Parallelizing highly complex engine management systems

Julian Kienberger! | Stefan Schmidhuber? | Christian Saad! | Stefan Kuntz® |

Bernhard Bauer!

1Department of Computer Science, University
of Augsburg, Augsburg, Germany
2Timing-Architects Embedded Systems GmbH,
Regensburg, Germany

3Continental Automotive GmbH, Regensburg,
Germany

Correspondence

Julian Kienberger, Department of Computer
Science, University of Augsburg, Germany.
Email: kienberger@ds-lab.org

1 | INTRODUCTION AND MOTIVATION

Summary

The automotive industry seeks to include more and more features in its vehicles. For this pur-
pose, the necessary policy shift towards multi-core technology is in full swing. To eventually exploit
the extra processing power, there is much additional effort needed for coping with the tremen-
dously increased complexity. This is largely due to the elaborate parallelization process that spans
a vast search space. Consequently, there is a strong need for innovative methods and appropriate
tools for the migration of legacy single-core software. We use the results of a data dependency
analysis performed on AUTOSAR system descriptions to determine advantageous partitions as
well as initial task-to-core mappings. Afterwards, the extracted information serves as input for
the simulation within a multi-core timing tool suite. Here, the initial solution is evaluated with
respect to proper scheduling and metrics like cross-core communication rates, communication
latencies, or core load distribution. A subsequent optimization process improves the initial solu-
tion and enables a comparative assessment. To demonstrate the benefit, we substantially expand
a previous case study by applying our approach to two complex engine management systems and
by showing the advantages compared to a parallelization process without preceding dependency
analysis and initial partition/mapping suggestions.

KEYWORDS

multi-core, model-based design, data dependency analysis, timing simulation, design space

exploration, semi-automated parallelization

intentions drive the pursuit of finding a possibility for boosting the

available computing performance to stay competitive.

The demand for increasing performance applies in particular for
embedded systems. The automotive domain can vade this trend as it
perpetually attempts to enhance driving properties, extend infotain-
ment features and improve security and safety characteristics of its
vehicles. Therefore, challenges like parallelization and multi-core plat-
forms have to be addressed to enable, eg, highly automated driving
and car-to-x communication that pose new challenges for automotive
software systems concerning aspects like dependability or cloud inter-
action.!

However, adding functionality—paralleled by car domains that ever-
more correlate—ramps up complexity as well as required processing
performance.? 3 Furthermore, there is a prevalent endeavor to save
space and reduce weight by decreasing the number of “Electronic
Control Units” (ECUs), which can be achieved by replacing them with

distinctly less (but more powerful) ‘domain controllers”#> These

In a conference speech by Mader,? it is projected that 10 times as
much processing power as currently available will be needed in only
10vyears. The rising demand has exceeded the capabilities of single-core
technology whose processing power is almost completely exhausted
and does not significantly increase anymore.”"? This can be ascribed
to the problem that further raising the clock speed is unreasonable
from an economical and technical point of view, because it inevitably
leads to a disproportionate growth of CPU power consumption and an
enormous rise of corresponding heat dissipation efforts.?

According to the current state of research, embedded architectures
featuring multiple cores (or generally speaking “independent execu-

tion units”— IEUs*) are—predominantly considered—the only solution

*Though “multi-core” is the prevailing term when referring to such architectures, it is just
one specific solution that is frequently used to vicariously represent the whole idea of paral-
lel computing.10 Used as more correct and generalized term, “IEU” encompasses processing
units that are independent of each other within the system's scope (like a core, a processor, or
an ECU).

10f13

20f13

having the potential to provide enough processing performance and
therefore to meet recent challenges as well as to satisfy upcoming
requirements. Thus, it is hardly surprising that they are becoming
increasingly important.1!

In the area of desktop computing, the transition to multi-core plat-
forms started about 10 years ago, whereas the automotive sector was
rather recently forced to start migrating its ECU software to pave the
way for further technical advancement. As opposed to typical desktop
computing, embedded automotive software faces hard real-time and
strict data consistency requirements, heterogeneous target platforms
with heavily limited resources as well as high demands concerning
safety and redundancy.

Here, potentially gained computing power could be used in differ-
ent ways—not only to save space and reduce weight by performing
the same work on less ECUs (like previously mentioned). Further ideas
are, eg, distinctly distributing certain functionalities of an application to
different cores to prevent them from interfering with each other (“sep-
aration”), increasing a system's reliability (and therefore its safety) by
performing additional calculations to raise a result's correctness prob-
ability by using different calculation methods (“diverse redundancy”) or
putting strongly connected software parts from different applications
onone IEU (“pooling”).

Unfortunately, current automotive software (operating systems as
well as applications) was usually neither designed for being executed in
parallelonthe “functionlevel” (as addressed in this article) nor on “appli-
cation level”. Its proper migration to multi-core systems is therefore a
challenging task.® 1213 |t involves a paradigm change, because aspects
like “expensive” cross-core communication, synchronization overheads,
shared resources, significance of memory location and the complex
scheduling of software parts come into play when processing is dis-
tributed and sequential data consistencyt has to be guaranteed.* 1415

To achieve the latter without producing unnecessary interference
(ie, overhead) among cores, it is crucial to appropriately determine the
software's fragments in the first place (“partitioning”) and to purpose-
fully distribute them on the cores afterwards (“mapping”). Moreover,
coordinating multiple cores to execute parts of a common applica-
tion is tremendously increasing the complexity of software because of
dependencies between separately processed but still interdependent
data including problems like race conditions, dead locks, nondetermin-
ism and insufficient load balancing (seeking equal workloads for each
core).16:17 The complexity rise correlates with the amount of software
parts, because the number of possibilities to distribute them on cores
grows exponentially, which results in a tremendous solution space mak-
ing an exhaustive design space exploration infeasible.

When looking at a typical combustion engine management system
including up to 8000 of AUTOSAR's* “Runnable Entities” (REs—atomic
executable and schedulable units), it is obvious that multi-core
approaches massively increase the internal complexity of ECUs and
finding a favorable partition within such highly interconnected soft-
ware is costly.22 19 This calls for new concepts to overcome emerging

challenges, more specifically, finding suitable leverage points and

TWe define “data consistency” as both, given “functional coherence’ (processed data has uni-
form age) and “stability” (steady data during processing).

#The "AUTomotive Open System ARchitecture” standardizes “[...] an open software architecture
for automotive electronic control units (ECUs)’l18 cf http:/www.autosar.org.

heuristics for the process of migrating to parallelized versions of
existing application software as well as supporting this process with
tools that, on the one hand, automatize as much work as possible and,
on the other hand, illustrate detected problems to the engineer in a
meaningful way# 6 12.20-22

Apart from these new requirements emerging in the course of the
“multi-core era’, a well-known aspect remains crucial: The heavy focus
on models and their active inclusion (ie, not only as supplement) in the
whole process of software development and deployment is indispens-
able to keep an overview.1? 23 This becomes clear when taking a closer
look at the work process in the automotive sector, which is typically
to a high degree based on the division of labor: For example, there are
usually several hundred engineers working on an engine management
system since its multitude of interconnections with other ECUs makes
it exceedingly complex. Efficient collaborative working on such a sys-
tem is hardly possible without proper organizational structures and
suitable work items, like models.

In the following, we address the stated challenges by showing how
our data dependency analysis approach (cf previous study by Kien-
berger et al®) can be carried forward by specifically covering the pro-
cess of partitioning and mapping. The results of the partitioning and
mapping process are verified by concretely measuring the added value

achieved with this procedure after simulation and optimization.

2 | OVERVIEW AND PREREQUISITES

To alleviate the parallelized systems' complexity, we strive after sup-
porting the goal-oriented migration of legacy ECU software to an
expedient multi-core architecture. We focus on parallelizing a single
application addressing “function parallelism” (also known as “task par-
allelism”). The proposed migration process is depicted in Figure 1.

