Applying Integrated Domain-Specific Modeling
for Multi-Concerns Development of Complex
Systems

Reinhard Proll (ORCID 0000-0002-3979-5483), Adrian Rumpold* (ORCID
0000-0002-8248-7363), and Bernhard Bauer (ORCID 0000-0002-7931-1105)
{reinhard.proell, adrian.rumpold,
bauer}@informatik.uni-augsburg.de

Institute for Software & Systems Engineering
University of Augsburg, Germany

Abstract. Current systems engineering efforts are increasingly driven
by trade-offs and limitations imposed by multiple factors: Growing prod-
uct complexity as well as stricter regulatory requirements in domains
such as automotive or aviation necessitate advanced design and develop-
ment methods. At the core of these influencing factors lies a considera-
tion of competing non-functional concerns, such as safety and reliability,
performance, and the fulfillment of quality requirements. In an attempt
to cope with these aspects, incremental evolution of model-based engi-
neering practice has produced heterogeneous tool environments without
proper integration and exchange of design artifacts. In order to overcome
these shortcomings of current engineering practice, we propose a holistic,
model-based architecture and analysis framework for seamless design,
analysis, and evolution of integrated system models. We describe how
heterogeneous domain-specific modeling languages can be embedded into
a common general-purpose model in order to facilitate the integration
between previously disjoint design artifacts. A case study demonstrates
the suitability of this methodology for the design of a safety-critical em-
bedded system, a hypothetical gas heating, with respect to reliability
engineering and further quality assurance activities.

Keywords: Domain-specific Modeling, Model Transformation, Model-
based Analysis, Model-based Testing.

1 Introduction

A clear trend towards increasing complexity is visible in modern embedded sys-
tems, both with respect to hardware and software. This development is fueled
by a variety of factors, with one major driver being the advent of stricter reg-
ulatory guidelines in diverse domains such as automotive (with the ISO 26262
standard), aviation (ARP4754A and DO-178C/D0-254), and industrial automa-
tion (IEC 61508, IEC 61511, among others).

* Corresponding author

Two major strategies have emerged that attempt to let system designers cope
with this rise in product complexity:

More stringent engineering methodologies, notably model-based techniques,
are becoming essential for the design of complex systems. However, most existing
model-based methods place disproportionate focus on functional requirements,
mostly disregarding non-functional and quality aspects, such as reliability, safety,
and security.

At the same time, tooling vendors have provided a sizable amount of prod-
ucts for the analysis and management of non-functional engineering concerns
(compare chapter 4.1.2 of [21]). No clear strategy exists as to how these hetero-
geneous tools can be integrated in a seamless workflow, in order to make their
information base available throughout the entire product life cycle.

Due to these shortcomings caused by partial adoption of model-based tech-
niques and inconsistent tooling environments, establishing traceability and con-
sequent change management have emerged as two main challenges in systems
engineering. The importance of these concerns can be seen clearly in the con-
text of safety-critical systems: Here, regulatory standards and norms necessitate
careful management of development processes and artifacts with respect to con-
sistent traceability throughout the product life cycle. Non-compliance with these
requirements may pose a significant financial risk (in the form of late changes
required to attain safety certification) as well as a liability hazard for the man-
ufacturer.

A similar argument holds for quality assurance activities during the develop-
ment of such complex systems. Here, focus lies on a high degree of test coverage
— some safety standards even mandate specific coverage requirements (e.g. the
aviation norm DO-178C). The resulting need for careful manual review and man-
agement of traceability and consistency leads to sub-optimal process efficiency
and ultimately a potential negative impact on product quality.

Problem Statement

Despite the advantages that stem from the use of state-of-the-art model-based
engineering practice, a tighter integration between techniques and tools for func-
tional and quality aspects is needed in order to conquer the difficulties of ever-
increasing product complexity.

Some effort has been made towards artifact exchange between model-based
engineering tools, e.g. through standardized interchange formats like XMI. How-
ever, the vision of truly seamless tool integration remains a fundamental chal-
lenge. The resulting need for manual process steps can delay quality-related
design activities and consequently reduce overall product quality. As a result,
quality defects discovered late in the development process drive costs and pose
a hazard to timely product release (see [1]).

A consistent seamless design methodology is crucial when considering pro-
cess artifacts such as documentation required for certification of safety-critical
systems. It is immediately evident that consistency between the actual product

and its supporting artifacts is of crucial importance. However, although com-
mon modeling tools allow for generation of technical documentation from system
models, the generation of more complex textual artifacts exceeds their limited
capabilities.

In order to overcome the identified weaknesses we propose an approach which
aims for a tight integration of all system modeling artifacts and a shift towards
(semi-)automated integrated architecture analyses.

Based on an extensible set of domain-specific modeling languages, which
make up a solid foundation for a more suitable description of quality aspects,
we aim for a co-evolution of functional and quality architectures of the system
under development. These modeling languages cover the domains of common
non-functional requirements for embedded systems, for instance safety, reliabil-
ity, and system integration. Further, we describe a reliable mechanism for quality
assurance of systems developed using such heterogeneous modeling languages.
Our approach aims to reuse existing design methodologies, as long as they gen-
erate artifacts that adhere to a formalized metamodel.

The model-level integration of multiple domain-specific aspects additionally
enables developers to generate purpose-specific data from the system model,
which offers the necessary flexibility for the development of complex embedded
systems.

We foresee that this integrated modeling approach will lead to increased
product quality and can thus support the development of safety-critical and
similarly regulated systems.

Outline

This article is an extended and revised version of our earlier conference paper
[17].

As a starting point, section 2 introduces the modeling concepts underlying
our approach and describes their application in analysis scenarios within our pro-
posed framework. Starting with general-purpose modeling languages, which are
actively maintained by the system engineer, we describe a set of essential domain-
specific views on the system and their embedding into the general-purpose lan-
guage. Based on this definition of embedded domain-specific languages, we pro-
pose a model-based analysis framework in section 3, providing some insight into
its technical background and implementation. In section 4, we demonstrate the
feasibility of our approach using a realistic use case. There, we perform some
exemplary design and analysis steps utilizing the previously introduced frame-
work. Section 5 discusses related work regarding the integration of heterogeneous
modeling tools, domain-specific modeling, and model-based analysis. Section 6
summarizes the key results of this paper and briefly outlines future applications
extending our research.

