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ABSTRACT

The relationship between metabolism and methylation is considered to be an 
important aspect of cancer development and drug efficacy. However, it remains 
poorly defined how to apply this aspect to improve preclinical disease characterization 
and clinical treatment outcome. Using available molecular information from Kyoto 
Encyclopedia of Genes and Genomes (KEGG) and literature, we constructed a 
large-scale knowledge-based metabolic  in silico model. For the purpose of model 
validation, we applied data from the Cancer Cell Line Encyclopedia (CCLE) to 
investigate computationally the impact of metabolism on chemotherapy efficacy. In 
our model, different metabolic components such as MAT2A, ATP6V0E1, NNMT involved 
in methionine cycle correlate with biologically measured chemotherapy outcome 
(IC50) that are in agreement with findings of independent studies. These proteins 
are potentially also involved in cellular methylation processes. In addition, several 
components such as 3,4-dihydoxymandelate, PAPSS2, UPP1 from metabolic pathways 
involved in the production of purine and pyrimidine correlate with IC50. This study 
clearly demonstrates that complex computational approaches can reflect findings 
of biological experiments. This demonstrates their high potential to grasp complex 
issues within systems medicine such as response prediction, biomarker identification 
using available data resources.

INTRODUCTION

Over the past decade, various studies have 
discovered a number of metabolic changes that promote 
or support cancer development [1, 2]. Cancer metabolism 
has been considered a hallmark of cancer, which has 
been linked to the initiation, metastasis, and recurrence 
of cancer [3–5]. Therefore, understanding the pathways 
and mechanisms of cancer metabolism holds promise for 
improving patient drug treatment [6, 7]. In this regard, 

several recent studies provide evidence that serine 
metabolism is an essential energy source for cancer 
development, which make this serine-based metabolic 
pathway a potentially druggable target [8, 9]. In parallel, 
a number of studies in the past decade have investigated 
the complex role of epigenetics in human cancer [10–12]. 
Epigenetic regulations such as DNA methylation, histone 
modification, and nucleosome remodeling can influence 
diverse biological processes that are fundamental to the 
initiation and development of cancer [13].
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As the fields of cancer metabolism and cancer 
epigenetics have developed, so has the appreciation 
of the functional crosstalk between these processes 
[14–16]. Recent studies provide strong evidence that 
changes in metabolism of cancer cells can directly or 
indirectly impact epigenetic regulation, which leads to the 
promotion of cancer development [17–19]. Clear evidence 
has shown that metabolic alteration affecting protein and 
DNA methylation are a potential driving force for cancer 
development. For instance, it has been shown that the 
metabolic enzyme nicotinamide N-methyltransferase 
(NNMT) is overexpressed in a variety of human 
cancers. The high expression of this enzyme enhances 
cancer aggressiveness by broadly changing methylation 
profiles [20, 21]. Moreover, Shyh-Chang et al. reported 
that embryonic stem cells strongly depend on threonine 
to maintain S-adenosyl methionine (SAM) synthesis, 
an essential primary methyl donor. The condition of 
threonine starvation leads to a dramatic decrease of 
histone methylation with a subsequent strong inhibition 
of proliferative activity [22]. The cyclic conversion of 
different methionine-based derivatives such as SAM with 
help of enzymes including NNMT, is referred to as the 
methionine cycle. This cycle provides methyl units for a 
variety of methylations for proteins, DNA, RNA, lipids 
and others. Some other studies have shown that the purine 
synthesis pathway is highly upregulated in cancer. This 
pathway is not only responsible for its contribution to the 
synthesis of nucleic acids (RNA and DNA), but also for 
the production of large amounts of ATP to meet the high 
energy demand characteristic for cancer development [23, 
24]. All these facts provide evidence to the fact that altered 
metabolic pathways with relation to cancerous methylation 
may prove fundamental in cancer development or drug 
treatment.

In a recent review of Mc Auley et al. on a series 
of computational models with focus on folate metabolism 
and methylation, the authors state that a model of this kind 
might be able to provide an ideal framework for handling 
the complexities of physiologic and pathologic states [25]. 
In another study an integrative model of DNA methylation 
was constructed by integrating multi-platform data from 
thousands of human tumors to explain the important 
relationship between metabolism, methylation, and 
their respective clinical implications [26]. However, this 
study only focused on statistical approaches, neglecting 
molecular and cellular regulation mechanism such as 
transcriptional and translational regulations.

