Shifting Temporal and Communicational Aspects
into Design Phase via AADL and RTSIJ

Thomas Driessen
Software Methodologies for Distributed Systems
University of Augsburg
Augsburg, Germany
Email: thomas.driessen @ds-lab.org

Abstract—By now, Model-Driven Development is a well-known
approach in many domains. By (re)using standardized domain-
specific models, productivity is increased and common errors
are simultanously avoided. The Architecture Analysis and Design
Language is a domain-specific modeling language for embedded,
real-time and safety-critical systems. In our approach we utilize
this modeling language, with its well-defined semantics, as source
language for a mapping into real-time Java. The chosen subset
of model elements enables system designers to create a system
and subsequently generate a code framework that complies to
the model in terms of structure, timing and communicational
restrictions. In order to demonstrate the benefits of our approach,
we model and generate the code framework for an existing
autopilot and compare our results with the original software.

I. INTRODUCTION

It is common knowledge in Software Engineering that an
early development error detection lowers the costs of its
correction. This is especially the case if the system under
development is an embedded or safety-critical one, whereby
not only a system’s software, but also its corresponding
documentation or hardware is affected by changes.

In this context, "Model-Driven Development” (MDD) aims
at shifting most aspects of a system’s software implementation
into earlier phases of the development, e.g., software design or
system design. In this work, we thus concentrate on shifting
the timing and inter-component communication aspects of
a system’s software from the implementation phase to the
system design phase of a project.

Our approach uses the ”Architecture Analysis and Design
Language” (AADL) which offers — among other things —
standardized semantics for timing and inter-component com-
munication aspects of software components. In our approach,
we utilize these semantics to define a mapping between the
AADL and the ”Real-Time Specification for Java” (RTSJ).
RTSIJ is an extension of ”Java Standard Edition” (Java SE) for
hard and soft real-time applications. By an implementation of
this mapping, we generate AADL semantic-compliant RTSJ
code which preserves the timing behavior and inter-component
communication defined in an AADL model. Thus, a system
designer is capable of designing and performing analyses
regarding communication and timing almost completely during
design phase, while resting assured that the implementation

Bernhard Bauer
Software Methodologies for Distributed Systems
University of Augsburg
Augsburg, Germany
Email: bernhard.bauer@ds-lab.org

will reflect made design choices. Simultaneously, program-
mers are relieved of the monotonic and repetitive task of
writing communication- and timing-related code.

This work is structured as follows: Section II introduces
the chosen modeling language (AADL) and target language
(RTSJ). Section IIT shows the chosen mappings for structural,
temporal and communicational aspects. A use case for our
approach is illustrated in Section IV, where an autopilot for a
virtual quadrocopter is modeled and subsequently generated.
Section V relates our approach to existing work. Finally,
Section VI highlights the added value of our work.

II. BAsIcs
A. AADL

AADL is a modeling language specifically designed for
?[...] the specification, analysis, automated integration and
code generation of real-time performance-critical (timing,
safety, schedulability, fault tolerant, security, etc.) distributed
computer systems” [1]. Although the field of modeling lan-
guages is very crowded in this research area, AADL excels by
defining an official, standardized semantics for all its model
elements and properties. This makes it an ideal candidate
for model-to-model or model-to-text transformations, as the
semantics to be fulfilled by the target language are already
predefined by the source language. The basic building blocks
of AADL are:

o Type declarations which define the interface of a compo-

nent that is visible to other components in terms of

e features, e.g., ports or access features that describe what

kind of data is exchanged and how this exchange happens.

o Implementation declarations realize one type declaration

and add information about the inner composition of the
component in terms of subcomponents and their

o connections which can be used to describe access rights,

delays or similar characteristics.

AADL provides predefined properties that are used to attach
additional information to each of the model elements, e.g., for
analysis or altering the behavior of a component.

Each type declaration and its corresponding implementation
declaration can have a specific type, like system, process or
thread, each with its own predefined semantic. For our ap-
proach, we utilized a subset that namely encompasses threads,

data, data ports and port connections with a subset of their
possible properties.