The gray box indicates the scope of our work described in this arti-
cle. Both activities on its left side are supported by our tool “AutoAn-
alyze,” which is implemented as plug-in on the basis of the “Eclipse
Modeling Framework” and the “Model Analysis Framework” within the
“AUTOSAR Tool Platform’s (Artop).25-27 The two activities on the right
side of the gray box can be carried out within several third-party tools
that provide simulation and optimization features for embedded multi-
core systems. We use the “TA Tool Suite” in our case study.28

In general, there is indispensable information for each specific work-
ing step which is provided in Table 1. For each subsequent step, only
the additional required mandatory or optional information is listed.
The last column of the table has been adapted from the work of Sailer
et al?? and indicates whether the data exchange formats AUTOSAR,
AMALTHEA or ASAM MDX can be used to store and exchange the
respective information.

Data dependency analysis and validation: The basis of the approach
is a data dependency analysis run on AUTOSAR models to detect, visu-
alize, and solve potential conflicts related to a software's distributed
execution on multiple cores:

S Artop facilitates the construction of AUTOSAR tools by serving as Eclipse infrastructure and
virtually acting as “persistence layer” that enables common base functionality like easy access
on AUTOSAR models that adhere to specific meta-model versions.24

legacy code
of application

Matlab/Simulink
AUTOSAR Export

Code Parser &

original
AUTOSAR
model validated
AUTOSAR

model

Data Dependency
Analysis & Validation

suggested
tasks & core
assignment

Partitioning

30f13

[...]

Hardware

Tracing Deployment

Optimization 8
Comparison

evaluated
further
solutions

evaluated

]l
r,

Scheduling &

& Mapping

feedback
on achieved

Simulation

benefit

e.g. AutoAnalyze

FIGURE1 Overview of the migration process

1. The analysis identifies a model's structural elements such as the
aforementioned REs, their variable accesses, their recurrence (also
called “triggering frequency”—TF— or “period”), their specific exe-
cution time, the software components (SWCs) containing the REs
as well as already imposed timing constraints.

2. The gathered information is assessed, and potential conflicts
regarding data consistency are determined.

3. Inconsistencies are addressed by anincremental (stepwise) applica-
tion or modification of timing constraints on the lowest level (ie, on
REs) for the purpose of achieving “multi-core robustness” in terms
of data consistency.

This semiautomatic process provides the software with a consis-
tent timing model to ensure the preservation of its original sequential
(single-core) behavior on a multi-core platform.

Partitioning and mapping: This step's fundamental idea is to search
on AUTOSAR's most fine-grained level (REs) for regions (sets of REs)
with a relatively low coupling and to group them into tasks as means
for creating a suitable partition as well as the subsequent task-to-core
mapping. The immense search space can be remarkably reduced by
providing a beneficial starting point for the simulation and optimiza-
tion that are carried out to evaluate the initial solution and to search
for further ones. This approach is based on techniques introduced in
previous papers,3°-32 which were further developed in an approach by
Gotzetal.33

Since its initial proposition (in Kienberger et al®), the partitioning
algorithm was extended to cope with highly complex models:

e A configurable search tolerance can be used to loosen the rather
strict criteria for low-coupled regions, so that RE sets, which violate
the demands to a certain tolerable extent, are not discarded right

from the outset.

e.g. TA Tool Suite

e The relevance of the connection between two REs is calculated to
determine concrete pair-wise dependency weights depending on
the number of variable accesses between two REs as well as their
respective recurrence.

e Based on experience, analyzing a whole model often unnecessarily
increases the search effort while simultaneously shrinking the result
set. This effect can be attributed to the high degree of interconnec-
tion in large models which exacerbates partitioning attempts. Thus,
different splitting strategies are provided, eg, dividing the model into
parts with uniform recurrences before running searches on each of
them.

e As these parts often remain highly complex, the search gradually
ignores pair-wise dependencies below a growing threshold until
a sufficient number of regions is found. This “relevance partition-
ing” roughly corresponds to the “Multi-Level Partitioning” approach
of first “coarsening,” then clustering and afterwards restoring

agraph.3

The succeeding mapping algorithm is highly adjustable to meet the
specific hardware platform's requirements. As demonstrated in the
case study (Section 4), achieving a certain goal is possible by modify-
ing the preferences when arranging the tasks and mapping them to a
specific number of cores, eg, the preferred granularity of the regions,
a concrete load balancing strategy or enforcing certain regions to be
assigned to the same core (via “pairing constraints”).

However, the quality of a calculated partition and an according map-
ping can hardly be objectively assessed. This is because optima are
typically either not recognizable as such or are simply unknown and
goals for parallelization efforts are often contradictory. For example,
pooling strongly-connected software parts (low synchronization over-

head), distinctly separating functionalities that should not interfere

40f13

TABLE1 Lineup of required information for the specific working steps

Mandatory Optional Exchange format
Data Dependency e shared data defi- e SWCs and composi- e AUTOSAR
Analysis & Validation nitions tions
. REs including data . timing constraints (ie, o AMALTHEA
accesses EOCs and ACs)
. recurrences of oASAM MDX
REs
Partitioning . basic hardware . basic OS model o AUTOSAR
& Mapping model (ie, number (eg, scheduling
of cores) algorithm)
o AMALTHEA
Scheduling e definitions of e precise hardware and e AUTOSAR (only
& Simulation tasks and Inter- OS model mandatory information)
rupt Service
Routines (ISRs)
with RE call
sequence

. basic OS model

e OS configuration
(eg, task and ISR
priorities and
preemptability)

. timing require-
ments (ie, task
deadlines)

Optimization
& Comparison

precise RE runtimes e AMALTHEA
(ie, runtime distribu-

tion)

precise task/ISR acti-

vation pattern (eg,

jitter and sporadic

activations)

precise task call
graphs (ie, branches)

Affinity Constraints o AMALTHEA
(eg, RE pairing or

separation)

Abbreviations: AC, AgeConstraints; EOC, Execution Order Constraints; ISR, Interrupt Service Routines; REs, Runnable

Entities; SWCs, Software Components.

(support safety) and evenly spreading computational cost (proper load
balancing) are usually not simultaneously achievable. Thus, obtained
solutions mostly constitute a trade-off between a few personally prior-
itized goals.

Like previously mentioned, we are seeking a pooling-oriented par-
tition together with a mapping that enables satisfactory load bal-
ancing. Of course, there are numerous other factors worth taking
into consideration, eg, if the target platform's processor is “homo-
geneous” concerning equally equipped cores and how many of them
are available.

Inthe end, this step's purpose is to provide an advantageous starting
point (“initial solution”), which is effectively supporting the following
simulation and optimization to find appropriate further solutions in an
adequate amount of time.

Scheduling and simulation: The subsequent step employs a
third-party simulation tool to evaluate the usefulness of the provided
initial solution using various timing and performance metrics, eg, task
response times. Regardless of what product is employed, some prepa-
rations have to be made before such a simulation can deliver expressive

results:

1. Importing the validated AUTOSAR model together with the cal-
culated partition and mapping from the previous working step
(initial solution).

2. Setting up the underlying hardware model, eg, a generic processor
model or a detailed automotive microcontroller simulation model.

3. Setting up the underlying operating system model, eg, how the
cores are managed by the operation system (global/local schedul-
ing, online/offline scheduling, and the scheduling algorithm).

4. Adding basic timing requirements (eg, task deadlines) to later allow
a general classification into valid and invalid solutions.

Optimization and comparison: The aforementioned initial solution
serves as starting point for further improvements by the optimization
step. Alternative solutions are hereby created by systematically modi-
fying the initial solutionin aniterative process. To steer the optimization
process, each alternative solution is simulated to evaluate the improve-
ment compared to the initial solution with respect to timing and per-
formance criteria. This optimization process can be carried out either
manually or with tooling support.

A focus on “weak spots” discovered by means of interpreting the
simulation results can act as beneficial leverage point for model
changes, eg, splitting up “chunky” tasks that hamper proper load bal-
ancing or enforcing two heavily communicating tasks to be mapped
to the same core. Having found better solutions in terms of certain
characteristics—like reduced cross-core communication or a shorter
overall cycle time—allows to “close” the round-trip engineering circle

by providing customized data on advantageous model-specific search

parameters for the “Partitioning and Mapping” step. This iterative
proceeding seems sensible to effectively broaden the search span by
means of afresh “solution seed.”

