem (2) directly. Instead, inspired by [3], we compute a low-dimensional
approximation space Vcs ⊂ Vh first, with NH = dim(Vcs) ≪ Nh. This preprocess-
ing step is done by (approximately) inverting the operator for special right hand
sides and subject to certain linear constraints. Having performed NH of those
computations, the solution of a low-dimensional NH × NH eigenvalue problem
by standard solvers yields approximations of the first NH eigenpairs. The linear
problems needed to be solved on the fine scale are totally independent.

Our method is related to some coarse finite element mesh with maximal width
H . The accuracy of the approximate eigenvalues is expressed in terms of H . With-
out any assumptions on the smoothness of eigenfunctions, we prove that the error
scales like H4. Note that a standard first-order conforming finite element com-
putation yields H2 under full H2(Ω) regularity, see e.g. [2]. Under such strong
assumption the two-grid method [5] allows certain postprocessing (solution of lin-
ear problems on the fine scale) of the coarse finite element eigenpairs to increase
the accuracy to H4. This is also possible to exploit for our proposed method to
get even higher order convergence.

2. Galerkin approximation and main result

We let TH denote an underlying coarse regular finite element mesh, with mesh
function H defined by H |T = diam(T ) := HT for all T ∈ TH . We denote the
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interior nodes of the mesh N . We let VH = span({φx}x∈N ) be a finite element
space such that VH ⊂ Vh.

We recall the Clément type interpolant IH : V → VH presented in [1]. Let
IHv =

∑
x∈N (IHv)(x)φx, where,

(IHv)(x) =
(v, φx)

(1, φx)
,

for all x ∈ N . The following approximation and stability property holds,

H−1
T ‖v − IHv‖L2(T ) + ‖∇(v − IHv)‖L2(T ) ≤ C‖∇v‖L2(ωT ), ∀v ∈ V,

where ωT is the collection of elements in T overlapping T .
We are ready to present the decomposition of the space Vh into a coarse and a

fine part. We let the fine scale space be defined by,

Vfs := kernel IH = {v ∈ Vh : IHv = 0},

and the coarse scale space by,

Vcs = {v ∈ Vh : a(v, w) = 0, for all w ∈ Vfs}.

This yields an a-orthogonal split of the space Vh = Vcs ⊕ Vfs. We note that
dim(Vcs) = dim(VH) = |N |. In order to compute a basis for Vcs we solve |N |
corrector problems: find ψx ∈ Vfs such that,

a(ψx, v) = a(φx, v), for all v ∈ Vfs,

and let Vcs = span({φx −ψx}x∈N ). The Galekin approximation of equation (2) in

the space Vcs reads: find u
(ℓ)
cs ∈ Vcs and λ

(ℓ)
cs ∈ R such that,

a(u(ℓ)cs , v) = λ(ℓ)cs (u
(ℓ)
cs , v), v ∈ Vcs.

We now present an error bound for the approximate eigenvalues.

Theorem 1. Let H be sufficiently small so that H ≤ Cℓ−1/4
√

α

λ
(l)
h

. Then it holds

(3)
λ
(ℓ)
cs − λ

(ℓ)
h

λ
(ℓ)
h

≤ C
√
ℓ


H

√
λ
(ℓ)
h

α




4

for all ℓ = 1, . . . , |N |,

for some constant C only depending on Ω and the shape regularity constant and

with α being the lower spectral bound of A.

Remark 1. In [3] it is shown that φx − ψx decays exponentially (in the number
of coarse elements) away from node x. This allows the use of truncated patches
of size H log(H−1), with Dirichlet boundary conditions, rather than solving for ψx

on the entire domain Ω. Theorem 1 holds also when using truncated domains.
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3. Numerical example

Let Ω := (−1, 1)2 \ [0, 1]2 be the L-shaped domain. Consider the constant
scalar coefficient A = 1 and consider uniform coarse meshes with maximal mesh
widths

√
2H = 2−1, . . . , 2−4 of Ω. The reference mesh Th has maximal mesh width

h = 2−7/
√
2. We consider a P1 conforming finite element approximation of the

eigenvalues on the reference mesh Th and compare these discrete eigenvalues λ
(ℓ)
h

with coarse scale approximations depending on the coarse mesh size H .
Table 5 shows results for the case without truncation, i.e., all linear problems

have been solved on the whole of Ω. For fixed ℓ, the rate of convergence of the

ℓ λ
(ℓ)
h e(ℓ)(1/2

√
2) e(ℓ)(1/4

√
2) e(ℓ)(1/8

√
2) e(ℓ)(1/16

√
2)

1 9.6436869 0.003494567 0.000034466 0.000000546 0.000000010
2 15.1989274 0.009621397 0.000079887 0.000000845 0.000000010
3 19.7421815 0.023813222 0.000213097 0.000002073 0.000000023
4 29.5281571 0.096910157 0.000724615 0.000006574 0.000000076
5 31.9265496 0.094454625 0.000874659 0.000009627 0.000000138
6 41.4922250 - 0.002395227 0.000019934 0.000000254
7 44.9604884 - 0.002443271 0.000019683 0.000000223
8 49.3631826 - 0.003651870 0.000028869 0.000000308
9 49.3655623 - 0.004266472 0.000032835 0.000000355
10 56.7389993 - 0.006863742 0.000055219 0.000000618

Table 5. Errors e(ℓ)(H) =:
λ
(ℓ)
H

−λ
(ℓ)
h

λ
(ℓ)
h

for ℓ = 1, . . . , 10, constant

coefficient A = 1, and various choices of the coarse mesh size H .

eigenvalue error λ
(ℓ)
H − λ

(ℓ)
h in terms of H observed in Table 5 is between 6 and 7

which is even better than predicted in Theorem 1. For more elaborate numerical
results we refer to [4].
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