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in this case. The main result of the present article is that the conjecture does
indeed hold true and that the solutions to (1) do again converge to those of (2) as
ε→ 0. This time, the limiting constant V̄ is given by

V̄ =
1

2
√
π

∫ ∞

0

Φ(t)√
t
dt ,

where we have set Φ(s) :=
∫
R
Φ(x, s)dx.

The techniques employed in the present article are very different from [7]: in-
stead of relying on probabilistic techniques, we adapt the analytical techniques
from [5].
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Spectrum-preserving two-scale decompositions with applications to

numerical homogenization and eigensolvers

Daniel Peterseim

(joint work with A. Målqvist)

This note summarizes some recent results on linear elliptic problems with rough
multiscale coefficients in the absence of strong assumptions such as periodicity
or scale separation. Given a polyhedral domain Ω ⊂ Rd and functions A ∈
L∞(Ω,Rd×d

sym) with uniform spectral bounds σ(A(·)) ⊂ [α, β] ⊂]0,∞[ and g ∈
L2(Ω), consider the second order linear elliptic problem

(LP) find u ∈ V := H1
0 (Ω) such that

a(u, v) :=
∫
Ω
(A∇u) · ∇v =

∫
Ω
gv =: (g, v) for all v ∈ V,

and the associated eigenproblem

(EP) find pairs (λ(ℓ), u(ℓ)) ∈ R>0 × V \ {0}, ℓ ∈ N such that

a(u(ℓ), v) = λ(ℓ)
∫
Ω u

(ℓ)v =: (λ(ℓ)u(ℓ), v) for all v ∈ V.

If the diffusion coefficient A is highly variable then the numerical approximation
of either problem is challenging. The underlying mesh width has to be sufficiently
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small to resolve the oscillations and heterogeneities of A. For problems in geo-
physics or material sciences with characteristic geometric features on microscopic
length scales, this so-called resolution condition is often so restrictive that the
initial mesh must be chosen very fine and further refinement exceeds computer
capacity.
In this note, a new numerical homogenization method is presented. It is related to
some low-dimensional macroscopic generalized finite element space. The assem-
bling of the corresponding linear system of equations requires microscopic compu-
tations only in local vertex patches of diameter H log(1/H); H being the macro-
scopic mesh size. The energy error of the method converges linearly with respect
to H without any pre-asymptotic effects. Moreover, small (leading) eigenvalues of
the operator are preserved on the macroscopic level in a superconvergent way (at
least quartic with respect to H).
The framework presented here was mainly developed in [4, 5] and further investi-
gated in [2, 3, 1]. References to alternative methods for numerical homogenization
or upscaling may be found therein and in several contributions to this Oberwolfach
workshop, e.g., by A. Abdulle, L. Berlyand, Y. Efendiev, R. Lipton, A. Lozinski,
or L. Zhang. The question of how the different approaches compare in certain
scenarios remains open. As major advantages of our approach we consider its
generality, rigorousness and spectral properties.

1. Two-scale Decompositions

Our method is based on novel multiscale decompositions of H1 into some macro-
scopic/coarse part Vcs plus some microscopic/fine part Vfs. Let VH ⊂ V denote
the classical P1 finite element space with respect to some coarse mesh of width
H . It is spanned by nodal basis functions φz for interior vertices z ∈ N . The
key tool is the Clément-type (quasi-)interpolation operator IH : V → VH with

IHv :=
∑

z∈N
(v,φz)
(1,φz)

φz . Throughout this note, its kernel Vfs := kernelIH defines

microscopic functions.

Lemma 1 (L2-orthogonal two-scale decomposition).

V = VH ⊕ Vfs and (Vcs, Vfs) = 0.

The decomposition is orthogonalized with respect to the scalar product a induced
by the problems (LP) and (EP). Let F : V → Vfs denote the a-orthogonal pro-
jection onto the finescale space Vfs, that is a(Fv, w) = a(v, w) for all w ∈ Vfs. A
modified (operator-dependent) coarse space is then given by

Vcs := (1 − F)VH = span{(1− F)φz | z ∈ N}.
Lemma 2 (a-orthogonal two-scale decomposition).

V = Vcs ⊕ Vfs and a(Vcs, Vfs) = 0.

The lemma immediately yields the desired error estimates for the Galerkin method
with respect to Vcs (see Section 2). A further main observation is that the a-
orthogonal decomposition remains almost orthogonal in L2.
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Lemma 3 (L2-quasi-orthogonality of the a-orthogonal decomposition).

∀vcs ∈ Vcs∀vfs ∈ Vfs : (vcs, vfs) . α−1H2
∣∣∣∣A1/2∇vcs

∣∣∣∣ ∣∣∣∣A1/2∇vfs
∣∣∣∣ .