Running a timing simulation on highly complex models can take a
lot of time, but eventually yields informative findings about a solution's
general validity, occurring latencies, overhead caused by necessary syn-
chronization, or a basic statements about a software's overall degree of
potential parallelization (indicating possible speed-up). Optimizations
for practical models typically require the simulation of several tens of
thousands alternative solutions. As a consequence, the required time
for optimization is mainly dictated by the simulation performance. Gen-
erally speaking, it can be stated that a“good” preceding partitioningand
mapping facilitates the optimization step considerably which is particu-
larly important when being confronted with cross-core communication

as a substantial new resource bottleneck.#

3 | APPROACHINDETAIL

In the following, we describe the introduced migration process (cf
Figure 1) in detail and start by explaining how models are prepared for

distributed execution on several cores.

3.1 | Datadependency analysis and validation

Like previously stated, the central task is to determine a timing model,
so that an embedded application's original behavior is retained. In
this context, conflicts can occur when functional blocks—originating
from legacy (single-core) software—are processed in parallel instead of
well-matched and rigidly consecutive like before. This poses a threat
to data consistency, which we previously defined as stability (steady
signals or values over a certain period of time) being paralleled by
coherency (signals or values with uniform data age).

Possible conflicts are, eg, data not being available in time or
data being read inconsistently. Of course, consistency conflicts like
this can occur on single-core platforms too, but multi-core sys-
tems are more prone to ‘evoke” them because here, it is—due to
concurrency—significantly harder to maintain consistency.

Therefore, it is inevitable to address any potentially unintentional
behavior within a system. The challenge consists of the already men-
tioned complexity rise caused by the exponentially growing number of
possibilities to distribute tasks on cores, which leads—together with
scheduling—to a tremendous amount of possible execution sequences
including many adverse (ie, conflicting) ones.

To assure that software will work properly regardless of a specific
mapping of tasks to cores, it is necessary to completely preclude unin-
tended behavior, which is accomplished by adding timing constraints to
the model or by modifying existing ones.

Our approach is grounded on the following principles:

e Bottom-up: Both, analysis and validation are conducted on the most
detailed (lowest) level, which corresponds to REs in AUTOSAR. A
top-down approach would be barely appropriable in this case as
ECU software is—due to competitive pressure—rather continuously

revised and augmented than created “from scratch”. Additionally,

50f 13

more general views on a system can nevertheless be built by deriving
from collected low-level data.

e Incremental: Validation is run stepwise instead of all at once to
prevent the creation of “fresh” conflicts by overlapping constraint
scopes and to avoid indiscriminately calculating all possibilities at
the very start which would require disproportionate computing
power (and considerably more time).

e Minimal: For the purpose of not needlessly restricting the degree
of freedom for subsequent steps (and thus not to unintentionally
exclude promising solutions), only a minimum set of constraints is

imposed.

Complying with these principles, a static data dependency analysis
is performed directly on AUTOSAR models (see Kienberger et al® for
details).

As a start, parsing the AUTOSAR model provides the information
foundation necessary for following steps: The SWCs are AUTOSAR's
central structural elements as their “Internal Behavior” involves the
REs, the intra-component communication (between several REs) and
the inter-component communication (between an ECU's different
SWOCs). As each RE can be multiply instantiated (eg, 4 wheel speed sen-
sors of a car), every RE instance (REI)T has its own data dependencies,
which each emerge from the interaction between 2 REls. In AUTOSAR,
7 kinds of variable accesses are employed for “local” (intra-SWC) access
as well as for communication crossing SWC borders. All of them are
considered.

Moreover, AUTOSAR's timing constraints are identified: Currently,
we deploy 2 out of the 7 existing constraints: “Execution Order Con-
straints” (EOCs) and “AgeConstraints” (ACs).23 3 The former are “[...]
used to specify the order of execution of ExecutableEntities” (ie, specify
a fixed order for multiple REs) and the latter “[...] to specify a mini-
mum and maximum age that is tolerated when a variable data pro-
totype is received” (ie, determine the tolerated data age of a read
variable).3>

EOCs are used to predetermine a rigid execution order between 2 or
more REs. This is appropriate when they are logically (and semantically)
linked like in a classical “sensor-controller-actor system” where sensors
transmit measurement data to a controller which determines a suitable
action that is afterwards carried out by associated actors, eg, brakes in
an antilock braking system. In contrast, ACs resolve potential inconsis-
tencies via tagging a possibly conflicting dependency as unproblematic
by allowing that certain accessed data comes from a previous “comput-
ing cycle”!. This is feasible if the reading RE does not imperatively need
current data to work properly, eg, a speedometer that is not able (and is
not intended) to react within milliseconds because of the speedometer
needle's inertia.

Taking all this information into consideration allows to map them
on a directed graph illustrating the data-flow by means of nodes that

TThis is not an official but an implicit AUTOSAR element. The existence of RE instances arises
implicitly from the component structure where the same RE may appear in different contexts.
I'We define a computing cycle as the time elapsed between 2 events that involve periodically
activated tasks being guided by the slowest (least triggered) task occurring.

60f 13

represent the REs and edges standing for the variable accesses seman-
tically connecting them.

For the second step, gathered information is employed so that sets of
node neighborhood for the access on a specific variable can be derived
from the graph (ie, successor and predecessor relations between REls).
These sets are expedient to identify possible execution sequences and
to accordingly classify the dependencies, so that possible inconsisten-
cies are found. The latter are represented by every contingency of
unintended consuming prior to producing certain data within the scope
of one computing cycle.

In addition, existing timing constraints are checked for correctness
(validity). EOCs should only be set for REs with uniform recurrence,
because when dealing with ECU software, static scheduling is preva-
lent. Thus, a once found execution order does not change anymore. As
opposed to this, EOCs are hardly suitable for REs with diverging recur-
rences, because their execution order within a certain computing cycle
can alter, eg, when a “consuming RE” is executed more often than a
“producing RE”. In such a case, an EOC requiring the producing RE to
be computed at first (within a computing cycle) may cause additional
latency when the consuming RE is triggered (and finished) earlier than
the producing one. Here, ACs are usually the more suitable means.

Besides simply absent constraints, typical fault cases are, eg, EOCs
imposed on REs with divergent recurrences, EOCs that contradict each
other by forming a cycle (the easiest case is “(A before B) && (B before
A)”") or “insufficient” ACs that merely allow a smaller data age than
effectively arising.

Via this validation process, “multi-core robustness” can be achieved
by means of resolving the model's potential conflicts through prevent-
ing every unintentional consuming before producing. This is done by
imposing a minimal amount of timing constraints to reduce all possi-
ble execution sequences to a set which supplies every RE| early enough
with its necessary input data.

As EOCs do distinctly narrow the “degree of freedom” for mapping
the REs (grouped as tasks) to cores, the potential for parallel execution
is strongly reduced when a model is heavily order-constrained. Paral-
lelism can even be fully thwarted when the EOCs' combination enforce
a “single-chain” execution order. Thus, as little EOCs as feasible are
imposed while preferably setting them in a local scope (eg, being only
valid within one SWC). In the case of imposing constraints on depen-
dencies across SWC borders, ACs come in handy as their (global) impact
is less limiting and they do not decrease the number of possible execu-
tion orders (which is advantageous for multi-core use cases). However,
ACs and EOCs are not mutually exclusive: depending on the specific sit-
uation, combining them can be very expedient. This is particularly the
case if a certain variable is used for different purposes, eg, the value of
a current wheel speed is frequently read by an antilock braking system
but usually only seldom by the speedometer.

Once all potential conflicts, including those that influence paral-
lelization behavior, are wiped out, a system's validity—with regard to
data age—can be ensured. Now, the corresponding model is ready to be
split up safely into functional blocks that can be mapped on different
cores.

3.2 | Partitioning and mapping

Once the consistency threats have been identified and solved with

the help of constraints, the next logical step is to figure out how the

software can be split up and distributed in an expedient way: At first,
“partitioning” breaks up a model into sets of REs according to a given
objective, then the succeeding “mapping” means to determine concrete
tasks within the obtained partition and to assign them to specific cores.

Afterwards, their actual execution can be scheduled.