B. AADL-Subset

1) Threads: Threads are the core concept in AADL for
describing running software. "A thread represents an execu-
tion path through code that can execute concurrently with
other threads.” [2] The behavior of threads is standardized
by AADL in terms of a timed automaton that defines different
states which are entered through lifecycle events like dispatch,
start, completion and deadline. A logical abstraction of this
automaton is depicted in Figure 1. In this work we simplify
the semantic of AADL in order to conform to the possibilities
of RTSJ.

First, scheduler-specific events are not taken into account
by this work, e.g., dispatch and start are considered the same,
as the time of dispatch is not accessible in RTSJ by user
code. Events that usually lead to a switch from Active state to
Executing state or vice versa are summarized as a start event
in our work.

Second, scheduler-specific states like Awaiting Dispatch and
Active can not be represented in code, as a user in RTSJ
is only aware of the Executing or Recovery state. In Figure
1, the additional states are merely depicted for conceptual
completeness.

Recovery deadline

A

—

Awaiting Dispatch

Executing

Active start

dispatch:

Fig. 1. Thread States

The behavior of a thread can be modified by associating
properties with it, e.g., depending on the value of the property
Dispatch_Protocol a thread is either considered as a periodic,
aperiodic, sporadic, background, timed or hybrid thread, each
with its own defined semantic meaning. In this work we only
consider periodic threads. Periodic threads are usually started
at the same time as the application and are running at a
specified period. Therefore, they need a Period property which
determines the thread’s amount of time between dispatch and
deadline.

2) Data Ports: Data ports are specialized features that al-
low components to exchange data. They can be onedirectional
(in, out) or bidirectional (in/out). Usually, the type of data
that can be received/sent is given by a classifier which can

be a primitive type from the Base_Types declared by AADL
or a custom type specified by a data type declaration or data
implementation declaration. AADL states that data ports can
only receive/send one data element at a given point in time.
Unlike other ports, for instance event ports that can buffer
more than one event, data ports always store only one data
element which is overwritten as soon as a new one arrives.
In Listing 1, the thread type declaration threadA defines
two data ports, dataIn and dataOut, with a specific
offset to describe at what point in time a data element is
received/sent at the respective data port. Usually, this offset
(Input_Time/Output_Time) is given in relation to a lifecycle
event (IO_Reference_Time) of the thread to which this data
port belongs. Although negative offsets are allowed by AADL,
we confine ourselves to positive ones.
thread threadA
features
dataln in data port Base_Types::Boolean
{Input_Time =>
([Time => Start;
Offset => 10ms 20ms;]1);}s
dataOut out data port Base_Types::Boolean
{Output_Time =>

([Time => Completion;

Offset => 10ms 20ms;]1);}s
end threadA;

Listing 1. Data ports with offsets

3) Port Connections: Port connections are a more specific
subtype of connections which are only allowed between ports.
Other possible connection types are access connections, pa-
rameter connections or the more general feature connections
or feature group connections. As we restrict our approach to
purely port-based communication, it is sufficient to explore
port connections and their relevant properties in detail. Listing
2 shows a port connection between two subcomponents with
the classifier threadA which was defined in Listing 1.
Port connections between two threads that are periodic and
harmonic (same logical start time and period) can have three
different values for their Timing property: immediate, delayed
or sampled. Each timing has effects on the Input_Time and
Output_Time of the connected ports. The semantic of each
Timing is explained in detail in Subsection III-B. The default
value for Timing is sampled.
process implementation processA.impl

subcomponents

sender threadA ;

receiver threadA ;
connections

conl port sender.dataOut

—> receiver.dataln {Timing => Immediate };
end processA.impl;

Listing 2. Immediate port connection

4) Data: The data component is used to model user-
specific data. Data can be used in the same way as classes or
structs in common programming languages. In our approach
we use data merely for modeling data types that can be used
as classifiers for data ports. Other possible usage scenarios
like shared data or local data are not part of this work. Listing