In our previous study we constructed a genome-
scale molecular signaling model (MSM) containing 
multiple cancer-relevant signaling pathways and different 
cancer hallmarks [27]. Using an  in silico approach and 
integrating molecular models with genetic information 
such as gene expression data we were able to effectively 
handle complex issues such as prediction of targeted 
treatment outcome. Moreover, it was also shown that 

the costs of an  in silico approach both in regard to time 
and materials is much lower compared to conventional in 
vitro based studies such as cell line, xenograft and other 
experimental settings [27–29]. However, the MSM did 
not consider any aspects of metabolism and is therefore 
not able to fully reflect the metabolic regulation of 
carcinogenesis. As stated previously, diverse metabolic 
mechanisms might be key factors to investigate and 
predict the therapeutic effect of targeted or broadly 
acting cancer treatment. Therefore, we investigated 
whether a comprehensive modeling of metabolism with 
focus on epigenetic regulation might be able to clarify 
the intricate relationship between cancer treatment and 
cancer metabolism. Furthermore, it is unclear how the 
relationship between cancer metabolism and methylation 
can be used for individualized treatment outcome 
predication. Nevertheless, the application of large-scale 
metabolic models which reflect the metabolic behavior of 
cancer cells hold great promise for a more refined, systems 
approach in clinical cancer treatment [30]. The aim of 
our study was the application of a molecular modeling 
procedure in order to construct a large-scale metabolic 
model and its pre-clinical validation regarding treatment 
prediction. We intend to use this model to investigate the 
methionine cycle-based molecular metabolic function and 
to compare it with experimental key findings in this field.

RESULTS

Study design and construction of the methionine 
cycle-based metabolic model (MCPM)

Figure 1A summarizes the basic workflow: The 
study selectively used molecular information obtained 
from publicly available research databases and literature 
to construct a large-scale molecular metabolic network 
(MCPM). After model construction, gene expression 
data from different cancer cell lines was integrated for  
in silico simulation. The simulation results for protein 
components of the model were subsequently used to 
calculate correlations with the IC50 of different drug 
treatment from various cancer cell lines taken from 
the treatment data of Cancer Cell Line Encyclopedia 
(CCLE) [31]. We focused on broad-acting chemotherapy 
treatment, specifically DNA-Topoisomerase (irinotecan 
and topotecan from CCLE) and Histone-Deacetylase 
(HDAC) inhibitors (panobinostat). It is of interest 
to study how the MCPM reflects the mode of action 
determined through different properties of cancer 
metabolism [3, 19, 32–34].

The model construction of this study is mainly 
based on data obtained from the KEGG data base (http://
www.genome.jp/kegg/) [35] and literature research. 
The constructed MCPM consists of 30 pathways, 4750 
reactions, and 3755 components involving gene, mRNA, 
protein, compound and pseudo-object (Table 1). The 