Here and throughout the paper, the constant hidden in the notation . only de-
pends on Ω and interior angles of the finite element mesh. Lemma 3 indicates that
Vcs is suitable for the discretization of the eigenproblem (see Section 3).

2. Galerkin approximation and sparse representation of Vcs

Let ucs ∈ Vcs denote the Galerkin approximation of u with respect to Vcs, i.e.,

a(ucs, v) = (f, v) for all v ∈ Vcs.

The error of this discretization is small (of order H) because g ∈ L2(Ω) and ucs is
exactly the coarse part of u in the decomposition of Lemma 2.

Lemma 4 (Discretization error).
∣∣∣∣A1/2∇(u− ucs)

∣∣∣∣ . α−1/2 ||Hg|| .

Observe that V may be replaced with any subspace Vh ⊃ VH . In practical com-
putations, Vh is some high resolution FE space that is sufficiently rich to capture
the characteristic scales of the problem. In addition to this finescale discretiza-
tion, we need to find approximations of the corrector function Fφz with local
support in order to turn (2) into a feasible method. We introduce a new param-
eter, the localization parameter k ∈ N and define nodal patches ωz,1 := suppφz
and ωz,k := ∪{T ∈ TH | T ∩ ωz,k−1 6= ∅} for k ≥ 2.

Lemma 5 (Decay of correctors).

∀z ∈ N∀k ∈ N :
∣∣∣∣A1/2∇Fφz

∣∣∣∣
L2(Ω\ωz,k)

. e−
√

α/βk
∣∣∣∣A1/2∇Fφz

∣∣∣∣ .

The exponential decay motivates the approximation of ψz = Fφz ∈ Vfs by ψz,k ∈
Vfs(ωz,k) := {v ∈ Vfs | v|Ω\ωx,k

= 0}, where
a(ψz,k, v) = a(φz , v) for all v ∈ Vfs(ωz,k).

Thus, the approximate modified coarse space V k
cs has a local basis

V k
cs = span{φz − ψz,k | z ∈ N}.

The corresponding Galerkin approximation of (LP) is denoted ukcs.

Theorem 6 (Discretization error after localization).

If k &
√
β/α| log(H)| then

∣∣∣∣A1/2∇(u− ukcs)
∣∣∣∣ . H ||g|| .

Estimates for fully discrete version and estimates in L2-norm can be found in
[4] (see [3] for improved results with regard to hidden constants).
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3. Approximation of Eigenvalues and Eigenvectors

A third characterization of a macroscopic functions may be given via the eigenfunc-
tions related to the ℓ smallest eigenvalues Eℓ := span{u(1), . . . , u(ℓ)}. By revisiting
Lemma 3 we observe that those macroscopic functions are already represented
very accurately by Vcs (or V

k
cs for k sufficiently large).

Corollary 7 (L2-quasi-orthogonality of the a-orthogonal decomposition of macro-
scopic functions). Let ℓ ∈ N and let u = ucs + ufs ∈ Eℓ with ||u|| = 1, where
ucs ∈ Vcs (resp. ufs ∈ Vfs) denotes the coarse scale part (resp. fine scale part) of u
according to the a-orthogonal decomposition in Lemma 2. Then it holds

(ucs, ufs) .
√
ℓα−2(λ(ℓ))2H4.

We approximate eigenpairs by solutions of the discrete eigenvalue problem: find

λ
(ℓ)
H ∈ R and non-trivial u

(ℓ)
cs ∈ Vcs such that

a(u(ℓ)cs , v) = λ
(ℓ)
H (u(ℓ)cs , v) for all v ∈ Vcs.

Theorem 8 (Bound for the eigenvalue error). Let H be sufficiently small so that

H . ℓ−1/4
√
α/λ(l). Then it holds

λ
(ℓ)
H − λ(ℓ) .

√
ℓ(λ(ℓ))3α−2H4 for all ℓ = 1, 2, . . . , NH .

See [5] for estimates of the error in the corresponding eigenfunctions. Again,
discretization (V → Vh) and localization (Vcs → V k

cs) as in Section 2 are applicable.
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Anomalous diffusion approximation for kinetic equations

Marjolaine Puel

(joint work with N. B. Abdallah, A. Mellet)

We consider diffusion approximation for kinetic equations like linear Boltzmann
or Fokker-Planck in the case where the equilibria are heavy tail functions, In the
case, the classical diffusion scaling leads to an infinite diffusion coefficient. Then,
we have to adapt the scaling and reorganize the different terms to obtain at the
limit that the solution may be approximated by a equilibrium as a velocity profile
multiplied by a density satisfying a fractional diffusion equation.


