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Comparison of Finite Element Methods for the Poisson Model
Problem

Daniel Peterseim

(joint work with C. Carstensen and M. Schedensack)

In the recent preprint [7], the authors establish the equivalence of conforming
Courant finite element method (CFEM) and nonconforming Crouzeix-Raviart fi-
nite element method (CRFEM) in the sense that the respective energy error norms
are equivalent up to generic constants and higher-order data oscillations in a Pois-
son model problem. The Raviart-Thomas mixed finite element method is bet-
ter than the previous methods whereas the conjecture of the converse relation is
proved to be false. Those results complete the analysis of comparison initiated by
Braess [2]. This note extends the comparison to several Discontinuous Galerkin
FEM (DGFEM), e.g., symmetric interior penalty method (SIPG) [10, 12, 1], non-
symmetric interior penalty method (NIPG) [14], and local DG (LDG) [9, 8].

Given a bounded polygonal domain Ω in the plane and data f ∈ L2(Ω), the
Poisson model problem seeks u ∈ V := H1(Ω) such that

a(u, v) :=

∫

Ω

∇u · ∇v dx =

∫

Ω

fv dx for all v ∈ V.

Let T be some shape regular triangulation of Ω with associated mesh size func-
tion hT . The Courant finite element space of H1-conforming T -piecewise affine
functions is denoted VC(T ) := P1(T ) ∩ V . The corresponding (unique) Galerkin
approximation uC ∈ VC(T ) satisfies

a(uC, vC) =
∫
Ω
fvC dx for all vC ∈ VC(T ).
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Abstract DGFEM. Consider the space VDG(T ) := P1(T ) of T -piecewise affine
functions with associated norm ‖ • ‖DG := (‖∇ • ‖2L2(Ω) + | • |2J)1/2 and jump

seminorm

| • |2J :=
∑

E∈E

|E|−1‖[•]E‖2L2(E);

[vDG]E denotes the jump of vDG ∈ VDG(T ) across the edge E ∈ E as usual.
The bounded and coercive (with respect to ‖ • ‖DG) DG bilinear form aDG :

VDG(T )× VDG(T ) → R extends a|VC(T )×VC(T ) to VDG(T )× VDG(T ) and satisfies

(1) |a(v, vC)− aDG(vDG, vC)| ≤ C1‖v − vDG‖DG‖∇vC‖L2(Ω)

for all vC ∈ VC(T ), v ∈ V , and vDG ∈ VDG(T ) with some universal positive
constant C1 independent of hT . The (unique) DG approximation uDG ∈ VDG(T )
satisfies

aDG(uDG, vDG) =
∫
Ω
fvDG dx for all vDG ∈ VDG(T ).

Assume further that there exists some bounded linear operator IC : VDG(T ) →
VC(T ) and some positive constant C2 that does not depend on hT such that

(2) ‖vDG − IC vDG‖DG ≤ C2|vDG|J holds for all vDG ∈ VDG(T ).

It is shown in [11, Section 3.2] that SIPG, NIPG, and LDG fit into this abstract
framework with some operator IC based on nodal averaging [3, 4, 5, 13].

Main result. The comparison is stated in terms of A . B which abbreviates
the existence of some constant C which only depends on the minimal angle in T ,
but not on the domain Ω and not on the mesh-size hT , such that A ≤ CB. The
comparison includes data oscillations osc(f, T ) := ‖hT (f −Π0f)‖L2(Ω), where Π0

denotes the L2 orthogonal projection onto the piecewise constants.
The comparison result for CFEM and DGFEM reads

(3) ‖∇u−∇uC‖L2(Ω) . ‖u− uDG‖DG . ‖∇u−∇uC‖L2(Ω) + osc(f, T ).

Needless to say that (3), by transitivity, establishes the equivalence of SIPG, NIPG,
and LDG as well as CRFEM. It is remarkable that those results do not rely on any
regularity assumption and hold for arbitrary coarse triangulations and not just in
an asymptotic regime.

Sketch of proof. The inclusion VC(T ) ⊂ VDG(T ) and the triangle inequality yield

‖∇(u− uC)‖L2(Ω) = ‖u− uC‖DG ≤ ‖u− uDG‖DG + ‖uDG − uC‖DG.