http://www.genome.jp/kegg/
http://www.genome.jp/kegg/
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Figure 1: Overview of MCPM. (A) The flowchart of the applied methods. The metabolic network MCPM was constructed by 
SimConCell and based on KEGG database and current literature. Then MCPM is exported as an XML file, which is an input file for 
simulation in AutoAnalyse to simulate a molecular model with gene expression data. Lastly, spearman analysis was used to investigate 
the correlation between simulation value of components in the model and drug treatment (IC50 value) from 30 types of cancer cell lines 
(CCLE). (B) The schematic shows MCPM and its crosstalk with other metabolic pathways. The Key enzymes are shown in pink. Key 
reactions are shown in green. R00177 (Orthophosphate + Diphosphate + S-Adenosyl-L-methionine <=> ATP + L-Methionine + H2O), 
R04858 (S-Adenosyl-L-methionine + DNA cytosine <=> S-Adenosyl-L-homocysteine + DNA 5-methylcytosine), R01269 (S-Adenosyl-
L-methionine + Nicotinamide <=> S-Adenosyl-L-homocysteine + 1-Methylnicotinamide).
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transcription and translation reactions determine the 
relationship between gene, mRNA, and protein. Its 
central part is the methionine cycle pathway (MCP) 
and its direct crosstalk with other metabolic pathways 
including glycine, serine, threonine, cysteine, methionine, 
purine, and pyrimidine metabolism, as well as glycolysis 
and gluconeogenesis (Figure 1B). Therefore, we refer to 
this model as the MCPM (methionine cycle pathway-
based model). Input starts with 3-phosphoglycerate 
(3PG), a precursor for serine synthesis and activator 
of AMP-activated protein kinase (Figure 1B). The 
3PG are successively catalyzed by the enzymes 
PHGDH, phosphoserine aminotransferase (PSAT), and 
phosphoserine phosphatase (PSPH). PSAT converts 
glutamate and alpha-ketoglutarate to support the synthesis 
of serine, which in turn supports one-carbon metabolism 
for downstream conversion within the methionine and 
folate cycle. The folate cycle recycles methionine that 
has been synthesized from homocysteine. In the model, 
MAT1A and MAT2A/B catalyzes the reaction from 
methionine to SAM. Nicotinamide N-methyl-transferase 
(NNMT) catalyzed the conversation of Nicotinamide 
to 1-methylnicotinamide (1-MNA) by using SAM as a 
methyl donor. Serine supports SAM synthesis through 
methionine and de novo ATP synthesis. The model ends 
with a DNA methylation process catalyzed by DNA 
methyltransferase (DNMT) enzyme, which is dependent 
on the amount of donor methyl obtained from SAM.

Simulation and analysis of CCLE Data

We utilized the gene expression data of Cancer Cell 
Line Encyclopedia (CCLE) [31] and incorporate these data 
with MCPM into AutoAnalysis (Materials and Methods). 
Afterwards, we performed a graphic-based data-flow 
analysis simulation in order to investigate whether this 
type of metabolic simulation could reveal the inhibition 
effect of different chemotherapies within the CCLE. We 
investigated response data of all chemotherapy drugs from 
CCLE: irinotecan, topotecan, panobinostat, paclitaxel and 
17-AAG. Response data (IC50) of the cell lines under 
these drugs were correlated with simulation values of 
components from the model MCPM. The results of the 

correlation analysis regarding MCPM protein components 
and IC50 are presented for each drug in a specific 
Manhattan-like plot which is separated into the strips of 
30 pathways and bars whose length represents the p-value 
of the corresponding correlation (Figure 2).

These five plots are given in the Figure 2 and 
Supplementary Information 1. Lists with pathway specific 
correlation results of the protein components are also 
given in the Supplementary Information 1. The results 
show that overall correlations between the simulation 
values of model components and response data from each 
of irinotecan, topotecan and panobinostat are significant, 
whereas the correlations from paclitaxel, 17-AAG are not 
significant. Therefore, this following study mainly focused 
on irinotecan, topotecan and panobinostat.

Correlation of model components and DNA-
topoisomerase inhibitor efficacy

The mechanism of chemotherapy based on DNA-
topoisomerase inhibition acts via inactivation of the 
enzymatic function of DNA-topoisomerase to prevent 
DNA replication and transcription processes in highly 
prolific cells. This irreversibly leads to apoptosis [32, 36]. 
In the MCPM, we found that a simulation value of the 
enzyme protein MAT2A correlates with the IC50 value 
of irinotecan (spearman: 0.5293110 p=1.250274e-16) 
and topotecan (spearman: 0.6808339 p=7.988427e-14) 
(Figure 3A-3B). This result shows that the high MAT2A 
simulation value is associated with a lower response 
(high IC50 value) to DNA-topoisomerase inhibitors. A 
high MAT2A simulation value can generate more input 
for the methionine-cycle, which increases the activity 
and output of the methioninie-cycle during simulated 
metabolism. This cycle mainly provides methyl units for 
methylation reactions catalyzed by DNMT, which results 
in hypermethylation, especially DNA methylation [14, 37]. 
This correlation between MAT2A and treatment efficacy 
of irinotecan and topotecan indicates that high levels of 
DNA methylation may help cells become more resistant 
against DNA-topoisomerase inhibition. This finding is 
in agreement with other important findings that suggest 
that DNA hypermethylation can be considered a potential 

Table 1: Component and reaction summary of the model MCPM

Component No. Reaction No. Pathway No.