2 A Domain-Aware Modeling Approach for Embedded
System Engineering

To overcome the challenges identified in the introduction, we have developed
a concept designed to integrate legacy development and modeling techniques
with a new kind of domain-aware modeling approach and analysis framework.
Based on the information embedded in an integrated system model, purpose-
specific artifacts (e.g. certification- or test-related documentation), which had to
be maintained manually before, can now be generated automatically. In order to
switch between these representations and generate documents, we make use of
model-to-model (M2M) and model-to-text (M2T), As a special case, we consider
z-to-code (X2C) transformations, where X may stand for tezt (T2C) or model
(M2C).

The high-level concepts and their relationships are illustrated in fig. 1 and
will be elaborated in the following sections.

General Purpose Modeling Languages

UML + Profiles
EMOF/CMOF < :
Ecore

M3 M2
M2M
Domain-Specific Modeling Languages M2C
SySte.m Requirements Test
Behavior (REQ) (D)
(SBD)
A
A4
S?ryjéftrll:e P Integration _ | Safety/Reliability .
(SSD) (IM) (SRD) Code Artifacts
M2M/
M2T
Human-Consumable Artifacts Machine-Consumable Artifacts
» Views » Intermediate data
» Documentation » Refined models X2¢
» Metrics

Fig. 1. Conceptual overview of the domain-aware integrated system modeling approach

2.1 General Purpose Modeling Languages

Following our goal of easy application and seamless integration into state-of-
the-art development processes, we have decided to embed all relevant data for
the development process within a General Purpose Modeling Language (GPML),
such as UML or Ecore.

Using such modeling languages improves the applicability of our presented
approach: GPMLs are widely accepted as state of the art, with many practi-
tioners being familiar with their proper use. This familiarity allows for easier
and faster adoption of new approaches based on general-purpose modeling lan-
guages. On the other hand, the general applicability of GPMLs has created a
huge variety of available CASE tools for creating and viewing models. This rich
tool environment can be reused within our newly propsed methodology, rather
than developing yet another immature modeling tool.

In our scenario, these general-purpose languages serve a two-fold purpose:
First, they provide a common modeling basis for all domain-specific models, as
described in the following section. Second, the GPML can itself be used to cover
certain subsets of the domain-specific modeling disciplines, if their expressive
power is sufficient for a specific use case. We will see an example for this sim-
plified domain modeling in the case study in section 4, where UML component
diagrams and state machines are used to describe parts of the system architec-
ture. Similarly, an extended version of the native UML activity chart is used for
modeling of functional test models.

Our approach does not prescribe a certain GPML to be used for modeling
the integrated system model. The only necessary requirement is the possibility
to enhance the general-purpose language with metamodel extensions. In the case
of UML this is achieved by defining profiles that leverage the stereotype mecha-
nism. Similarly, we can extend the expressive capabilities of modeling languages
which are themselves specified as UML profiles, for example SysML. Within the
widely popular Eclipse Modeling Framework (EMF), metamodel extensions can
be easily defined due to the reflexivity of the Ecore modeling language, which
itself is its own meta-model.

2.2 Domain-Specific Modeling Languages

In order to accurately describe domain-specific aspects of the system under de-
velopment, we embed them into the GPML mentioned above as Domain-Specific
Modeling Languages (DSML). Our approach allows for any number of DSMLs
to be used in conjunction with a general-purpose modeling tool to obtain an
integrated system model (ISM) or Omni model.

These DSMLs preserve the separation of concerns, but enable developers to
link information across domains in order to build up a holistic view of the sys-
tem under development (SUD) and facilitate analyses based on domain-specific
information. By using M2M transformations between the GPML and DSML
representations, the distinct components of the ISM are in sync throughout the
development process, yielding the best of both worlds.

In this section we briefly introduce some common domains pertinent to devel-
opment of embedded systems and their focus. This lays the conceptual founda-
tion for the following sections that will provide additional detail and demonstrate
the application of these concepts.

The Requirements Domain (RQD) is related to the foremost engineering tasks
of every modern software development process. As a result of these tasks, a set of
requirements is extracted, which describes the desired system from a functional
as well as a quality perspective.

Depending on the role of requirement specifications in the development pro-
cess, an appropriate way of serialization must be chosen. In the early days of
requirements engineering, Roman [16] pointed out its importance and already
identified the need for knowledge integration.

In order to further make use of the generated set of requirements, a certain
DSML needs to be specified. Natural language requirements with additional
structuring capabilities as well as fully machine-processable requirement models
are thinkable. For example, a ReqIF-based DSML (see [12]) can be used with
most common CASE tools.

More advanced efforts propose ontologies as a suitable way of specifying
requirements (e. g. [20]), which are also compatible with the basic concepts
underlying our framework.

Being able to reference specific requirements in a model or parts of them,
enables developers to use this semi-formal specification of the system for cross-
domain traceability, thus extending the information base. For example, the avail-
ability of requirements information for a test engineer may result in a more trans-
parent and effective test of the system under development. We give an example
for this beneficial interaction our case study in section 4.

The System Structure Domain (SSD) contains the structural model of the
system under development and reflects the architectural decomposition of the
solution.

Our approach allows for a high degree of freedom regarding the actual im-
plementation of the SSD model. For simple projects, the underlying GPML (see
section 2.1) itself may be sufficiently expressive to model the system structure
without any domain-specific additions. For more complex systems, a modeling
language with more powerful abstractions, such as SysML, can be integrated to
describe the structural domain more adequately.

It should be noted that the SSD model may also be derived from a prior
system description in case of a brown-field project. Here, it is feasible to use
either existing architecture models as a basis for the newly defined integrated
system model, or to reverse engineer a system description from its code artifacts.

The System Behavior Domain (SBD) contains models that describe the func-
tional behavior of the system under development. As described above for the
SSD, a range of modeling languages can be used to implement the behavioral

domain within our approach. Natural choices are the behavior diagrams found
in the Unified Modeling Language or its SysML extension.

If further usage includes the simulation or any kind of abstract interpreta-
tion of the behavioral parts of the system, an executable variant of UML, like
Foundational UML (fUML, [10]), may provide suitable types of model artifacts.

However, different domain-specific modeling languages might be more fa-
miliar to designers of certain embedded systems; one example is the Function
Block Diagram (FBD) notation for programmable logic controllers defined in
the TEC 61131-3 and TEC 61499 international standards.

Given a suitable technology integration bridge (e.g. OSLC or ModelBus), it is
conceivable to integrate behavioral models from widely used simulation tools like
Simulink or Stateflow, as an intermediate step during re-engineering of legacy
systems.

The Test Domain (TD) reflects the information specific to a tester’s viewpoint
on the system under development.