3.2.1 | Overview

As a matter of fact, there is no universal approach to find a suitable par-
tition or mapping, and it is difficult to assess whether a specific solution
will satisfy certain properties. Therefore, it is essential to thoroughly
consider the desired aspects of the target system and its according
objectives in advance. This is usually done with respect to definite goals
like reaching a preferably low coupling rate between the tasks and
therefore rather little necessary synchronization as well as communi-
cation (“pooling”), ensuring the adherence to safety requirements like
distinctly separating highly critical tasks or preserving the processing of
logically related software parts on the same core, eg, REs contributing
to one common function.

Since there are countless possibilities to partition a model, deter-
mining an optimal partition according to specific goals is classed
as “NP-hard problem”.36 Moreover, a search for advantageous
task-to-core mappings involves traversing an overwhelmingly huge
solution space as the number of mapping possibilities grows expo-
nentially according to the amount of given tasks. Collectively, both
activities maybe pose the hardest challenge when trying to build a
powerful and streamlined multi-core system.

Aneasy sample calculation shows how the search space quickly esca-
lates even for small examples: The “Brake-by-Wire” application from
projects “TIMMO”" and “TIMMO-2-USE"t! consists of clearly orga-
nized 18 REs.37.38

Assuming that each RE is supposed to be mapped separately on 1
of 3 available cores, there are about 387 million (318) different ways
to do so. After choosing one of these distribution solutions, there are
again many possible execution sequences: there are over 6 quadrillion
(“18 factorial”) sequences for executing all REs successively on 1 core.
And there are a lot (exponentially) more options in a multi-core setting,
because most REs can theoretically be processed in parallel (fully or
partially overlapping). Generally speaking, every random set of REs can
be simultaneously executed as long as it is valid regarding the absence
of 2 REs being interconnected by an EOC. The exact count of possibil-
ities depends on the number of available cores (defining the maximum
set size), the number of tasks encapsulating the REs and possibly given
minimum requirements for load balancing (together with execution
times).

Therefore, we aim to reduce the number of possibilities to consider
by first providing a beneficial initial partition and secondly—based on
this starting point—an advantageous initial mapping, which increases

“The project “TIMing MOdel” developed “[...] a common, standardized infrastructure for the
handling of timing information during the design of embedded real-time systems in the auto-
motive industry.”

1 The project “TIMing MOdel - TOols, algorithms, languages, methodology, and USE cases”
provides “[...] tools, algorithms, languages, methodology, and use cases for dealing with tim-
ing requirements and properties for timing analyses during the development of distributed
embedded automotive systems”.

the efficiency of the following scheduling, simulation, and optimiza-
tion. As the partition is created with respect to imposed constraints
and existing dependencies, the subsequent computational effort is lim-
ited to a “corridor” of preferably promising solutions. Since it cannot be
guaranteed that proper paths are not discarded, this process should be
repeated to ensure a balance between searching deeply and broadly.

Without a given partition and if no further knowledge of the sys-
tem is available, a simulation tool would be forced to draw on simple
strategies to obtain initial tasks (like employed in approaches by Long
et al®? or Monot et al4), eg, preferably encapsulating REs with equal
recurrences and therefore creating homogeneous and easily relocat-
able tasks. Such regions are particularly suitable for being executed on
a common core, so that the duration of one “computational iteration”
on this core is not needlessly delayed due to REs' recurrences that are
cumbersome to reconcile.

However, such a partition can be very adverse too, especially when
load balancing is hampered by strongly differing task sizes or when—as
it is almost always the case—cross-core communication is an issue and
heavily connected REs are not assigned to the same core. According to
our experience, this holds particularly true for highly complex models

like those used in the case study (cf Section 4).

3.2.2 | Partitioning

As stated in Section 2, “low coupling” (corresponds to “pooling”) acts
as standard partitioning objective. It is determined by counting the
dependencies that cross region borders within a certain partition, ie,
data accesses that are “broken” by assigning the involved REs to differ-
ent regions. Restoring these dependencies (preserving their function)
requires additional synchronization effort, because at scheduling, the
execution of the respective REs has to be coordinated according to their
specific cross-linking. Furthermore, we start from the premise that a
target system's processor has “homogeneous” (ie, equally equipped)
cores.

This concept is realized by the “Single Entry Region Analysis”
algorithm that searches for virtually isolated RE sets within the model.
They are characterized by a common starting point (the “entry node”)
and by not having any dependencies to outside nodes before a com-
mon end point (a “merger node”) “closes” the region. Details on the
algorithm, an exact definition, its origin and implementation are avail-
able in the previous dissemination by Kienberger et al.8

As broached in Section 2, the algorithm used to be not productive
enough for highly complex models asiits strict rules were not defined for
heavily interconnected graphs. To make it applicable to all kinds of mod-

els, we purposefully extended it to meet the emerging requirements:

Search tolerance: Being configurable according to the specific
model's complexity, the algorithm accepts a certain number of “iso-
lation violations” without discarding the identified RE set. This is
useful to perform a search that takes the average node degree (ie,
the number of dependencies per node) into consideration, mak-
ing it possible to find “hot spots” even in dense graphs. Based on
experience, it is—in most cases—relatively easy to detect a sensi-

ble upper limit for this tolerance, because found groups beyond this

70of 13

“turning point” are—often out of a sudden—bulky and evidently not
significant anymore.

Dependency weights: Treating the connection between all node
pairs equally is obviously not expedient when having to decide
which one to “break” while trying to form RE sets. Therefore,
we calculate weights for the connection degree of every con-
nected node/RE pair using the information usually available in
AUTOSAR models: the REs' period and the number of dependen-
cies (variable accesses) connecting them. The weight value rises
according to decreasing periods (corresponds to higher triggering
frequencies) and a rising number of dependencies. The according
formula is: weight = (1/periodA + 1/periodB) * dependencies.

Itis easily adaptable if further information (like the amount of trans-

ferred data of a specific variable access) is given and serves as basis
for the “relevance partitioning.”
Relevance partitioning: It is in most cases rather fruitless to pur-
sue simple partitioning approaches like, eg, “Sparsest Cut” which
repeatedly cuts a graph into 2 (roughly) equal-sized pieces.#! This
is due to strongly differing model structures which are usually not
suitable for being strictly divided into 2* parts.

Thus, we use a more sophisticated approach vaguely resting on
“Multi-Level Partitioning’, which better adapts to specific model
structures.3* “Multi-Level Partitioning” reduces a graph via “edge
contraction” (“coarsening”) to cluster and afterwards restore it.
However, we do not “erase” nodes/edges but gradually increase the
relevance threshold for dependencies taken into consideration by
the search until the graph is “manageable” enough to find appropri-
ate RE sets.

Splitting strategy: As previously mentioned, it is basically advanta-
geous toidentify groups whose REs have a uniform recurrence. This
can be achieved by different strategies:

",

e “Split, then analyze”: In our experience, building subgraphs
that consist of uniformly triggered REs and then running par-
titioning searches on each of them, has produced the most
valuable results for highly complex models. In addition, the
overall search effort is remarkably reduced.

e ‘Analyze, then split according to periods”: This strategy takes
the graph as is and assumes that the search finds sufficient
groups, which can afterwards be split according to the num-
ber of diverging RE periods occurring. This is rather suitable
for small heterogeneous or for huge but loosely connected
models.

e “Donot split, discard mixed regions”: Here, identified regions
are discarded if they do contain REs with diverging periods.
This can be useful for models with a small amount of different
periods that are nevertheless relatively complex.

e “Do not split, keep mixed regions”: As pretty simple strat-
egy, this approach is rather used as starting point to gain an
insight into the possible partitioning degree of a model in
general.

Because of the dynamic adaption (eg, automatically rising the tol-
erance and dependency threshold until a certain coverage rate
is reached), the algorithm can cope with models of any size and

complexity. However, this does not mean that every application can

80of 13

be efficiently parallelized, but it is almost always possible to identify
a proper partition according to circumstances.

323 |

The partitioning algorithm determines preferably large RE sets, which

Mapping

can—hierarchically structured—contain smaller ones. This is done
deliberately to maintain RE sets of every size and therefore to retain all
granularities for a later mapping of tasks to cores.

As the count for both the mapping of tasks to cores and the possible
execution sequences strongly depends on the initial number of tasks,
seeking to prevent a too fine-grained partition (many small tasks) is a
reasonable trade-off because although fine granularities provide more
flexibility, they involve much more effort to distribute and are harder to
synchronize.