Gene 786 Transcription 790

mRNA 1582 Translation 779

Protein 794 Decay 1571

Metabolite 582 Translocation 791

pseudo-Object 11 Metabolism 819

Sum: 3755 Sum: 4750 Sum: 30
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Figure 2: Manhattan Plots of drug treatment (IC50) with simulation of MCPM consisting of 30 metabolic pathways. 
(A) irinotecan, (B) topotecan, (C) panobinostat. If the bar is red, the correlation is negative (high model based values have a low IC50, 
high values related to good response), if the bar is black, the correlation is positive (high model based values have a high IC50, high values 
related to bad response).
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chemotherapy target [19]. In addition, several studies have 
shown that cancer cells have a high demand for serine that 
can play a key role in feeding one-carbon units to supports 
both nucleotide synthesis and NADPH production [38–
41]. During model simulation with gene expression data 
from the CCLE, simulation values of serine from all cell 
lines are critically low, even with a 10-folder increase of 
serine input. These results indicate that MCPM requires 
a large amount of serine during simulated metabolism, 
which was also seen in other studies [38–41].

The simulation value of ATP6V0E1 in the MCPM 
also correlated with the IC50 value of irinotecan 
(spearman: 0.4056839 p=4.483729e-13) and topotecan 
(spearman: 0.3491871 P=4.875323e-15) in the CCLE 
(Figure 3C-3D). This protein is responsible for the cellular 
ion transport and plays a role in the activation of the 

immune system [42]. The significant correlation between 
ATP6V0E1 and IC50 values suggests that the activation of 
the immune system induced by ATP6V0E1 may counteract 
the inhibitory effect of DNA-topoisomerase. However, 
future studies need to confirm this finding in an in vivo 
experimental setting.

The simulation results showed that the simulation 
value of the enzyme PIP4K2C in MCPM correlated 
with the IC50 value of irinotecan (spearman: 0.3562168 
P=3.188388e-10) and topotecan (spearman: 0.3369385 
p=4.778644e-14) (Figure 3F-3G). The PIP4K2C protein 
is mainly involved in the pathway of inositol phosphate 
metabolism. This metabolic pathway has tight crosstalk 
with diverse signaling pathways such as PI3K-AKT, 
MAPK, and AMPK among others [43]. The upregulation 
of PIP4K2C could strengthen the crosstalk between these 

Figure 3: Spearman correlation plots between simulation value of MCPM components and IC50 value of drug 
treatments. (A) MAT2A vs. irinotecan (spearman: 0.5293110 p=1.250274e-16); (B) MAT2A vs. topotecan (spearman: 0.6808339 
p=7.988427e-14); (C) ATP6V0E1 vs. irinotecan (spearman: 0.4056839 p=4.483729e-13); (D) ATP6V0E1 vs. topotecan (spearman: 
0.3491871 p=4.875323e-15); (E) ATP6V0E1 vs. panobinostat (spearman: 0.3775625 p=2.262852e-17); (F) PIP4K2C vs. irinotecan 
(spearman: 0.3562168 P=3.188388e-10); (G) PIP4K2C vs. topotecan (spearman: 0.3369385 p=4.778644e-14); (H) NNMT vs. panobinostat 
(spearman: 0.3829126 p=7.334179e-18); (I) 1-MNA (MNA1) vs. panobinostat (spearman: 0.3723424 p=4.231325e-14); (J) ALDH1A3 
vs. panobinostat (spearman: 0.3818062 p=9.274430e-18); (K) 4-Hydroxypheinylacetate vs. panobinostat (spearman: 0.3323161, 
p=1.3982196e-13) (L) homovanillate vs. panobinostat (spearman: 0.3288698, 2.569935e-13).

Table 2: A list of components that present high spearman correlation in the MCPM regarding irinotecan and 
topotecan treatment

Drug type Component Metabolic pathway Correlation / P value

Irinotecan ATP6V0E1 Purine 0.4056839 p=4.483729e-13

Irinotecan ADCY6 Purine 0.3115568 p=5.745343e-08

Topotecan ATP6V0E1 Purine 0.3491871 p=4.875323e-15

Topotecan PIP4K2C Purine 0.3562168 p=3.188388e-10

Topotecan CMP Pyrimidine 0.3231642 p=2.184534e-10

Topotecan ATP6AP1 Purine 0.2899188 p=1.242801e-10

These components and reactions are from purine and pyrimidine pathways.
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important pathways, thereby counteracting the inhibition 
of DNA-Topoisomerase. Moreover, our results show 
that the simulation value of several components from 
the purine and pyrimidine pathways are significantly 
correlated with the IC50 value of irinotecan and topotecan 
(Table 2). This indicates that a high amount of purines and 
pyrimidines within cancerous cells might protect against 
DNA-topoisomerase inhibition.

