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Background. The numerical solution of second order elliptic problems with strong-
ly heterogeneous and highly varying (non-periodic) diffusion coefficient is a chal-
lenging part within the simulation of modern composite materials. The coefficient
may represent different materials or material phases and, hence, heterogeneities
and oscillations of the coefficient typically appear on several non-separated scales.
Similar difficulties arise in geophysical applications such as ground water flow, oil
recovery modeling, or CO2 sequestration.

The abstract mathematical setup of this note is as follows. Given some bounded
polygonal Lipschitz domain Ω in 2 or 3 space dimensions, some uniformly elliptic
diffusion matrix A ∈ L∞

(
Ω,Rd×d

sym

)
, and some force f ∈ L2(Ω), we seek u ∈ V :=

H1
0 (Ω) such that

a (u, v) :=

∫

Ω

〈A∇u,∇v〉 dx =

∫

Ω

fv dx =: F (v) for all v ∈ V.

If A varies rapidly on microscopic scales, classical polynomial based finite ele-
ment methods are unable to capture neither the microscopic nor the macroscopic
behavior of the solution unless the meshwidth is chosen fine enough (i.e., smaller
than the smallest scale in the coefficient). To overcome this lack of performance,
many methods that are based on general (non-polynomial) ansatz functions have
been developed, amongst others [5, 4, 2, 1]. In these methods, the problem is
split into coarse and (possibly several) fine scales. The fine scale effect on the
coarse scale is either computed numerically or modeled analytically. The resulting
modified coarse problem can then be solved numerically and its solution contains
crucial information from the fine scales. Although many of these approaches show
promising results in practice, their convergence analysis typically relies on strong
assumptions such as periodicity and scale separation. Those assumptions, which
essentially justify homogenization, appear unrealistic in the applications under
consideration.

A New Variational Multiscale Method [8]. Without any additional assump-
tions on the coefficient, we construct for any (possibly coarse) shape regular mesh
TH of size H an upscaled variational problem with solution ums

H such that the
estimate ‖u− ums

H ‖H1(Ω) ≤ CfH holds with a constant Cf that depends on f and

the contrast of A but not on its variations. The upscaled problem is related to
a Galerkin method with respect to a modified coarse space. This coarse space is
spanned by one modified nodal basis function per vertex in TH and their compu-
tation involves only local solves on patches of coarse elements.
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We shall briefly summarize our construction. Let VH denote the space of con-
tinuous TH -piecewise affine finite element functions that matches the homogeneous
Dirichlet boundary condition. The key tool in our construction is linear surjec-
tive (quasi-)interpolation operator IT : V → VH from [3, Section 6]. Its kernel
V f := {v ∈ V | IT v = 0} represents the microscopic features of V that are not
captured by VH . Since V f is a closed subspace, we have the decomposition

V = V ms
H ⊕ V f ,

where V ms
H denotes the orthogonal complement of V f in V for the scalar product a.

The space V ms
H is coarse in the sense that dimV ms

H = dimVH . Given the classical
nodal basis (tent) function λx ∈ VH for some x in the set of vertices NH of TH ,
let φx ∈ V f solve the corrector problem

(1) a(φx, w) = a(λx, w) for all w ∈ V f .

We then have V ms
H = span{λx − φx | x ∈ NH}. Needless to say that the correc-

tions φx have theoretical purpose only because they are solution of some infinite
dimensional problem and because they have global support in general. However,
[8] shows that both issues can be handled efficiently. The correction φx decays
exponentially fast (with respect to the number of layers of coarse elements) away
from x and that a simple truncation leads to localized basis functions with good
approximation properties. This decay is due to the fact that φx solves a variational
problem in the kernel of the interpolation operator where functions are constraint
to have vanishing averages in nodal patches. Moreover, this result is stable with
respect to perturbations arising from the discretization of the local problems.

Denote nodal patches of k-th order about x ∈ NH by ωk
x. Given some finescale

finite element space Vh ⊃ VH that captures microscopic scales sufficiently well,
define discrete and localized finescale spaces V f

h(ωx,k) := {v ∈ V f ∩Vh | v|Ω\ωx,k
=

0}, x ∈ NH . Then the solutions φhx,k ∈ V f
h (ωx,k) of

(2) a(φhx,k, w) = a(λx, w) for all w ∈ V f
h(ωx,k),

are discrete approximations of φx from (1) with local support. Note that these
corrector problems are completely decoupled and can be computed in parallel
without any communication.

The proposed (variational) multiscale finite element method then seeks an ap-

proximation ums,h
H,k of u in the coarse multiscale space

(3.a) V ms,h
H,k = span{λx − φhx,k | x ∈ NH} ⊂ V.

The approximation ums,h
H,k satisfies the upscaled system of equations

(3.b) a(ums,h
H,k , v) = F (v) for all v ∈ V ms,h

H,k .

This method is a new variant of the variational multiscale methods introduced in
[6]. Note that dim V ms,h

H,k = |NH | = dimVH , i.e., the number of degrees of freedom

of the proposed method (3) is the same as for the classical finite element method
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related to the space VH . The basis functions of the multiscale method have local
support. The overlap is proportional to the parameter k.

Review of A Priori Error Analysis. The error analysis in [8] shows that the

error u− ums,h
H,k for k ≈ log 1

H satisfies the following a priori estimate:

(4) ‖A1/2∇(u − ums,h
H,k )‖ ≤ CfH + inf

vh∈Vh

‖A1/2∇(u− vh)‖;

H being the mesh size of the underlying coarse finite element mesh, h being the
fine mesh size for the local (parallel) computations. The desired accuracy TOL,
e.g., TOL ≈ 0.01 is achieved by choosing H ≈ TOL independent of any scales
in the problem and by ensuring that the local problems are solved sufficiently
accurate. For example, if A ∈ W 1,∞ (bounded with bounded weak derivative)
and ε is the smallest present scale, i.e., ‖∇A‖L∞(Ω) . ε−1, the second term in

the right-hand side of (4) may be replaced by the worst case bound Chε−1 for a
first-order ansatz space Vh (see [9]). In this case, Cf (H + h

ε ) bounds the error of
our multiscale approximation (3).

The proof in [8] does not rely on regularity of the solution and gives a very
explicit expression for the rate of convergence. The analysis confirms previous
numerical results in [6, 7] and gives the (variational) multiscale method the solid
theoretical foundation that has previously been missing. We further stress that
our result is not asymptotic but holds for arbitrary coarse mesh parameter H .
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