On the one hand it is used to simply formalize artifacts related to traditional
quality assurance activities, such as test plans, test cases, and test execution
reports. Depending on the expressiveness of the modeling languages used for the
system description in the SSD and SBD, the test domain can sometimes be seen
as an extension of these domains.

On the other hand, the benefit of a separate test domain can only fully be
appreciated within a strict Model-Based Testing (MBT) approach. The main
difference in this scenario is the purpose of the model artifacts: The artifacts
related to a traditional testing process often represent the intermediate results
of mostly manual, atomic steps. MBT in contrast, attempts to reduce the number
of manual steps and the amount implicit knowledge in testing, thereby raising the
efficiency, correctness, and reusability of artifacts. In this case it is conceivable
to embed model languages specific to the testing domain, such as the OMG-
maintained UML Testing Profile (UTP), which provides modeling facilities for
test behavior description as well as quality assurance management activities. The
UTP-affiliated Testing and Test Control Language (TTCN-3) may complete the
palette of DSMLs of this domain in order to improve testing.

These considerations demonstrate only one possible solution and choice of
DSMLs for the test domain — many others are conceivable, depending on the
concrete use case. A possibly more intuitive solution is given by GPML-based
test behavior specification via UML activity charts representing a set of test
cases, i.e. a test suite. Once again, hybrids of the solutions mentioned above
pose viable solutions for this domain and again encourage the use of our overall
integrative approach.

Depending on whether test cases are generated or implemented manually,
data specified or generated by other domain specific models, e.g. safety consid-
erations, may guide this process. Further information on this topic can be found
in section 2.2.

The Safety and Reliability Domain (SRD) covers the modeling and analysis of
system reliability. Such analyses are invaluable and often mandated by regula-
tions to demonstrate the system’s expected failure behavior and obtain measures
of reliability and availability, for example for safety-critical systems.

In order to quantify the reliability of a system, a thorough analysis of poten-
tial hazards and their associated risks is required. These hazard analyses require
profound domain knowledge and experience and are therefore frequently per-
formed as team efforts. Despite the interactive nature of these activities, their
results can be formalized as a hazard model that describes identified hazards and
the risks as well as possible faults and failures that can cause these hazardous
events.

A major task in the design of safety-critical systems is the classification of
hazards based on their associated risk. Risks that are deemed intolerable, either
by societal or regulatory standards, have to be mitigated by deliberate risk re-
duction measures. Based on the necessary level of risk reduction, levels of safety
integrity and associated safety requirements can be allocated to protective sys-
tem components (safety functions in the terminology of the functional safety
norm IEC 61508). This SIL allocation process requires the quantitative analysis
of failure occurrence likelihoods.

Traditionally, quantitative reliability models are maintained in separate tool
environments, decoupled from the actual system model. This disjoint setup can
lead to inconsistencies in reliability models and decisions made based on them,
unless proper care is taken during ongoing development of the system. However,
many traditional reliability approaches can easily be adapted for use in model-
based environments. For example, the widely used Fault Tree Analysis (FTA)
technique defines a set of graphical elements to analyze failure causes in a system
[22], and proves a suitable candidate for a domain-specific modeling language
with a familiar graphical representation.

By embedding the reliability and hazard analysis models into the integrated
system model, our approach allows to easily maintain full traceability between
these models and their associated system model counterparts in the SSD and
SBD. Moreover, change impact analyses can be easily performed based on this
traceability information, whenever a modification to any part of the system
model is made.

In the context of model-based systems engineering, it makes sense to move
beyond the traditional FTA technique and incorporate a component-based ex-
tension, such as the Component Fault Trees as proposed in [7]. This hierarchical
structuring of reliability information creates synergies with the end-to-end trace-
ability provided by our modeling approach.

The Integration Model Domain (IMD), as illustrated in fig. 1, embodies the cen-
tral mechanism to establish domain-specific model linking, mapping of artifacts,
and cross-domain data accessibility.

In order to achieve this ambitious goal, its high-level structure represents
an abstract, hierarchical breakdown of the instantiated system in a component-
like fashion. Based on this abstract structure, cross-domain linking, represented

as bidirectional connectors in the model, on the one hand enables developers to
make use of a solid and consistent traceability mechanism applicable throughout
all development phases. On the other hand, the IM provides additional informa-
tion to e.g. improve test related activities, previously out of scope. This holds for
various combinations of domain-specific model data. Note that the IMD does not
duplicate any information that has already been modeled in one of its connected
domains.

Beside the linking and description of model interfaces, the IM holds analysis
results generated by any kind of analysis executed by our proposed framework
(see section 3 for a description of the framework). These results may represent
the basis for ongoing processing steps, e.g. the scoping of a certain test model
part, based on a set of criteria to be met.

In addition to the functionality of the IM presented above, it also plays the
role of a early phase design artifact, reflecting an abstract decomposition of the
proposed system functionality. For this reason, the IM may undergo constant
change until it is connected to a concrete instantiation of SSD and SBD models
and subsequently linked with other participating domain models.

Other Domains. The above modeling domains cover a wide range of engineering
artifacts relevant during the design and construction of embedded and/or safety-
critical systems. However, our modeling approach does not prescribe a fixed set
of domain-specific modeling languages or domains and can easily be extended
and tailored to a particular specific modeling use case.

The set of modeling domains presented above are especially relevant to the
design of embedded systems. However, our framework may also take into account
aspects of business and other applications. To this end, we envision domains
addressing security and privacy considerations (e.g. to model information flows),
timing models, description of data persistence, as well as usability models.

The next logical step based on such integrated domains is a holistic multi-
concern consideration and a tightly coupled derivation of architecture optimiza-
tion guidelines. These are beyond the scope of our current work and thus remain
open as future topics.

2.3 Purpose-Specific Data

While the domain-specific models described above are derived from the GPML
data through model-to-model transformations, our approach also covers the gen-
eration of purpose-specific data artifacts through model-to-text and model-to-
model transformations. In contrast to the bidirectional transformation between
GPML and DSML artifacts, the transformation into purpose-specific data (PSD)
is unidirectional. This limitation is by design, since the GPML/DSML model
should be regarded as the true information source, from which derived artifacts
can be regenerated automatically.

Previous considerations only took into account the varying focus of domain-
specific (human) developers. In order to address the increasing amount of gen-
erative (i.e. machine-based processing) steps, another distinction is chosen for

this information base: PSD artifacts fall into either two categories; Human-
Consumable Artifacts and Machine-Consumable Artifacts, as shown at the bot-
tom of fig. 1.