Correlation between model components and 
inhibition effect of histone-deacetylase (HDAC)

Histone proteins are responsible for chromatin 
configurations, which may function as a control switch 
between gene transcription and gene silence [44]. 
Therefore, the cellular activity of transcriptional factors, 
tumor suppressors, structural proteins, and other important 
cellular regulators are highly dependent on the stages of 
chromatin configurations. This places HDAC in a unique 
position to affect a myriad of cellular processes including 
proliferation, apoptosis, and metastasis. We studied the 
treatment effect (IC50 value) of panobinostat, a Histone-
Deacetylase inhibitor in the CCLE and analyzed the 
association of these values and the MCPM simulation 
values. Our results show that simulation values of NNMT 
and 1-MNA correlate with the IC50 value of panobinostat 
(spearman: 0.3829126 and 0.3723424; p<0.05) (Figure 
3H-3I). NNMT is a special metabolic enzyme, which 
exerts specific control over cells methylation potential 
thereby broadly impacting the epigenetic state of cancer 
cells [21]. Diverse studies have demonstrated that 1-MNA 
has pro-angiogenic activity, anti-thrombotic activity, 
anti-inflammatory activity, and vasoprotective properties 
influencing cancer metastasis [45–48]. Our result shows 
that the high simulation value of NNMT and 1-MNA 
correlates with low treatment response of CCLE regarding 
panobinostat treatment, thereby potentially signaling that 
an effect of histone modification on gene expression 
regulation is tightly related to the cellular methylation 
state. However, more studies are necessary to clarify the 
association of HDAC inhibition with clinical findings.

Regarding HDAC inhibition our results also found 
that the simulation value of ALDH1A3 correlates to the 
IC50 of panobinostat (spearman: 0.3818062 9.274430e-

18) (Figure 3J). ALDH1A3 has been shown to play an 
essential role in treatment resistance to chemotherapy and 
radiotherapy [49–51]. This protein is deeply involved in 
the regulation of diverse signaling and metabolic pathways 
and is therefore considered a potential biomarker for 
cancer stem cell (CSC) [52–54]. The hypermethylation of 
the ALDH1A3 gene promoter has previously been reported 
in various tumors [55, 56]. This correlation between 
ALDH1A3 and the panobinostat IC50 value might be an 
indication that the mechanism of ALDH1A3 for resistance 
of chemotherapy is based on the relationship between the 
histone-modification of gene expression and methylation. 
This link may generally protect cells from dysfunctions 
in the DNA replication process. The simulation value of 
ATP6V0E1 a regulator of immunsystem, also correlated 
with the IC50 of panobinostat (spearman: 0.3775625 
2.262852e-17) (Figure 3E). This indicates that ATP6V0E1 
might be a potential prognostic biomarker to predict 
HDAC inhibition.

The simulation value of 4-Hydroxyphenylacetate 
and homovanillate correlated with the IC50 of panobinostat 
(spearman: 0.3323161 and 0.3288698; p<0.05) (Figure 
3K-3L). Both metabolic components have been validated 
as sensitive metabolic biomarkers in cancer screening 
[57]. Both components are key components in the tyrosine 
metabolic pathway where the enzyme ALDH1A3 plays 
an essential role in the methylation processes [3]. In 
addition, simulation values of several components such as 
3, 4-dihydoxymandelate, PAPSS2, UPP1, Uracil, NT5E 
correlated with the IC50 of panobinostat (Table 3). These 
components are part of the purine and pyrimidine metabolism 
pathways, both of which are strongly upregulated in cancer 
cells and provide nucleic acids necessary for cellular 
proliferation and tumor growth [23, 24].