As opposed to this, a coarse-grained partition “[...] can more eas-
ily result in an improvement” and thus seems appropriate as a first
step.42 However, having only very few large tasks can make it difficult
to distribute them properly on different cores without again causing
overhead for additional synchronization, eg, if being forced to map 2
intensively connected partitions on different cores or when trying to
achieve even workloads for cores (load balancing).

Of course, the latter—as well as the whole mapping process—is only
possible when the essential features of the target hardware are known
(number and homogeneity of cores).

Our principles remain pooling and load balancing, for which we need
to sensibly choose a suitable size for each available RE set to find the
most convenient mapping. This is due to the fact that a partition does
usually not contain groups with uniform size and therefore following a
rather coarse-grained approach should not lead to a clumsy method like
“streamlining” the partition by reducing large groups.

Eventually, we take the following aspects into consideration when
creating a mapping:

o Number of cores (IEUs) being available on the target platform

e Task clustering strategy: preferred relative regions size (if they are
nested) and handling of remaining REs (eg, a new task for each or
create clusters according to periods)

o Expected utilization: In case of available execution times (eg, spec-
ified by an SWC's ‘ResourceConsumption’ property in AUTOSAR),
an RE's expected workload is computed according to the formula
utilization = (relnstances * reExecutionTime)/rePeriod.

e Distribution: Taking heed of the calculated tasks' workload,
their assignment to cores can be done by algorithms drawing on

»

well-known patterns like “bin packing,” “round robin” or—for small

models—“exhaustive search space exploration”.

For our case study (Section 4), we use an exporter tool that creates a
CSVfile comprising these aspects. Additionally, it produces basic timing
requirements (task deadlines according to given periods) and sets task

priorities in order to support the succeeding simulation.

3.3 | Scheduling and simulation

In pursuance of evaluating the initial partitioning and mapping solu-
tion, we use a discrete-event simulation tool to conduct the evaluation
regarding valid scheduling (ie, fulfillment of task deadlines), specific

reaction times of critical execution paths, communication overhead,

memory consumption, and core load distribution. Compared to ana-
lytical methods, simulation techniques only yield approximated timing
metrics like task response times.#3 However, analytical methods usu-
ally provide very pessimistic estimations resulting in, eg, overestimated
worst-case response times. On the contrary, simulation techniques
allow more realistic typical case approximations. Additionally, the pro-
posed overall process as presented in Section 2 incorporates hardware
measurements of simulated solutions after deployment as afinal timing
verification step.

331 |

Discrete-event simulators use the fact that in between two consecu-

Discrete-event simulation

tive events, a system cannot change its states.** Consequently, only
the discrete points in time where state transitions occur are sim-
ulated. All state transitions which occur during simulation together
with the respective time stamps are recorded in a Best Trace For-
mat (BTF) trace.*> The simulator operates on the AUTOSAR-compliant
and AMALTHEA-compliant timing model,*¢ which consists of abstract
descriptions of the application software, hardware, operating system,
runtime environment, and environment (ie, external stimuli).

As already broached in Section 2, the simulation requires certain
information. For example, the operating system model must include a
specification of the schedulers which manage the execution of tasks and
Interrupt Service Routines (ISRs) on the respective cores. Moreover,
the used scheduling algorithms and the scheduling-relevant properties
of tasks and ISRs (like priorities) have to be provided. While simula-
tion is already possible with basic hardware model information like the
number of cores together with their clock frequency and instructions
per cycle, detailed vendor-specific processor models greatly improve
simulation precision. When the exact memory topology and behav-
jor descriptions including memory modules, caches, bus networks or
crossbars are provided, memory access times, cross-core communica-
tion delays as well as contention effects can be considered in a simula-

tion.

3.3.2 | Timing and performance metrics

After the application of statistical estimators to the resulting event
trace of a discrete-event simulation, various timing and performance
metrics can be calculated. In the following, the most important metrics
for the optimization step are introduced.

o Maximum Normalized Response Time (mNRT): The mNRT metric
quantifies the relative worst-case response time which occurred in
a simulation.4¢ “Relative’ means that the response times of each
task have been normalized with respect to their relative deadline. If
all deadlines are met, the mNRT is smaller than 1 whereas greater
values denote deadline violations during simulation.

e [nter-Core Communication Rate (ICCrate): The ICCrate metric
quantifies the amount of datain bits per time unit whichis exchanged
between the cores. It is an indicator for the expected cross-core
communication overhead.

o CPU Load (CPULoad): The CPULoad metric quantifies the average
load of a processor or individual core over the complete timespan
covered by the simulation.

o Maximum Load Distance (MaxLoadDist): The MaxLoadDist metric

quantifies to what extent the overall load is equally distributed to

the individual cores. It is the maximum of the absolute differences
between the CPULoad values of each core and the per-core CPU-
Load value obtained by dividing the overall load by the number of
cores.

e Buffer Size (BufferSize): The BufferSize metric quantifies the addi-
tional required memory in bits needed to enforce data consistency
by a buffering technique.?”

e Event-Chain Duration (ECDuration): “Event-Chains” as defined in
the AUTOSAR Timing Extensions3® connect arbitrary subsequent
events like the activation of a task, the termination of an RE or write
accesses to a specific variable. An Event-Chain consists at least of a
stimulus and response event but can also be further detailed by seg-
ments and strands. The ECDuration metric quantifies the timespan
between a stimulus and response event of an Event-Chain. Thus, the
reaction time of critical processing paths in the system, eg, across

multiple REs of different tasks can be evaluated.

3.4 | Optimization

To create alternative solutions as a result of the optimization, tasks
might be remapped to the different cores, existing tasks might be
split into smaller ones and the variables will be mapped to the dif-
ferent memory modules. The underlying problem of repartitioning
and remapping the software is equal to the Bin Packing Problem,
which is known to be NP-hard.#8 Consequently an exhaustive search,
ie, evaluating every possible alternative solution, is not an option in
practice. As genetic algorithms are one feasible way to handle such
problems, 4?30 we choose to integrate a genetic optimization tool in our
workflow.

3.4.1 | Genetic Algorithms

These algorithms simulate natural selection and evolution in an itera-
tive approach®! and operate on a set of alternative solutions. This set
of solutions (“population’) is modified within each iteration (“genera-
tion”) of the algorithm. Every genetic algorithm consists of the following

steps:

1. Create initial population: The initial population consists of ran-
domly created solutions, eg, using a uniform distribution.

2. Fitness assignment: A scalar fitness value is assigned to every solu-
tion of the population, which is used to quantify the quality of a
solution compared to another one.

3. Selection: Solutions are sorted by descending fitness values. The
best ones according to fitness are kept while the remaining ones are
discarded and removed from the population.

4. Evaluate stop criterion: The algorithm terminates when the stop
criterion is fulfilled. This can either be the case after a predefined
number of solutions has been created or after a specific amount
of generations. Another possibility is to stop after a stagnation
threshold has been reached, eg, when the best solution did not
improve for a certain amount of generations.

5. Perform variation: Mutation and crossover techniques are used to
create new solutions. For the former, one or more properties of an
existing solution are randomly modified to create a new solution.
For the latter; the properties of two or more solutions are combined

to create one or several new ones.

90f13

These steps only define the generic framework of genetic algorithms.
In our case, the discrete-event simulator presented in section 3.3.1 is
used to evaluate every created solution and provide the required met-
rics for fitness assignment. Regarding further implementation details of
the used genetic algorithm, we refer the reader to the work of Schmid-
huber et al.#6

3.4.2 | Optimization Parameters

To configure a specific optimization run, configuration parameters have
to be provided for each of the aforementioned steps. They are as fol-

lows:

e Per-Solution Simulation Time: This is the timespan covered in the
simulation for each created solution during optimization.

e Configuration of the Fitness Function: Several timing and per-
formance metrics as introduced in section 3.3.2 are aggregated
together into a scalar fitness value for each solution by using a mod-
ified euclidean norm.*¢52 For each incorporated metric, a weight
factor as well as a lower and upper limit for normalization has to be
provided.

e Population Size: This parameter defines the number of solutions cre-
ated in the initial population as well of the number of new solutions
which are created during each iteration of the algorithm.

e Selection Size: The selection size is the amount of best solutions
according to fitness which are taken over into the next iteration.
Those selected solutions are also used to create new solutions by
means of mutation and crossover.

e Stop Criterion: For the stop criterion, the minimum and maximum
number of solutions and/or generations are specified. Moreover,
the stagnation threshold is configured, ie, the algorithm stops if
the best solution according to fitness did not improve over a given
amount of iterations. All these criteria are evaluated simultaneously,
which means that all minimum requirements (eg, minimum number
of generations) and at least 1 maximum requirement (eg, stagna-
tion threshold) have to be fulfilled to result in the optimization's

termination.