Human-Consumable Artifacts

As the name suggests, this kind of data centers on processing of information by
humans. One can imagine a variety of scenarios where a tailored subset of the
modeled information is desirable:

Views , a concept from software architecture, can be found again in our method-
ology. Since a system specified across several domain-specific models is not easily
understood by non-technical stakeholders, a processed and condensed excerpt of
the integrated system model is preferable. These views focus on specific aspects
of the entire system and facilitate a better understanding and clearer communi-
cation.

Besides this more dynamic use case, which requires tool support, we also
propose another variant of human-consumable artifacts:

Documentation, and in particular its automated generation, is an important
factor in tightly integrated system engineering processes and plays a crucial role
in quality-driven architecture.

The holistic nature of our proposed integrated system modeling approach
facilitates document generation on a high abstraction level. For example, a
common documentation requirement in safety-critical systems calls for seam-
less forward and backward traceability from system requirements down to the
implementation level, and its proper documentation. Since the Omni model con-
tains all necessary architectural elements and their relationships, generating such
documentation consistently and in an easily navigable format (for example as
hyperlinked HTML documents) is an effortless automated task. Using hypertext
formats elegantly solves the traditional problem of limited traceability of these
documents and makes them easily navigable.

The availability of usable, consistent, and up-to-date textual artifacts can
help to reduce cost of safety certification by supporting high quality and early
review of certification-related documents. Additionally, the same model-based
document generation approach can be used to capture the results domain-specific
analyses of the system that cover individual stakeholders’ interests, leading to
the next category of human-consumable artifacts:

Metrics are the concept of choice during analysis of certain Key Performance
Indicators (KPI) of the system. From a project management perspective, we
envision this approach to be useful for specification of (among others) test and
requirement coverage metrics as an indicator of overall project progress.

A wholly different application scenario for metrics in the context of human-
consumable artifacts is their use as a decision guidance in development processes:
For example, a safety engineer may propose a change to the system model based

on the evaluation of a certain set of metrics. A similar use case is the improvement
of test-related model artifacts based on a metric, reflecting the insights of a
multi-concern consideration of the current application.

Machine-Consumable Artifacts

Our framework may also be used to export highly-specific data for further com-
putation by external tools from the integrated system model. In contrast to
the previous use case of human-consumable artifacts, this data is stored in a
format optimized for machine processing. However, it also is subject to the limi-
tation of unidirectionality, meaning that machine-consumable artifacts may not
be part of a round-trip engineering approach. Such functionality is provided by
the model-based analysis framework described in the following section.

We can distinguish different kinds of export formats, according to their in-
tended application.

Intermediate Data, whose main purpose is to easily adapt to other tooling or
the integration of libraries used for dedicated problem solving. For example, a
processing step might provide input to an external optimization engine for the
comparison of different architecture alternatives in the form of such intermediate
data.

The term intermediate emphasizes the ephemeral nature of this kind of arti-
facts, representing a temporary result of a deterministic computation step based
on the permanent information in the Omni model.

Refined Models, represent a special application of the previously mentioned
Intermediate Data, where a domain-specific model is taken as a computational
basis.

This model is either reduced to a limited scope, or enriched with supple-
mentary information from another domain. For example, early applications of
model-based testing did not separate the application model and the test model
and instead only used the application model to generate test cases. Domain-
aware approaches on the other hand favor the use of additional data in order to
interface with existing tools to harness beneficial synergies.

While out of the immediate scope of our research, it should be noted that the
final integrated system model is a suitable basis for generation of source code, as
indicated by transformation steps on the right side of fig. 1. The integrated nature
of the Omni model as well as purpose-specific data allows the code generation
engine to make more educated decisions about the context of the source code
to be synthesized. A possible scenario could be the automated application of
defensive programming techniques in generated code, e.g. assertion of pre- and
post-conditions or calculation of checksums, based on component contracts or
safety requirements from the integrated system model.

3 A Model-Based Architecture and Analysis Framework

Based on the modeling approaches introduced in the previous section, we have
developed a reference technology platform geared towards the domain-aware
modeling of safety-critical systems and their quality attributes. In addition to the
domain-specific metamodels, the prototype includes a framework for definition
of model-based architecture analyses, introduced below in section 3.3.

3.1 Technical Foundations and Tooling
As shown in fig. 2, the analysis framework consists of three major components:

Enterprise Architect The commercially available Enterprise Architect (EA)
is as a general-purpose modeling tool, providing the full range of UML mod-
eling capabilities to the system designer. Domain-specific metamodels are
integrated via EA’s Model-Driven Technologies (MDG) feature

Model Repository A relational database system is used for persistent storage
of the model repository and allows for external access to the system model
without the need for tight coupling with EA.

Architecture and Analysis Framework The actual architecture and analy-
sis framework, which offers model analysis services via a web service inter-
face. Section 3.2 below describes the concrete execution model within the
analysis framework.

For details on the various technologies involved and their interactions, see sec-
tion 3 of [17].

Architecture and Analysis Framework Model Repository
Analyses
» Architecture Optimization EAORM < >

» Reduction of Test Complexity
» Safety / Reliability Calculation

Downstream Transformations) 3:]

b) MAF
> ocumentation generators
» Text/model artifacts Enterprise Architect
Architecture & &
REST Server <))
Analysis Plugin

Fig. 2. Technical overview of the reference technology platform architecture

3.2 Analysis execution workflow

In order to execute an analysis request by the user, the Architecture and Analysis
Framework passes through multiple execution phases. This section will give an
overview of the necessary processing steps, as summarized in the activity diagram
in fig. 3.

Analysis exec
cc1

Analysis exec

Validation Transformations Post-processing Result Result
aggregation persistence

o

[invalid]

o
(=]

Fig. 3. Execution workflow within the Architecture and Analysis Framework

Validation Before any further processing takes place, the framework validates
the analysis configuration supplied through the web service interface. This con-
figuration adheres to a custom textual DSL and determines the types of analyses
to be executed, their input model elements, as well as any additional parameters
required to run the analysis.

The validation is carried out on the dependency graph between the analyses
requested as part of the configuration. In order to qualify as a valid configura-
tion, this graph must be acyclic and be closed under the transitive dependency
relation. The second criterion assures that for each analysis, all its (transitive)
prerequisites are also part of the configuration. If the configuration is found to
violate these soundness assumptions, the execution engine aborts processing of
the request and reports an error.

The actual execution order for all configured analysis is then calculated as
a topological sorting of the dependency graph. As a subsequent optimization,
the execution graph can be decomposed into its connected components to allow
for parallel execution of multiple analyses: By definition, no dependencies exist
between two analyses in different connected components, hence they are eligible
to be processed by the framework simultaneously.