Computational aspects

In our study  in silico simulation was performed for 
all of the 479 cancer cell lines that were part of the CCLE 
in order to investigate the metabolic behavior of these cell 
lines. The entire simulation procedure lasted 16 min and 43 
seconds. The simulation was conducted on one laptop with 
a hardware that consisted of 2 cores, 2GB RAM, and 8GB 
memory. The subsequent spearman correlation was repeated 

Table 3: A list of components that present high spearman correlation in the MCPM regarding panobinostat

Drug type Component Metabolic pathway Correlation / P value

Panobinostat ATP6V0E1 Purine 0.3775625 p=2.262852e-17

Panobinostat UPP1 Pyrimidine 0.3762676 p=2.963006e-17

Panobinostat 3,4-Dihydroxymandelate Tyrosine 0.3723126 p=3.021123e-17

Panobinostat PAPSS2 Purine 0.3375621 p=5.454525e-14

Panobinostat NT5E Purine, pyrimidine 0.3049326 p=1.431208e-11

These components and reactions are from purine, pyrimidine and tyrosine pathways.
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a total of 7.071 million times between the IC50 of each drug 
treatment and simulation value of model components. This 
statistical analysis ran for a total of 19 min and four seconds 
to summarize and achieve the above shown results.

DISCUSSION

Recent evidence has shown that alterations in 
metabolism that affect cellular methylation may be a 
significant driving force in carcinogenesis. This means that 
cancer cells are able to take advantage of this relationship to 
influence gene expression, chromatin structure, and cellular 
function thereby enabling treatment resistance and cellular 
proliferation [17, 20]. Given these facts, hypermethylation 
has been suggested as a potential drug target [19]. In order 
to explore this intricate relationship between metabolism, 
methylation, and cytostatic drug efficacy we constructed 
the molecular model MCPM based on methionine cycle-
based metabolism and related metabolic pathways. We 
performed an  in silico simulation with the MCPM using 
the AutoAnalysis integrated with gene expression data from 
the CCLE, containing more than 479 cancer cell lines from 
approximately 30 types of cancer. We furthermore utilized the 
drug treatment data (IC50 value) of the CCLE and compared 
this response data to the simulation data of the MCPM.

The results show that distinct components from the 
MCPM play important roles as biomarkers for treatment 
efficacy and prognosis, specifically regarding the inhibition 
of DNA-topoisomerase and HDAC. These components 
are namely MAT2A, NNMT, ATP6V0E1, PIP4K2C, 
ALDH1A3, 4-hydroxyphenylacetate, and homovanillate 
among others. Many of these results are in agreement with 
findings from other independent studies, which indicate a 
successful model validation. In detail, during simulation 
within the model MCPM, the protein MAT2A can push the 
methionine cycle to generate more SAM. When the key 
metabolic enzyme NNMT is available, then 1-MNA would 
be generated from SAM and nicotinamide. 1-MNA can 
enhance activity of the cyclooxygenase 2 (COX-2) pathway 
and increase angiogenesis to protect cancer cells from the 
inhibition of DNA-topoisomerase through chemotherapy 
[33]. Our results reflect those found in a study by 
Mehrmohamadi et al (2016). Their results also show that 
MAT2B together with the methionine cycle has a potential 
to be predictive [26]. Diverse studies provide evidence 
that NNMT is a putative onco-metabolic protein, which 
can promote tumorigenesis by widely changing cellular 
methylation pattern via control over the availability of free 
methyl units. This enzyme protein is also overexpressed in 
different types of cancer [58–62]. The simulation value of 

Figure 4: An example of modeling in the model MCPM. Each gene from the model participate in a transcription reaction to 
produce a mRNA. And a mRNA takes part in translation reaction to produce a corresponding protein in the model. The protein acts in most 
cases as enzyme to catalyse different metabolic reactions such as ALDH1A3 in the figure.
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NNMT and 1-MNA were also predictive for the efficacy of 
HDAC inhibition.

The common basis for both types of drug 
inhibition pathways is the methionine cycle. It controls 
the methylation resources within cells (including cancer 
cells). A strong upregulation of this cycle leads to 
abundant amounts of methyl units, thereby providing a 
necessary precondition for hypermethylation. This state of 
hypermethylation might substantially protect cancer cells 
from the therapeutic effect of these chemotherapy drugs.

