
1274 Oberwolfach Report 23/2008

Recent advances in Composite Finite Elements

Daniel Peterseim

(joint work with Stefan A. Sauter)

Many physical processes that can be modeled by partial differential equations
such as groundwater or ocean flows take place in complex environments (shore
lines are rarely smooth). Finite element methods are known to be very powerful
tools in the numerical investigation of such processes. In principle, the concept of
finite elements is sufficient to handle problems on complicated domains, but the
standard requirement saying that the underlying finite element mesh has to resolve
the boundary of the physical domain is too restrictive if the domain contains small
geometric details such as rough boundaries or holes. The resolution condition links
the number of elements to the number (and size) of geometric details. Therefore,
the minimal dimension of the approximation space reaches a size which is not
feasible to solve with a standard computer. Neither can spaces based on resolving
grids serve as coarse grid spaces in multilevel solvers. In practice, one is often
interested in a moderate accuracy that cannot be achieved at a moderate effort
if the mesh has very fine parts used to resolve the geometry. Furthermore, the
mesh density of coarse shape regular triangulations of complicated domains is
determined by the geometry and not by the smoothness properties of the solution.

To be more precise, consider the simple setting of the Poisson equation−∆u = f
on a polyhedral domain Ω ⊂ R

2 having NΩ sides. In case of Dirichlet boundary
condition the discrete weak variational problem reads

(1)

∫

Ω

∇u · ∇v =

∫

Ω

fv, ∀v ∈ V,

where V = VT ⊂ H1
0 (Ω) contains typically continuous piecewise polynomials with

respect to some regular triangulation T of Ω. The a priori error for a piecewise
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(a) Model domain Ω
with tiny holes.

(b) Solution velocity
(black= 0, white= 1).

Ω

(c) Model domain Ω
with oscillating bot-
tom boundary.

(d) Solution velocity
(black= 0, white=
0.5).

Figure 1. Model problems: (a-b) Stokes flow on the unit square with
100 tiny holes, a Dirichlet inflow boundary and two Neumann outflow
boundaries. (c-d) Force driven Stokes flow in a domain with rough slip
bottom boundary.
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(a) Initial coarse trian-
gulation.

(b) Structured refinement of
triangulation in 2a, degrees of
freedom (•).

(c) Composite basis function
(fulfills the Dirichlet boundary
condition in an approximative
way).

Figure 2. Structured overlapping triangulation of a two dimensional
domain with a rough boundary and composite finite element basis func-

tion.

linear finite element approximation uT ∈ V can be estimated by

(2) ‖u− uT ‖ . inf
v∈V
‖u− v‖H1(Ω) . hr|u|H1+r(Ω),

where h denotes the maximal meshwidth of T and r ∈ (1
2 , 1]. The crucial condition

for this estimate in case of NΩ large is the so called conformity condition V ⊂
H1

0 (Ω) since it demands T to be exact. No matter which accuracy one is interested
in, the dimension of V is always bounded from below by NΩ. The resulting linear
system might be too large to be solved efficiently. The situation can be even worse
in three space dimensions where mesh generation is still a bottle neck in many
cases. Overlapping triangulations T (cf. Figure 2a) allow the definition of low
dimensional approximation spaces, but the resulting approximation error will be
reflected truly by the sum

inf
v∈V
‖u− v‖H1(Ω) + sup

v∈V \{0}

‖v‖L2(∂Ω)

‖v‖H1(Ω)
.

While the infimum still can be estimated in terms of the maximal mesh width h,
the supremum has a negative effect (pollution) on the overall approximation. To
overcome this problem we define coarse finite element spaces (cf. [4]) that preserve
the a priori bound given in (2) without the crucial coupling between domain ge-
ometry and space dimension. This work bases on the concept of composite finite
elements introduced by Hackbusch and Sauter (cf. [2], [3]). Starting from a pos-
sibly coarse, overlapping triangulation (cf. Figure 2a) all triangles that intersect
the boundary are refined successively (cf. Figure 2b). Note, that the number of
refinement steps does not depend on the complicated geometry but only on the
meshwidth h of the initial grid. Additionally, the degrees of freedom are the same
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as in the initial coarse triangulation. New nodes do not enlarge the space dimen-
sion, since they become slave nodes. Composite shape functions ucfe are defined
by mapping shape functions u according to the initial triangulation to the finite
element space with respect to the refined triangulation. The (linear) mapping is
explicitly given by the simple formula

(3) ucfe(x) =

{

u(x), x interior node
u(x)− u(x∂Ω), else,

where x∂Ω denotes an (approximative) projection of x to the boundary of Ω. A
typical basis function of the resulting space V cfe is depicted in Figure 2c. The
dimension of the composite space V cfe does not depend on NΩ. Apart from this
result, the composite finite element approximation fulfills an a priori error bound
which is optimal in the meshwidth parameter h (cf. [5]):

‖u− ucfe‖ . hr|u|H1+r(Ω).

The estimate remains true for Lipschitz domains in two as well as three space
dimensions (cf. [4] and [1]). Recently, the concept of composite finite elements
has further been extended to Stokes problem with mixed Dirichlet, Neumann, slip
and leak boundary conditions (cf. [4], [1]). It allows to compute Stokes flows with
reasonable accuracy with only a few degrees of freedom. In many cases (see for
instance Figure 1) their number can be chosen much smaller than the number of
geometric details (NΩ).
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Numerical methods for two-phase incompressible flows

Arnold Reusken

(joint work with Maxim Olshanskii)

Let Ω ⊂ R
3 be a polyhedral domain containing two different immiscible incom-

pressible phases. The time dependent subdomains containing the two phases are
denoted by Ω1(t) and Ω2(t) with Ω̄ = Ω̄1 ∪ Ω̄2 and Ω1 ∩ Ω2 = ∅. We assume
that Ω1 and Ω2 are connected and ∂Ω1 ∩ ∂Ω = ∅ (i. e., Ω1 is completely contained
in Ω). The interface is denoted by Γ(t) = Ω̄1(t) ∩ Ω̄2(t). A typical example is a
rising air bubble or liquid droplet in a surrounding fluid. The standard model for