Figure 4 shows an example for such an execution graph from the case study
described in detail in section 4. Transformations are shown as parallelograms,
rectangles represent the requested analyses together with their position in the
calculated execution ordering. Dashed arrows indicate a dependency on trans-
formation outputs, while solid arrows denote the prerequisite relation between
analyses. For readability reasons, transitive prerequisite arrows are omitted from
the graph.

EA2FAULTTREES EA2INTEGRATIONMODEL EA2RADCASE EA2MBT

fta_probability

im_testmodelgen

Fig. 4. Execution graph for the case study example (see section 4)

Transformation execution The Enterprise Architect input UML model is
transformed into the corresponding domain-specific representations using a set of
model-to-model transformations for each modeling domain. We have chosen the
QVT Operational language (QVTo, see [8,11] for details) as the M2M transfor-
mation language for our prototype. Each domain-specific model can be obtained
from the integrated system model by applying its associated transformation,
mapping the extended general purpose modeling language (see section 2.1) onto
the domain-specific modeling languages (section 2.2).

In order to simplify integration with the Eclipse EMF-based QVTo engine
used for implementation of the transformation phase and model-based analyses,
all domain-specific metamodels have been described using the Ecore metamod-
eling facilities.

Post-processing Optionally, an analysis may define arbitrary post-processing
steps to be executed after the M2M transformation phase. Since the post-processing
is implemented as regular application code, it can be used for additional calcu-
lations beyond the expressive capabilities of the transformation language. Ex-
amples include the handling of Java enumeration types and transformation of
non-primitive value types into proper objects.

Analysis execution After inputs in the form of M2M transformation outputs
are available, the execution engine iterates the pre-calculated execution order
and runs all analyses specified by the configuration. Additional input parameters
from the analysis configuration will be forwarded to the respective analysis.

For analyses that require functionality for data-flow based processing of a
model, the execution phase can also delegate to the Model Analysis Framework
(MAF in fig. 2). This framework allows the use of data-flow techniques originally
researched in compiler construction for iterative, model-based analysis of design
artifacts (see [18] for details).

Analyses report their execution status back to the framework, and may create
or modify arbitrary model elements to represent the results of their calculation.

Result aggregation and persistence The execution engine tracks all mod-
ifications (object creation/deletion, attribute modification) to model elements
performed in the analysis execution phase, as mentioned above. We have speci-
fied a compact domain-specific language for the description of reverse transfor-
mations of domain-specific models, while maintaining the integrity constraints
of the original EA general-purpose model.

Note that only the general-purpose model is persisted in the model repository
to remedy the problem of consistency across the transformation steps.

3.3 Processing of Integrated Model Data

Based on the execution mechanism previously described, we have developed a
range of model analyses that can be applied to the integrated system model
and its embedded domain-specific models. Consequently, one specific processing
step is possibly made up out of multiple analyses, chained together. Most of
the use cases mentioned in section 2 use this mechanism as a technical basis for
intermediate computations.

Conceptually, we have identified three major classes of model analyses that
can be distinguished by their responsibilities as well as the type of input and
output models:

Validation analyses consume one or multiple input domain-specific models, but
do not generate any new model elements as their output. Rather, a validation
analysis verifies the syntactic and semantic well-formedness of its input models.
In case this validation fails, the analysis produces a report of the identified
violations and returns it as a separate result to the client.

Therefore, the purpose of validation analyses is the assurance of model in-
tegrity and quality. They are feasible candidates for tighter integration with the
modeling tools used, and can be executed continuously without user interaction
to provide rapid feedback about the state and quality of the model.

Note that the existence of this class of analyses is a testament to the state of
metamodel extensibility in current general-purpose modeling tools. This short-
coming has previously been identified as the primary driver for so-called descrip-
tive stereotypes [19]. If GPML tools provided first-class support for restrictive
stereotypes or even full restrictive metamodel extensions instead, the syntactic
and semantic constraints for a DSML could be directly validated as part of the
metamodel extension.

Calculation analyses consume one or more input domain-specific models and
calculate additional attributes for existing model elements, but do not add new
elements.

These analyses can be seen as the formalization of a function application to
their input models. Examples for this class of analysis are numerous, e.g. the

automated update of probability information in reliability models, risk classifi-
cation, or the analysis of timing bounds in behavioral models.

In our analysis framework, calculation analyses are an obvious application
point for the Model Analysis Framework (see above), since its feature set is well
suited to the iterative nature of function evaluation on complex models.

Generative analyses both consume and produce model elements in one or more
domain-specific metamodels. As such, they are similar to model-to-model trans-
formations. However, they serve a broader purpose, and hence should be consid-
ered separately.

Generative analyses offer a consistent interface for the programmatic mod-
ification of the integrated system model as part of the execution workflow de-
scribed in section 3.2 above. As opposed to ephemeral M2M transformations,
their results are stored persistently.

Possible uses of this class of analyses are very broad: One possible example
is the support of the system designer through wizard-type functionality, for ex-
ample to generate skeleton reliability models from an existing structural model
of a system. A different application scenario is the automated creation of a test
model and test cases from the abstract description of system structure and func-
tionality in the integration model.

While some generative analyses produce results that are intended for use
inside the modeling loop centered on the integrated system model, the results
of other analyses targets consumption outside the context of the analysis frame-
work. This class of analyses is referred to as downstream transformations in fig. 2
and corresponds to the concept of purpose-specific data introduced previously
in section 2.3.

The generation of source code from the integrated system model is a prime
example for a downstream transformation. While the resulting code artifacts can
still be regarded as a form of model, they are not persisted within the model
repository and their main purpose lies outside the analysis framework.

Another important member of this class are model-to-text transformations in
the form of document generators. They can make the creation of textual artifacts
transparent to the client and encapsulate the actual invocation of the underlying
M2T transformation engine.

As stated before, the three types of analyses can also be combined in order
to handle more complex tasks. The processing of test model artifacts with the
goal of reducing the final level of test complexity, for example composes an anal-
ysis for cross-domain calculation with a second analysis for generation of more
specific test model artifacts. Again, this represents a common case of data pre-
processing for further external use, subsumed under the category of downstream
transformations.

4 Case Study: Design and Evaluation of a Gas Heating
System

In the following section we will demonstrate the use of our domain-specific mod-
eling approach to the reliability analysis of a gas heating system. Further, we
take a closer look on related testing activities, which in turn benefit from the
integrated model basis.