Furthermore, the results show that the simulation 
value of ATP6V0E1 correlates with the IC50 of irinotecan, 
topotecan, and panobinostat. ATP6V0E1 belongs to V-ATPase 
family, whose members are general highly expressed in 
cancer cells to control the acidity of microenvironment so 
that metastasis and the epithelial-mesenchymal transition are 
promoted [63]. Our simulation result indicates that the higher 
the simulation value of ATP6V0E1 is the lower the treatment 
response. This is confirmed by findings that cancer cells with 
high concentration of ATP6V0E1 or other V-ATPase family 
members are more resistant to anti-neoplastic drugs [34, 64, 
65]. Therefore, based on this simulation result, we would 
propose ATP6V0E1 as a potential predictive biomarker for 
DNA-topoisomerase and HDAC inhibition based on  in 
silico simulation of treatment outcome. Future studies will 
be focusing on expanding the MCPM to incorporate other 
V-ATPase family members.

Our results also show that the simulation value 
of several components from the purine and pyrimidine 
pathways in the MCPM were significantly associated 
with the efficacy of these two types of cytostatic drugs. 
This finding indicates that cancer cells need even larger 
amounts of nucleic acids for survival and proliferation to 
cope with such a therapeutic intervention. The simulation 
results indicate that the more nucleic acids cancer cells 
receive during the course of drug cancer therapy, the more 
resistant the cancer cells would become. Moreover, we 
noticed that the serine demand is always high during the 
simulation of CCLE for the included 30 types of cancer. 
The simulation of MCPM shows that no free methyl 
units remain when the serine resource is artificially cut 
off, leading to a general state of hypomethylation. This 
scenario might represent an effective way to induce 
detrimental effects on cancer cells as suggested by other 
studies [40, 41, 66]. Nevertheless, a limitation of the 
MCPM is that this large-scale model was constructed with 
a focus on the methionine cycle and its related metabolic 
pathways. That makes approximately 40% of knowledge 
originating from KEGG. The crosstalk between signaling 
and metabolic pathways, as well as the microRNA 
regulation effect on the metabolism were also not been 
considered during this study. Moreover, the model does 
not take some biological reaction types such as post-
translation modification and protein-protein interactions 
into consideration. Future studies will be focused on 
improving the model according to these limitations.

In our study, we were able to demonstrate the high 
efficiency of a computational systems approach. Our  in 
silico simulation ran 34 minutes and 47 seconds in total, 
the same amount of work would normally require 200 
working days with four co-workers in a wet-lab. Moreover, 
recent studies have demonstrated that treatment with 
triple-drug-combinations appear to be most effective in 
comparison to single drug treatment [67, 68]. Verification 
of these multi-drug combination treatments are hard to 
replicate in the setting of a wet-lab, here computational 
simulation could be a clear alternative. This line of 
research will be the next step of our research objective.

After this model validation study, our next steps of 
our research will be based on the strong correlations found 
in the CCLE data between computational components of 
our model and the biological treatment effect quantified by 
the IC50. The strong correlation motivate us to use linear 
penalized regression which allow to model prediction 
scores for treatment efficacy regarding irinotecan, 
topotecan, and panobiostat. We will evaluate these 
prediction scores with regard to treatment response on 
patients from the TCGA which were treated with one of 
the substances of interest.

Based on our experience in previous studies [27–29], 
we think that many studies of gene signature are premature 
in analyzing the pre-clinical and clinical outcome. While 
big data such as gene expression contains a multitude 
of valuable information, intricate biological regulation 
mechanisms such as transcriptional and translational 
regulation, feedback-control regulation, ligand-competitor 
mechanism and others are not included within any kind of 
big data. Biological modeling could become an essential 
step to fill the gap for a meaningful application of big data.

MATERIALS AND METHODS

Study design

This study selectively used the molecular information 
of metabolism from KEGG (http://www.genome.jp/kegg/) 
to construct a large scale metabolic network containing 627 
metabolites, 786 genes, 794 proteins, and 30 metabolic 
pathways such as (glycolysis, pentose_phosphart pathways 
among others). The unpublished web-based modeling 
software SimConCell was used to compile the KEGG 
information (structure and components of pathways, 
quantitative information on reactions within the pathway) 
into a formal network structure which is the structural basis 
for the MCPM model construction. SimConCell formalizes 
each model component (including gene, RNA, protein, 
metabolite, and other) as a node and each biochemical 
reaction as an edge to link corresponding nodes (Figure 
4). The output of the SimConCell software is an XML file 
available under Supplementary Information 4. The gene 
expression data of different cancer cell lines are integrated 
into the model during  in silico simulation. The simulation 

http://www.genome.jp/kegg/
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procedure has been implemented using the AutoAnalyse 
framework developed by the informatics department of the 
Augsburg University.