343 |

Design modifications denote different categories of architecture

Design Modifications

changes which are applied to an existing solution to create new alterna-
tive solutions during variation. It is hereby possible to perform multiple
design modifications at once. For certain categories, design constraints
that restrict the respective degree of freedom can be stated as well. If
specified, such design constraints will be fulfilled by every single solu-
tion produced during optimization. One example for such constraints
is the requirement to map certain tasks to different cores, eg, due to
safety requirements, which demand spatial separation of the respec-

tive functionality.

® Process Mapping: Process mapping results in the remapping of tasks
or ISRs to different cores.

e Task Splitting: Tasks are split into 2 or more tasks which are then
mapped to separate cores. The split tasks are triggered one after
another to maintain the original RE execution order.

e Data Mapping: Data mapping allows the optimizer to change the

variable-to-memory mapping.

100f 13

e Periodic Offset Assignment: This modification varies the offset of
periodically activated tasks.

4 | CASESTUDY

In this section, we illustrate the case study that we conducted to
demonstrate the effectiveness of the introduced migration process (cf

in Figure 1).

4.1 | Overview and Goal

To demonstrate the benefit, we substantially expand a previous case
study by Kienberger et al®3 by applying our approach to two complex
engine management systems and by showing in-depth arising advan-
tages compared to a parallelization process without preceding depen-
dency analysis and initial partition/mapping suggestions.

We state the following hypothesis: An optimization algorithm will
yield significantly better results compared to a predefined initial solu-
tion in the same given time if a preceding dependency analysis and the
resulting initial partitioning/mapping are used as a starting point.

For each of the two engine management systems, the following

experiment was conducted:

1. Definition of a “reference solution” (ie, reasonable initial solution)
in terms of partitioning, mapping, and OS configuration.

2. Optimization |: Creating alternative solutions using “TA Optimizer”
(TA-Opt).28

3. Optimization II: Using ‘“AutoAnalyze” (AA) to provide the start-
ing point for subsequently creating alternative solutions using “TA
Optimizer”.

4. Comparing the relative improvements to the reference solution
yielded by Optimization I/Il.

4.2 | Setup

As mentioned before, we use the following two complex AUTOSAR
models:

The first one is a part of a huge real-world engine manage-
ment system from Continental (“Conti-EMS”), which consists of 178
SWCs including 552 REs with 20 different recurrences, 11 460 vari-
ables/signals and 45 399 data dependencies (each arising from a write
and according read access on a specific variable).

The second one is a “[...] a full blown performance model of amodern
engine management system” (“Bosch-EMS”),># which is publicly avail-
able as ‘AMALTHEA”"# model for the “FMTYV Verification Challenge” of
the “WATERS” workshop.657 It comprises 1250 REs with 11 different
recurrences, 9983 variables/signals, and 5195 data dependencies. We
converted it to AUTOSAR for being able to apply our working steps.

In the following, we enumerate all configurations we have made for
carrying out the experiment steps mentioned before:

Reference Solution: The following adjustments have been made to
the Conti-EMS and the Bosch-EMS model to create the aforemen-

tioned reference solutions:

+HAMALTHEA is an open source tool platform for engineering embedded multi-core and
many-core software systems."55

o Conti-EMS. Since the AUTOSAR description only contains

the SWCs, REs, and variables, we conducted the following
initial partitioning, mapping and OS configuration. Moreover,
we used the “Infineon AURIX TC27x”>8 simulation model as
hardware description. The processor's architecture is het-
erogeneous. Two out of its three cores process instructions
faster (two “performance cores’, one “efficiency core”). More-
over, two of its cores are capable of lockstep execution. The
clock frequency of the 3 cores is set to 200 MHz.
For the partitioning, 1 task per TF has been created, which
executes all REs belonging to it. The mapping was done by
assigning the tasks to cores using a typical separation scheme
for different TFs. In terms of OS configuration, each core is
managed by one AUTOSAR scheduler. Priorities have been
assigned using the “rate monotonic scheme”>? (ie, the shorter
the TF, the higher the priority) and each task was configured
to be fully preemptive.

o Bosch-EMS. The existing configuration is used as reference
solution, as the Bosch-EMS system already contains the com-
plete partitioning and mapping information as well as the
operating system configuration. However, we increased the
clock frequency of all four cores from 200 MHz to 1 GHz to
prevent scheduling errors as our analysis at experiment setup
had shown that the system is not schedulable with 200 MHz.

Experiment Configuration: This case consists of eight experiments
in total. Their configurations are itemized in Table 2. All experi-
ments consist of two optimization runs. One only with TA Optimizer
(TA-Opt) and one where AutoAnalyze is used additionally (AA +
TA-Opt). Some general configuration parameters for simulation and
optimization are equal for all experiments: We set the per-solution
simulation time to 5 seconds, while the population size was set to
create 32 solution for the initial population and 16 new solutions
for each subsequent iteration. The selection size was set to keep
the 16 best solutions according tofitness and discard the remaining
ones. For the stop criterion, we used a fixed value of 256 alternative
solutions.
Optimization Goals: All of the four optimization goals are detailed
in Table 3 and denote the minimization of one single criterion or the
simultaneous minimization of multiple criteria, respectively.
AutoAnalyze Configuration: The two different AutoAnalyze
configurations—as mentioned in Table 2—are stated in the

following:

o AA-1:partitioning: rather small groups, relatively high search
tolerances (20 for Bosch-EMS, 30 for Conti-EMS); mapping:
bin packing, preferably equal distribution (totally equal for
Bosch-EMS, roughly equal for Conti-EMS)

e AA-2:partitioning: rather large groups, relatively high search
tolerances (10/20 for Bosch-EMS, 30 for Conti-EMS); map-
ping: bin packing, preferably equal distribution (totally equal
for Bosch-EMS, rather unbalanced for Conti-EMS)

TA Optimizer Configuration: There are four different TA Optimizer
configurations used in this case study, which are distinct from each
other regarding the applied design modifications as introduced in
section 3.4.3.

11013

TABLE2 Lineup of the different experiments performed within the scope of this case study

AA config TA-Opt config TA-Opt config
Experiment Model Optimization goal (AA + TA-Opt) (TA-Opt) (AA + TA-Opt)
Exp-1 Conti-EMS Goal-1a AA-1 TAOPT-1 TAOPT-2
Exp-2 Conti-EMS Goal-1b AA-1 TAOPT-1 TAOPT-2
Exp-3 Conti-EMS Goal-1c AA-1 TAOPT-1 TAOPT-2
Exp-4 Conti-EMS Goal-1a AA-2 TAOPT-1 TAOPT-2
Exp-5 Conti-EMS Goal-1b AA-2 TAOPT-1 TAOPT-2
Exp-6 Conti-EMS Goal-1c AA-2 TAOPT-1 TAOPT-2
Exp-7 Bosch-EMS Goal-2 AA-1 TAOPT-3 TAOPT-4
Exp-8 Bosch-EMS Goal-2 AA-2 TAOPT-3 TAOPT-4
TABLE3 Lineup of the different optimization goals stated in Table 2
Optimization goal Metric Weight Lowerlimit Upper limit
Goal-1a ICCrate 1 0 24.34 MBit/s
Goal-1b ICCrate 1 0 24.34 MBit/s
MaxLoadDist 1 0 20%
Goal-1c mNRT 10 0 2
BufferSize 5 0 17.88kB
MaxLoadDist 5 0 20%
Goal-2 ECDuration (EffectChain1) 1 0 94.60 ms
ECDuration (EffectChain2) 1 0 601.3ms
ECDuration (EffectChain3) 1 0 12.50 ms

TABLE4 Results of the performed experiments

Fitness Fitness Fitness Fitness improvement Added improvement
Experiment (reference) (TA-Opt) (AA +TA-Opt) (AA + TA-Opt) [%] by AutoAnalyze [%]
Exp-1 0.04 0.007394 0.00265 93.38 11.86
Exp-2 1.719 0.08156 0.04013 97.67 241
Exp-3 43.14 3.944 0.87941 97.96 7.10
Exp-4 0.04 0.0073%94 0.00033 99.18 17.66
Exp-5 1.719 0.08156 0.03259 98.10 2.85
Exp-6 43.14 3.944 0.99263 97.70 6.84
Exp-7 0.06928 0.05366 0.03097 55.29 32.75
Exp-8 0.06928 0.05366 0.03784 45.38 22.83

o TAOPT-1: Process mapping, Task Splitting and Periodic Offset
Assignment

o TAOPT-2: Process Mapping and Periodic Offset Assignment

o TAOPT-3: Process Mapping, Task Splitting, Periodic Offset
Assignment and Data Mapping

o TAOPT-4: Process Mapping, Periodic Offset Assignment and
Data Mapping

Note that Task Splitting is only configured when TA Optimizer is used
without AutoAnalyze. Further splitting the tasks of a fine-grained task
set would lead to an unnecessary increase of the vast search space.