Gas boilers are commonly found in residential buildings to provide central
heating by combustion of natural gas in a burner. A common extension to such
heating systems is a reservoir to buffer a suitable amount of hot water. In case of
a malfunction of the system, personal injury might arise. Therefore, the design
of such a system must encompass an evaluation of the safety risks and include
appropriate protection systems to reduce potential risks to an acceptable level.

The model artifacts shown in this paper represent a simplified version of a
standard heating system to limit complexity to a manageable level. However,
they nicely illustrate the application of our integrated modeling approach, its
suitability for the development of safety-critical systems, and the improved effi-
cacy of related quality assurance mechanisms.

4.1 System Structure and Behavior

Since our point of view on the system architecture is on a very abstract level, a
plain UML component diagram is sufficiently expressive to describe the system
structural domain for this case study. Figure 5 shows the main components of
our exemplary gas heating system. Such a coarse-grained model can be derived
in early design stages, as soon as the operational context of the system has been
determined.

Burner Controller g

Flow Controller g

AN Aon

Shutdown Valve g (@)

Flame Detection g Level Sensor g Filling Valve g

Burner g Reservoir g

Fig. 5. Architecture of the gas heating system with integrated water heating circuit

We use UML state machines as well as other behavioral UML diagrams
to model the internal functionalities of the elementary building blocks of the
presented system. As an example, fig. 6 describes the main operating states of

the burner controller, which can be either operational or shut down in case a
malfunction of the flame supervision mechanism has been detected.

4 Operational N\ [Failure]
.- 1

/Open Shutdown Valve

Flameout detected
[Close Shutdown Valve Flame Supervision Failure
Detected

/Ignite Burner

/

Fig. 6. Behavior model of the burner control logic

4.2 Reliability Model

An important early step during development of a safety-critical system is the
assessment of potential hazards and risks associated with the system under de-
velopment (see section 7.4 of [5] for details). This hazard and risk assessment,
performed by a team of domain experts, can be documented inside the integrated
system model.

As an illustrative example, we have chosen to analyze a potentially hazardous
failure of the heating system, namely the presence of uncombusted gas in the
burner chamber following a flameout. This situation can lead to rupture of the
heating vessel due to over-pressurization as well as rapid deflagration or explosion
of the uncombusted gas in the presence of an igniting spark. This hazard is
assumed to occur with an intolerably high likelihood, which prompts the addition
of a flame detection mechanism and an automatic safety shutdown valve as safety
functions to the heating system.

The presence of a hot water reservoir in the heating system introduces an
additional, unrelated hazard: If the filling valve malfunctions and becomes stuck
in the open position, the reservoir might spill, posing the risk of severe scalding
for anybody in its immediate vicinity.

A multitude of established engineering techniques exist for assessing the risk
associated with a hazardous event and establishing the necessary risk reduction
for an acceptable level of safety in the form of safety integrity levels. For this
example, we have selected the risk graph technique described in appendix E
of the IEC 61508-5 norm [6]. As shown in fig. 7, the results of a qualitative
assessment of each hazard are embedded inside the hazard analysis model as
RiskGraphSpecification instances.

The introduction of these new system components demands for another it-
eration of the hazard and risk assessment, to ensure an acceptable safety level.

«RiskGraphSpecification»
Risk graph for Uncombusted Gas

«Hazard»
tags Presence of «Failure»
avoidability = P2 Uncombusted Gas Burner Flameout

«LeadsTo»

consequence = C2
frequency = F1
probability = W2

Fig. 7. Excerpt of hazard analysis and risk assessment model for the burner

4.3 Requirements Model

Given the initial qualitative hazard and risk assessment, the analysis framework
is able to automatically identify the necessary risk reduction for each hazard
and generate appropriate safety function and safety integrity requirements (see
sections 7.5 and 7.6 of [5] for the regulatory background). The system engineer
can subsequently allocate these requirements to appropriate safety functions.

Figure 8 shows a part of the safety requirements model for the previously
discussed risk of uncombusted gas as well as the risk of a spillover of the re-
spective reservoir. A safety function with a specified safety integrity level has
been introduced to mitigate these risks, and is allocated to the related system
components described earlier via the integration model. Both of the mentioned
system components are implicitly tied together via the more abstract system
component, the heating itself.

«IMComponent» «IMComponent»
Burner Controller Level Sensor
(from Integration Model) (from Integration Model)
i 1
«IMTraqe,trace» «IMTrace, trace»
vV v
Integrity requirement: Hazard must not occur: Integrity requirement: Hazard must not occur:
Presence of Uncombusted Gas Presence of Uncombusted Gas Reservoir Spillover Reservoir Spillover
tags tags
integrityLevel = SIL_1 integrityLevel = Uncritical
T T T T
«tréce» «mitigate» «trace» «mitigate»
0 Y ¥ v
«Hazard» «Hazard»
Presence of Uncombusted Gas Reservoir Spillover
(from Hazard Analysis) (from Hazard Analysis)

Fig. 8. Safety requirements model

Note that beside this domain-specific model of safety requirements, a com-
plete integrated system model of the gas heating would also contain all functional
requirements that govern the regular operation of the system.

4.4 Integration Model

The integration model for our use case ties together the system structure and be-
havioral domain with all additional domain-specific models like the reliability or
related test models. Additionally this artifact forms a hierarchy of abstract com-
ponents with the entire system under development at its root. Furthermore, the
IM reflects the allocation of abstract functionality, e.g. the logic of the burner
controller, to components and contains traceability information into the con-
crete behavioral model. In our example, the integration model associates the
state machine for the burner control (see fig. 6) with the abstract control logic
functionality.

Implementation Level Integration Level Test Level

Generic System

«IMComponent»
Heating
«IMPartOf» «IMPlz-mOf»
|
«IMComponent» «IMComponent»
Burner Reservoir

Level Sensor
@ rr
77777 (MTrace fracey == ===~~~ K « IMP/l\nOf» «IMTrace,trace» e

1 (from Test Model::Reservoir

(from System Architecture) «IMPartOfy ' [amcomponenty | J Test Model)
Level Sensor
Burner Controller &J|_ «IMComponent»
- «IMTrace frace Burner Controller «IMTrace,tracey ==~ --~=-= Bumer Controlle;o

(from System Architecture) (from Test Model::Burner

Test Model)

Fig. 9. Excerpt from Integration Model with links to SSD, SBD and TD

We can see this contribution of the integration model to seamless model
traceability in fig. 10. The diagram emphasizes the trace relationship between the
non-functional domains of the integrated system model for the heating system,
in particular the requirements and hazard analysis domains. This traceability
information is preserved by the model-based analysis framework and downstream
transformations, especially during generation of source code. Therefore, based
on this information, accompanying documentation can be generated that serves
as evidence in safety certification of the burner control system.