SimConCell for molecular modeling

SimConCell is designed as web-based systems 
biology software for development, simulation, and analyse of 
molecular models for cellular reaction networks. It provides a 
number of functions to support users to design and construct 
larger-scale molecular models such as semi-automation 
option for definition of transcription and translation 
reactions. Furthermore, SimConCell functions as a model 
repository and can split or merge different models, thereby 
enabling specific model construction and analysis. Each 
entity in a SimConCell model including gene, RNA, protein, 
compound, complex among others can be associated with 
publicly available IDs such as Ensemble-ID, UniProt, ChEBI-
ID. Given these putative IDs, models from SimConCell can 
be easily integrated with different genetic data including gene 
expression data, protein data, and metabolic data.

Literature search

The literature search was conducted using available 
publications on Google scholar and PubMed. We used 
‘cancer metabolism’, ‘targeting cancer therapy’ as key 
words. The search yielded 1,440,000 and 1,430,000 
sources respectively. Using the advanced search key 
words were applied, such as ‘metabolic target’ AND 
‘cancer therapy’ (A), ‘targeting metabolism’ AND ‘cancer 
therapy’ (B), ‘metabolic transformation’ AND ‘cancer’ 
(C). Results are limited by review, abstract availability, 
and publication within the past ten years (2006-2017). Our 
final search results were 542 (A), 5011 (B) and 416 (C) 
results. We studied the top ranking 100 publications that 
are associated with relevant content on epigenetics und 
cancer metabolism.

Gene expression data and drug response data of 
cancer cell lines

The study of Barretina and colleagues has 
established the Cancer Cell Line Encyclopedia (CCLE) 
[31] through systematically analysis of drug responses 
of 479 cancer cell lines derived from 30 solid and 
hematological cancer types, which allows identification of 
genetic, lineage, and gene-expression-based predictors of 
drug sensitivity. These gene expression data of CCLE were 
generated for each of these cell lines using Affymetrix 
U133 plus 2.0 array. The data was pre-treatment data and 
not normalized. It is associated with accession number 
GSE36139 from Gene Expression Omnibus (GEO). 
The drug response data of CCLE were generated as 
pharmacological sensitivity in vitro and can be accessed 
via http://www.broadinstitute.org/ccle.

Simulation procedure of autoanalyse

The AutoAnalyse framework supports a data-flow-
based network simulation with the central point of graphic 
manipulation (a detailed description of the software is currently 
under submission). Different types of components from our 
metabolic model will be translated into the defined instance 
objects within a model-based representation of AutoAnalyse. 
The input model file for AutoAnalysis is the XML file of the 
model Supplementary Information 4. The gene expression data 
of CCLE is also translated into a XML file for AutoAnalysis 
(Supplementary Information 2) (Figure 1A).

For instance of a reaction translation: the input 
concentration for a reaction ∈ R and role ∈ {e, g, i, s, tr(a), 
tr(r)} (e: enzyme; g: gene; i: inhibitor; s: substrate; tr(a): 
transcriptional activator; tr(r): transcriptional repressor) 
is the product of all reactant object concentrations which 
belong to the reactant of the respective role:

I (reaction,role)
object.concentration

object reactant (reaction,role).objects=
∏

∈

The output concentration for reaction ∈ R is 
computed by applying the kinetic rate law to the required 
and optional input concentrations of the reaction. If the 
object C is the product of a reaction with substrates of 
the object A and object B, and the C does not participate 
in any other reaction in the model, then the concentration 
of [C] = reaction kinetic law ([A], [B]). All kinetic 
rate laws applied in the AutoAnalysis are listed in the 
Supplementary Information 3.

Statistical analysis

We analyze the correlation (using Spearman 
correlation coefficient) between the numerical values 
of a “protein” model component with the biologically 
measured IC50. The results of the analysis are presented 
for each of the 5 substances under study in a Manhattan-
like plot which shows (per pathway) the transformed 
p-value (-1)·log10 (p-value) of the corresponding 
correlation analysis. We apply Bonferroni-adjustment for 
multiple testing per substance.
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