4.3 | Results

The results of the experiments described in the previous section are
shown in Table 4. For each experiment, the fitness of the reference solu-
tion, the fitness of the best alternative solution for both “TA-Opt” and

‘AA + TA-Opt” cases and the relative fitness improvement of the best

alternative solution are compared. Moreover, the added value (addi-
tional improvement by AutoAnalyze) is provided.

All experiments yield a significant (around 50% or greater) improve-
ment compared to the reference solution. AutoAnalyze always resulted
in an additional improvement compared to the respective experiment
where TA Optimizer was solely used to create alternative solutions. The
highest improvement by AutoAnalyze was achieved with experiments
Exp-7 and Exp-8.

4.4 | Evaluation

As stated in Section 2, full-scale optimizations usually consists of sev-
eral ten thousand alternative solutions. However, the optimizations
were configured to produce only 256 solutions. This setting repre-
sents a typical “potential exploration” to evaluate rather quickly to
what extent an initial solution can be improved. This is due to the
fact that simulations of complex systems like an EMS—especially when
detailed simulation models for the hardware are used—are quite costly
in terms of runtime. Therefore, the goal is to save time and resources

12013

by first evaluating the potential of improvement before starting a
full-scale optimization. Each experiment conducted in the case study
took around 16 hours to complete on a computer with “Intel Core
i7-2930K” processor (6 cores, up to 12 simultaneous threads) with a
clock frequency of 3.2 GHz with 16 GB RAM. We have configured TA
Optimizer to use 5 out of the 6 cores to run up to 10 simulations in
parallel while 1 core is reserved for running the OS. AutoAnalyze on
the contrary only requires a few seconds to provide an appropriate ini-
tial partitioning and mapping on such a computer. Since AutoAnalyze
led to an additional improvement for every experiment, the hypothesis
we stated in Section 4.1 is fulfilled. In case of the experiments with the
Bosch-EMS, the combination of AutoAnalyze and TA Optimizer could
improve the reference solution more than twice as much within the
same given time compared to the experiment where TA Optimizer was
solely used.

5 | SUMMARY AND OUTLOOK

Because of the inevitable complexity associated with migrating
single-core legacy ECU software for a proper execution to multi-core
platforms, innovative methods and approaches are urgently needed.

With the objective of enabling an efficient parallelization of
AUTOSAR application software on function level, we introduce a
tool-supported systematic approach that supports software engi-
neers when analyzing, validating, partitioning, and mapping AUTOSAR
model data.

Following the intention to eventually determine advantageous solu-
tions in terms of low overall latency, minimal cross-core communication
rates as well as proper load balancing, the suggested proceeding and
the corresponding tool enable to efficiently narrow down the search
space for the following working steps scheduling, simulation, and opti-
mization. This is accomplished by identifying and solving potential con-
sistency conflicts from the outset and by facilitating the parallelization
of AUTOSAR models.

In comparison with hitherto employed approaches that usually draw
on very simple strategies to obtain an initial task set (partition) and
its distribution to available cores (mapping), the developed algorithms
included in the introduced tool considerably reduce the afterwards
necessary search effort via automatically providing abeneficial starting
point.

To verify the benefit of our approach, we apply it to two complex
engine management system models to obtain different variants of solu-
tions (partitions and according mappings), which we then compare with
apreviously calculated one. The case study shows that a preceding data
dependency analysis combined with a skillful partitioning and mapping
(that builds on its outcome) is able to significantly enhance the solu-
tion quality while reducing the required effort (time and resources) for
finding a suitable solution.

As the automotive sector's demands are rapidly rising and even
many-core technology becomes progressively common (like reflected
by a growing number of cores with distributed memories or heteroge-
neous connectivity?), the presented approach can serve as promising
starting point for overcoming the obstacles arising from this develop-

ment.

ACKNOWLEDGEMENTS

We would like to cordially thank the Timing-Architects Embedded Sys-
tems GmbH for giving us the opportunity to use their software within

TA research partner program.

REFERENCES

1. FurstS. AUTOSAR Adaptive Platform for Connected and Autonomous
Vehicles. EMCC 2015 Proceedings, Munich, Germany; 2016.

2. Deubzer M, Hobelsberger M, Mottok Jiirgen, et al. Modeling and sim-
ulation of embedded real-time multicore systems. Proceedings of the
3rd Embedded Software Engineering Congress, Sindelfingen, Germany;
2010:228-241.

3. Schauffele J, Zurawka T. Automotive Software Engineering. Berlin, Ger-
many: Springer DE; 2010.

4. Mackamul H. AMALTHEA - an open source development platform for
embedded multi- and many-core systems. embedded multi-core con-
ference. EMCC 2015 Proceedings, Munich, Germany; 2015.

5. Grave R. Software integration challenge multi-core experience from
real world projects. embedded multi-core conference. EMCC 2015 Pro-
ceedings, Munich, Germany; 2015.

6. Mader R. Timing and design tool support in continental powertrain
multi-core platform. embedded multi-core conference. EMCC 2015
Proceedings, Munich, Germany; 2015.

7. SchileT,Gleim U. Multicore-Software: Grundlagen, Architektur und Imple-
mentierung in C/C++, Java und C. Heidelberg, Germany: dpunkt. verlag,
2012.

8. Kienberger J, Minnerup P, Kuntz S, Bauer B. Analysis and validation
of AUTOSAR models. Proceedings of the 2nd International Conference
on Model-Driven Engineering and Software Development (MODELSWARD),
Lisbon, Portugal; 2014:274-281.

9. Sutter H. The free lunch is over: A fundamental turn toward concur-
rency in software. Dr. Dobb's J. 2005;30(3):202-210.

10. Bohn M, Schneider J, Eltges C, RoRger R. Migration von
AUTOSAR-basierten Echtzeitanwendungen auf Multicore-Systeme.
Workshop: Entwicklung Zuverldssiger Software-Systeme, (Stuttgart,
Germany); 2011.

11. Wirbel L. Embedded Multicore Goes Mainstream. 2011. http:/www.
designnews.com/author.asp?section_id=1386&doc_id=231676.
Accessed July 15,2013.

12. Furst S. An OEM's point of view on multi-core. Embedded multi-core
conference. EMCC 2015 Proceedings, Munich, Germany; 2015.

13. GLIWA embedded systems. An Introduction to Automotive
Multi-Core Embedded Software Timing. 2015. https:/www.gliwa.
com/downloads/Multi-core%20Poster.pdf. Accessed November 13,
2015.

14. Schatz B. Challenge multi-core TCU: An applied example of multi-core
migration. embedded multi-core conference. EMCC 2015 Proceedings,
Munich, Germany; 2015.

15. Schneider RM. The ARAMIS automotive LSSI demonstrators and the
lessons learned. Embedded multi-core conference. EMCC 2015 Pro-
ceedings, Munich, Germany; 2015.

16. PadbergF, Denninger O. Multicore-Softwarefehler im Visier: Automa-
tische Fehlererkennung in Entwiirfen paralleler Programme. OBJEKT
spektrum, Ausgabe 01/2013.2013;20(1):72-76.