4.5 Test Model

Beside the use case of generating comprehensive documentation for certifica-
tion purposes, the results of such a safety and reliability analysis may also be
utilized for test complexity reduction purposes. One might imagine a scenario,

«Hazard» Hazard must not occur: }4 «IMComponent»

Presence of Uncombusted Gas [< ~~~~ ~| | Presence of Uncombusted Gas [t~ ~~1 Burner
«mitigate»
«LeadsTo»
«Failure»)
Burner Flameout «IMTrace,trace»
«Hazard» Hazard must not occur: «IMComponent»
Reservoir Spillover «mitigate» Reservoir Spillover Reservoir
«LeadsTo» «IMPartOf»
«Failure» =) «IMComponent»
Level Sensor Readout Low «IMTrace trace» Level Sensor

Fig. 10. Excerpt from Integration Model with trace links to reliability and requirements
domains

where a management decision cuts down on the amount of time available for
test-related activities. However, certification requires that safety-critical soft-
ware components need to be tested extensively, achieving a certain degree of
test coverage. It is evident that these two conflicting restrictions cannot be met
by simultaneously, necessitating a trade-off. To overcome this problem, the tester
makes use of the central model artifact, the integration model, specifically its
aspect capabilities described earlier in this paper. This mechanism enables the
tester to disregard certain parts of the holistic test model, thereby producing a
reduced model for further test case generation. An integrated view on fig. 8 and
fig. 9 illustrates the path of information flow across the domain-specific models.
Applying the previously outlined scenario of focusing tests on safety-relevant
system parts, for example might drop the test model for the Level Sensor, since
its safety impact has been marked as uncritical (see fig. 8).

A combination of these flexible aspect configurations allows us to scope highly
specific excerpts of the system model and thus focus on dedicated test cases with
high impact on overall system quality.

5 Related Work

Our work relates to previous research in three related, but separate fields: Firstly,
our approach provides a means of integrating various engineering disciplines into
a coherent tool environment. Each of these disciplines brings with it its own set
of domain-specific engineering artifacts and modeling languages. Finally, our

implementation of an architecture analysis framework based on an integrated
system model relates to prior work in the field of model-based analysis.

The following sections give a short overview of the relevant literature in these
three fields, as they relate to our current research.

5.1 Modeling Tool Integration

In his seminal work, Wassermann [23] describes an approach for integration
of heterogeneous tools in a software engineering tool chain. He describes an
integrated software engineering framework based on three cardinal dimensions
of interoperability — presentation, data, and platform integration.

The EU-funded iFEST project (Industrial Framework for Embedded Systems
Tools!) was aimed at developing an integrated framework for embedded systems,
addressing both software and hardware concerns. The iFEST approach specifies
a tool integration framework that leverages the OSLC specification to allow data
exchange between heterogeneous modeling tools. Since it is focused exclusively
on the aspect of tool integration, this approach does not address the field of
model-based analyses of the integrated system model.

5.2 Domain-specific Modeling

Zschaler et al. [24] propose a generalization of DSLs to domain-specific modeling
languages, in order to capture common concepts found in families of related DSLs
and facilitate automation.

Similarly, de Lara et al. [9] describe an approach for domain-specific multi-
level metamodeling languages, allowing for the definition of deep language hi-
erarchies. Their approach contains a set of reusable metamodel transformations
for management of multi-level metamodeling languages and describes approaches
for code generation in such a setting.

The use of UML as a graphical visualization language for domain-specific
modeling languages is proposed by Graaf and van Deursen [4]. Their work pro-
poses model-to-model transformations as a means of deriving a visual represen-
tation from a domain-specific model. Conceptually, these transformations can
be regarded as an embedding of the DSML into a generic-purpose modeling
language, specifically into UML.

As stated by Dias et al. [2], this also holds for the testing domain. Their
seminal survey showed that the majority of MBT approaches makes use of UML
behavioral modeling capabilities, sometimes extended by certain domain-specific
data. One of their conclusive remarks mentions the active use of UML-like lan-
guages due to the wide distribution of basic skills in this area.

5.3 Model-based Analysis

Papadopoulos and McDermid [13] introduce HiP-HOPS (Hierarchically Per-
formed Hazard Origin and Propagation Studies), a methodology for model-based

! nttp://www.artemis-ifest.eu/

http://www.artemis-ifest.eu/

hierarchical reliability analysis of component-based systems. Based on the archi-
tecture of the system under analysis and certain failure annotations, HiP-HOPS
allows for bottom-up generation of Fault Trees and so-called interface-focused
FMEA results for a system. Under the HiP-HOPS methodology, components are
enriched with additional model information about their failure behavior. Various
classes of interface failures are defined that can be used to describe the black-box
failure model of a system on a component level.

This approach has subsequently been extended to accommodate aspects of
automatic architecture optimization. Papadopoulos et al. [14] further describe
a conceptual approach for the automatic allocation of safety integrity levels to
components of safety-critical systems. This work focuses on the automotive do-
main and uses the EAST-ADL2 modeling language for architecture description.
Similarly, the authors propose a more generic architecture optimization tech-
nique based on the HiP-HOPS methodology and the use of genetic algorithms
[15].

A complementary approach can be found in the EU-funded MBAT project
(Combined Model-based Analysis and Testing of Embedded Systems?). This
project aimed to provide a methodology and technology platform for specifica-
tion of system analysis and V&V activities in the context of embedded system
engineering. The central element of the proposed methodology is the so-called
AET model (short for [static] analysis and [model-based] testing), highlighting
the focus of the approach to the quality-assurance domain.

An alternative path to overcome the constantly rising complexity of testing
by utilizing information from other domains was proposed by Gebizli et al. [3].
The use of risk ratings of system components in combination with MBT in order
to iteratively refine test models showed promising results. The resulting test
suite boasts better fault detection capabilities in contrast to traditional MBT
approaches, whereas the amount of time for testing was reduced.

6 Conclusions

We have proposed a valuable approach for integrated system modeling and
model-based architecture analysis.

Our work introduces a solution to the challenge of integrating both sys-
tem modeling and quality-related artifacts in the design and implementation
of embedded systems. The resulting integrated system model or Ommni model
establishes explicit traceability between domain-specific modeling artifacts and
enables consistent change management and change impact analyses.

This domain-centered view of systems engineering incorporates the funda-
mental challenge of multi-concerns design by unifying previously disjoint mod-
eling domains.