Coercivity of aDG (with respect to ‖ • ‖DG), Galerkin orthogonality, boundedness
of aDG, and the property (2) of the averaging operator IC lead to

‖uDG − uC‖2DG . aDG(uDG − uC, uDG − uC) = aDG(uDG − uC, uDG − IC uDG)

. ‖uDG − uC‖DG|uDG|J . ‖uDG − uC‖DG|u− uDG|J.
The combination of the previous estimates proves the first inequality in (3). The
proof of the second inequality follows directly from [11, Section 3.2], which requires
the condition (1). �
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Various generalizations. The equivalence of CFEM and DGFEM immediately
generalizes to its higher-order variants. Let V k

C (T ) := Pk(T )∩V be the conforming
subspace of T -piecewise polynomials of degree at most k ∈ N; V k

DG(T ) := Pk(T )
denotes the corresponding DG space of the same order. Then

‖∇u−∇ukC‖L2(Ω) . ‖u− ukDG‖DG . ‖∇u−∇ukC‖L2(Ω) + osck(f, T )

holds with osck(f, T ) := ‖hkT (f − Πk−1f)‖ where Πk−1 denotes the L2 orthogo-
nal projection onto Pk−1(T ). The hidden generic constants may depend on the
polynomial degree k but not on the mesh size hT .

Often, the large number of degrees of freedom in DGFEM compared to CFEM
is justified by the possibility of using non-conforming meshes that may contain
some finite number of hanging nodes per edge. Define V k

DG(T ) := Pk(T ) for
some non-conforming triangular mesh T . It is shown in [13] that also for such
meshes there exists an averaging operator IC : V k

DG(T ) → V that satisfies (2) with
suitably redefined jump seminorm. The image IC(V

k
DG(T )) = V k

DG(T )∩ V defines
some conforming space V k

C (T ). One might not want to use V k
C (T ) for actual

computations but the corresponding Galerkin solution ukC serves for a comparison.
The proof of (3) remains valid in this setting and establishes the comparison

‖∇u−∇ukC‖L2(Ω) . ‖u− ukDG‖DG . ‖∇u−∇ukC‖L2(Ω) + osck(f, T )

for non-conforming meshes. Hence, SIPG, NIPG, and LDG are equivalent also
on non-conforming meshes and their accuracy is limited by the accuracy that is
provided by its largest conforming subspace.

These new results on DGFEM will be included in an upcoming revised version
of [7]. Similar comparison results can be achieved for 3-dimensional domains,
non-simplicial meshes, or other DG schemes (e.g., WOPSIP [6]). Applications
of comparison results include least-squares finite element methods and equality
of approximation classes for concepts of optimality for adaptive finite element
methods.

The author is supported by the DFG Research Center Matheon Berlin.
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Exponential Convergence of hp-Version Discontinuous Galerkin
Methods for Elliptic Problems in Polyhedral Domains

Dominik Schötzau

(joint work with Christoph Schwab, Thomas Wihler)

In a series of land mark papers in the mid eighties, Babuška and Guo proved that
using hp-version finite element methods for the numerical approximation of elliptic
problems with piecewise analytic data in polygonal domains leads to exponential
rates of convergence in the number of degrees of freedom. The convergence bounds
are typically of the form

‖u− uN‖E ≤ C exp(−b 3
√
N),

where u is the solution of the boundary-value problem, uN its hp-version finite
element approximation, ‖ · ‖E a suitable (energy) norm to measure the error, N
the dimension of the hp-version finite element space, and C and b are constants
independent of N ; see [2, 3, 4] and the references therein.

Starting in the nineties, steps were undertaken to extend these results to poly-
hedral domains in R3; see [1] and the references therein. It was asserted and

confirmed numerically that the errors decay exponentially as C exp(−b 5
√
N), i.e.,

with an exponent that contains the fifth root of N .
In this talk, we prove this convergence rate for hp-version discontinuous Galerkin

(DG) discretizations of the model problem

−∇ · (A∇u) = f in Ω ⊂ R3,

u = 0 on ∂Ω,