17. Patterson D. The
2010;47(7):28-32.

18. AUTOSAR. AUTOSAR Basic Information - Short Version. 2014.
http://www.autosar.org/fileadmin/files/basic_information/
AUTOSARBasicInformationShortVersion_EN.pdf. Accessed October
28,2014.

19. Deubzer M. Multi-core software architecture - moving towards soft-
ware engineering. Embedded multi-core conference. EMCC 2015 Pro-
ceedings, Munich, Germany; 2015.

trouble with multi-core. IEEE Spectr.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.
36.

37.

38.

39.

40.

41.

Shih C, Wu CT, Lin CY, et al. A model-driven multicore software devel-
opment environment for embedded system. Computer Software and
Applications Conference, 2009. COMPSAC '09. 33rd Annual IEEE Interna-
tional, Seattle, USA, vol. 2; 2009:261-268.

EiBenloffel T. Embedded-Software entwickeln. Heidelberg, Germany:
dpunkt; 2012.

Sodan A. C, Machina J, Deshmeh A, Macnaughton K, Esbaugh
B. Parallelism via multithreaded and multicore CPUs. Comput.
2010;43(3):24-32.

Flamig T. Software architecture methods for multicore - distributed
development and validation of architecture in collaboratively engi-
neered multicore systems. Embedded multi-core conference. EMCC
2015 Proceedings, Munich, Germany; 2015.

Artop Group. AUTOSAR Tool Platform. 2012. https:/www.artop.org/
Accessed July 20,2013.

Eclipse Foundation. Eclipse Modeling Framework Project. 2009. http:/
eclipse.org/modeling/emf/. Accessed July 15,2013.

Saad C. Model Analysis Framework. 2009. http:/www.informatik.
uni-augsburg.de/en/chairs/swt/ds/projects/mde/maf/. Accessed July
20,2013.

Saad C, Bauer B. Data-flow based model analysis and its applications.
In: International Conference on Model Driven Engineering Languages and
Systems. Miami, Florida, Springer Berlin Heidelberg; 2013:707-723.

Timing-Architects Embedded Systems GmbH. TA Tool Suite Version
15.04.0. TA Academic & Research License Program. 2016. http:/www.
timing-architects.com/ta-tool-suite/. Accessed April 14,2016.

Sailer A, Schmidhuber S, Hempe M, Deubzer M, Mottok J. Distributed
multi-core development in the automotive domain - A practical com-
parison of ASAM MDX vs. AUTOSAR vs. AMALTHEA. Proceedings of the
1st FORMUSIC Workshop in conjunction with ARCS 2016, Nuremberg,
Germany; 2016:1-8.

Johnson R, Pearson D, Pingali K. The program structure tree: Comput-
ing control regions in linear time. ACM SigPlan Notices, vol. 29. ACM;
1994:171-185.

Ottenstein KJ, Ottenstein LM. The Program Dependence Graph in
a Software Development Environment. ACM Sigplan Notices, vol. 19;
1984:177-184.

Tip F. A survey of program slicing techniques. J Program Lang.
1995;3(3):121-189.

Gotz M, Roser S, Lautenbacher F, Bauer B. Token analysis of
graph-oriented process models. 13th Enterprise Distributed Object
Computing Conference (EDOC), Auckland, New Zealand; 2009:15-24.

Aykanat C, Cambazoglu BB, Ucar B. Multi-level direct k-way hyper-
graph partitioning with multiple constraints and fixed vertices. J Paralle!
Distrib Comput. 2008;68(5):609-625.

AUTOSAR. Specification of Timing Extensions; 2014.

Bui TN, Jones C. Finding good approximate vertex and edge partitions
is NP-hard. Inf Process Lett. 1992;42(3):153-159.

TIMMO. Timing Model. 2007. https://itea3.org/project/timmo.html.
Accessed November 16, 2015.

TIMMO-2-USE. Timing Model - TOols, algorithms, languages, method-
ology, USE cases. 2010. https://itea3.org/project/timmo-2-use.html.
Accessed November 16, 2015.

Long R, Li H, Peng W, Zhang Y, Zhao M. An approach to optimize
intra-ECU communication based on mapping of AUTOSAR runnable
entities. International Conference on Embedded Software and Systems,
2009. ICESS'09, IEEE, Hangzhou, China; 2009:138-143.

Monot A, Navet N, Bavoux B, Simonot-Lion F. Multisource software on
multicore automotive ECUs combining runnable sequencing with task
scheduling. IEEE Trans Ind Electron. 2012;59(10):3934-3942.

Chawla S, Krauthgamer R, Kumar R, Rabani Y, Sivakumar D. On the
hardness of approximating multicut and sparsest-cut. Comput Complex-
ity.2006;15(2):94-114.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

130f 13

Moyer B. Real World Multicore Embedded Systems. Oxford, United King-
dom: Newnes; 2013.

Gries M. Methods for evaluating and covering the design space during
early design development. Integration, the VLS J. 2004;38(2):131-183.

Wehrle K, Giines M, Gross J. Modeling and Tools for Network Simulation.
Berlin, Germany: Springer Science & Business Media; 2010.

Eclipse Automotive Industry Working Group. BTF Specification V2.1.3.
2016. http:/wiki.eclipse.org/Auto_IWG#Documents. Accessed April
11,2016.

Schmidhuber S, Deubzer M, Mader R, Niemetz M, Mottok J. Towards
the derivation of guidelines for the deployment of real-time tasks on
a multicore processor. In: Model-Based Safety and Assessment. Berlin,
Germany: Springer International Publishing; 2014:152-165.

Michel L, Flaeming T, Claraz D, Mader R. Shared SW development
in multi-core automotive context. European Conference on Embedded
Real-time Software and Systems, Toulouse, FR; January 2016.

Coffman Jr EG, Garey MR, Johnson DS. Approximation algorithms for
bin packing: A survey. Approximation Algorithms for NP-hard Problems.
PWS Publishing Co.; 1996:46-93.

Deb K. Multi-Objective Optimization using Evolutionary Algorithms,
vol. 16. Hoboken, USA: John Wiley & Sons; 2001.

Aleti A,Buhnova B, Grunske L, Koziolek A, Meedeniya I. Software archi-
tecture optimization methods: A systematic literature review. IEEE
Trans Softw Eng. 2013;39(5):658-683.

Konak A, Coit D. W, Smith A. E. Multi-objective optimiza-
tion using genetic algorithms: A tutorial. Reliab Eng Syst Sdf.
2006;91(9):992-1007.

KonigF, Boers D, SlomkaF, et al. Application specific performance indi-
cators for quantitative evaluation of the timing behavior for embedded
real-time systems. Proceedings of the Conference on Design, Automation
and Test in Europe. Dresden, Germany, European Design and Automa-
tion Association; 2009:519-523.

Kienberger J, Saad C, Kuntz S, Bauer B. Efficient parallelization of com-
plex automotive systems. Proceedings of the 7th International Workshop
on Programming Models and Applications for Multicores and Manycores,
Barcelona, Spain; 2016:40-49.

Hamann A, Ziegenbein D, Kramer S, Lukasiewycz M. FMTV 2016 veri-
fication challenge. Inf Process Lett. 2016.

AMAILTHEA Project. An Open Platform Project for Embedded Mul-
ticore Systems. 2015. http:/www.amalthea-project.org/. Accessed
November 13, 2015.

WATERS U 7th International Workshop on Analysis Tools and Method-
ologies for Embedded and Real-time Systems. FMTV Verification Chal-
lenge. 2016. https:/waters201é.inria.fr/challenge/. Accessed March
23,2016.

Quinton S. WATERS Community Forum. 2016. http:/ecrts.eit.uni-kl.
de/forum/viewtopic.php?f=27&p=69#p79. Accessed March 23,2016.

Infineon Technologies AG. 32-bit TriCore Microcontroller. 2015.
http:/www.infineon.com/cms/en/product/microcontroller/32-bit-/
tricore-tm-microcontroller/channel.html?channel=ff80808112abé8/
1d0112ab6b64b50805. Accessed November 16,2015.

Leung JosephY-T, Whitehead J. On the complexity of
fixed-priority scheduling of periodic, real-time tasks. Perform Eval.
1982;2(4):237-250.