Based on this holistic, model-based view on the system under development,
complex model analyses can be performed to validate, process, or enhance the in-
tegrated system model. Analyses may also generate textual or model content for

2 http://www.mbat-artemis.eu/

http://www.mbat-artemis.eu/

further processing outside our proposed methodology, for example as generated
source code or management reports.

We have developed a reference technology platform that combines our pro-
posed integrated system modeling approach with a model-based analysis frame-
work. The suitability of this prototype is demonstrated through a case study,
which illustrates the use of the framework to model the reliability and testing
aspects of a residential gas heating burner, a simple safety-critical embedded
system.

We envision a variety of possible application fields for our approach as a
basis for future research work: The seamless availability of information across
domain boundaries makes the integrated system model open for use in automated
systems engineering processes. For example, suitable analyses could be developed
to support the (semi-)automated optimization of certain architecture aspects
under consideration of reliability and safety aspects. In order to better support
these optimization heuristics, the system model can be enhanced with stricter,
machine-comprehensible formalization, such as component safety contracts.

Overall, we predict that the consequent application of model-based design
methodologies will help to cope with the current challenges of systems engineer-
ing and help to create safe and maintainable products.

Acknowledgements

The research in this paper was funded by the German Federal Ministry for
Economic Affairs and Energy under the Central Innovation Program for SMEs
(ZIM), grant numbers KF 2751303LT4 and 16KN044120.

References

1. Boehm, B.W.: Software Engineering. Tech. rep., TRW Systems and Energy Group
(1976)

2. Dias Neto, A.C., Subramanyan, R., Vieira, M., Travassos, G.H.: A survey on model-
based testing approaches: a systematic review. In: Proceedings of the 1st ACM In-
ternational Workshop on Empirical Assessment of Software Engineering Languages
and Technologies. pp. 31-36. ACM (2007)

3. Gebizli, C.S., Metin, D., Sozer, H.: Combining model-based and risk-based testing
for effective test case generation. In: Software Testing, Verification and Validation
Workshops (ICSTW), 2015 IEEE Eighth International Conference on. pp. 1-4.
IEEE (2015)

4. Graaf, B., van Deursen, A.: Visualisation of domain-specific modelling languages
using UML. In: 14th Annual IEEE International Conference and Workshops on the
Engineering of Computer-Based Systems (ECBS’07). pp. 586-595. IEEE (2007)

5. Functional safety of electrical/electronic/programmable electronic safety-related
systems - Part 1: General requirements. Standard, International Electrotechnical
Commission, Geneva, CH (2010)

6. Functional safety of electrical/electronic/programmable electronic safety-related
systems - Part 5: Examples of methods for the determination of safety integrity
levels. Standard, International Electrotechnical Commission, Geneva, CH (2010)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.
23.

24.

Kaiser, B., Liggesmeyer, P., Méckel, O.: A new component concept for fault trees.
In: Proceedings of the 8th Australian workshop on Safety critical systems and
software-Volume 33. pp. 37-46. Australian Computer Society, Inc. (2003)

Kurtev, I.: State of the art of QVT: A model transformation language standard.
In: International Symposium on Applications of Graph Transformations with In-
dustrial Relevance. pp. 377-393. Springer (2007)

de Lara, J., Guerra, E., Cuadrado, J.S.: Model-driven engineering with domain-
specific meta-modelling languages. Software & Systems Modeling 14(1), 429-459
(2015), http://dx.doi.org/10.1007/s10270-013-0367~-z

Semantics of a Foundational Subset for Executable UML Models, Version 1.2.1.
Specification, Object Management Group (OMG), Needham, MA (2016)

Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification, Ver-
sion 1.3. Specification, Object Management Group (OMG), Needham, MA (2016)
Requirements Interchange Format (ReqlF), Version 1.2. Specification, Object Man-
agement Group (OMG), Needham, MA (2016)

Papadopoulos, Y., McDermid, J.A.: Hierarchically performed hazard origin and
propagation studies. In: International Conference on Computer Safety, Reliability,
and Security. pp. 139-152. Springer (1999)

Papadopoulos, Y., et al.: Automatic allocation of safety integrity levels. In: Pro-
ceedings of the 1st Workshop on Critical Automotive Applications: Robustness &
Safety. pp. 7-10. ACM (2010)

Papadopoulos, Y., et al.: Engineering failure analysis and design optimisation with
HiP-HOPS. Engineering Failure Analysis 18(2), 590-608 (2011)

Roman, G.C.: A taxonomy of current issues in requirements engineering. Computer
18(4), 14-23 (1985)

Rumpold, A., Proll, R., Bauer, B.: A Domain-aware Framework for Integrated
Model-based System Analysis and Design. In: Proceedings of the 5th International
Conference on Model-Driven Engineering and Software Development (MODEL-
SWARD). pp. 157-168. SCITEPRESS (2017)

Saad, C., Bauer, B.: Data-Flow Based Model Analysis and Its Applications. In:
Moreira, A and Schitz, B and Gray, J and Vallecillo, A and Clarke, P (ed.)
Proceedings of the 16th International Conference on Model-Driven Engineer-
ing Languages and Systems. pp. 707-723. Springer, Berlin, Heidelberg (2013),
http://dx.doi.org/10.1007/978-3-642-41533-3_43

Schleicher, A., Westfechtel, B.: Beyond stereotyping: Metamodeling approaches for
the UML. In: Proceedings of the 34th Annual Hawaii International Conference on
System Sciences. p. 10 pp. IEEE (2001)

Siegemund, K., Thomas, E.J., Zhao, Y., Pan, J., Assmann, U.: Towards ontology-
driven requirements engineering. In: Workshop Semantic Web Enabled Software
Engineering at 10th International Semantic Web Conference (ISWC), Bonn (2011)
Sommerville, I.: Software Engineering. Pearson Education, 9th edn. (2011)
Vesely, W.E., Goldberg, F.F., Roberts, N.H., Haasl, D.F.: Fault tree handbook.
Tech. rep., DTIC Document (1981)

Wasserman, A.L.: Tool integration in software engineering environments. In: Soft-
ware Engineering Environments. pp. 137-149. Springer (1990)

Zschaler, S., Kolovos, D.S., Drivalos, N., Paige, R.F., Rashid, A.: Domain-specific
metamodelling languages for software language engineering. In: International Con-
ference on Software Language Engineering. pp. 334-353. Springer (2009)

http://dx.doi.org/10.1007/s10270-013-0367-z
http://dx.doi.org/10.1007/978-3-642-41533-3_43

	Applying Integrated Domain-Specific Modeling for Multi-Concerns Development of Complex Systems