3 shows the usage of the user defined data type declaration
dataA as classifier for the in data port dataIn of the thread
type declaration threadA.
thread threadA

features

dataln : in data port dataA;
end threadA ;

data dataA
end dataA

Listing 3. Data as classifier for ports

C. RTSJ

RTSJ was introduced in January 2002 as the first Java Speci-
fication Request (JSR-1) ever launched by the Java Community
Process [3]. The specification is aiming for making Java SE
usable in soft and even hard real-time systems which was
previously impossible.

Real-time systems pose additional requirements on a system
in terms of timeliness. A system not only has to deliver the
right answer, but has to do this within a given amount of
time. Otherwise, either the quality of the results is decreasing
(soft real-time) or the whole system is rendered useless (hard
real-time). For applications written in Java SE, those timing
requirements were impossible to fulfill because of several
language specific restrictions.

First, Java SE always comes with its built-in garbage collec-
tion that deallocates memory whenever it seems reasonable. As
this deallocation can happen anytime, one cannot make exact
predictions about the runtime behavior of a specific part of the
code, as the garbage collector always could stop execution for
deallocating memory.

Second, Java makes use of Just-in-Time compilation which
recompiles code during runtime and is, like the garbage
collector, unpredictable in terms of timing.

Other obstacles are a non-priority based scheduling of
threads or the missing possibility of hardware access. RTSJ
tries to bypass those obstacles by offering a new library for
real-time compliant Java programming. RTSJ contains several
classes that enable writing real-time capable software. The
parts of the library that are of interest for our approach are
described below.

1) "Real-Time Thread” (RTT): Threads are the core part of
a running software in RTSJ. RTSJ differs between two types
of threads, normal threads and RTTs. Normal threads are
treated by the “Real-Time Java Virtual Machine” (RT-JVM)
like a usual “Java Virtual Machine” (JVM) would do, whereas
RTTs have one of at least 27 priorities that are taken into
account by the real-time scheduler of the RT-JVM. A RTT
is always considered more important than a normal thread
and a RTT with a higher priority is always more important
than one with a lower priority. Occasionally, this leads to
preemption of threads with lower importance if a thread with
higher importance needs compute time. Preemption means the
act of saving and stopping one thread in favor of a more
important one and reestablishing the less important one once
the more important thread has finished its work. This type of

scheduling, based on the priorities given for each RTT, enables
an exact prediction of the whole program in terms of timing.

2) Timer and EventHandler: A more abstract, but easier to
use, concept compared to threads are Timers and AsyncEven-
tHandler. RTTs are considered a rather low-level mechanism
from a programmer’s point of view. Thus, RTSJ provides two
types of Timers, OneShotTimer and PeriodicTimer that can be
used to implement behavior that is either event-triggered or
on a periodic base. A Timer must have either an AsyncEven-
tHandler or a BoundAsyncEventHandler that encapsulates the
logic to be executed once the handler is triggered. Both
handler types are bound to a RTT in the background by
the RT-JVM. Several AsyncEventHandler can share one RTT,
but a BoundAsyncEventHandler is always bound to its own,
unique RTT. If an AsyncEventHandler performs a blocking
operation, for instance is waiting for another handler to finish
its work, this might lead to a deadlock if both handlers are
bound to the same RTT in the background. A solution for
this problem is to always use BoundAsyncEventHandlers for
blocking operations, as they are guaranteed to not share their
RTT with other handlers.

3) Real-Time Garbage Collection: Although RTTs and
the priority-based, preemptive scheduling of threads allow
predictions about the software’s timing on a logical level,
the real behavior of this software would still be unpredictable
because of the garbage collector. Therefore, real-time garbage
collectors are introduced by most of the RTSJ implementations
in order to enable the software to run in a predictable way.
Thus, programmers are still able to use the comfort of auto-
matic memory management — and also prevent errors arising
from this area — and still are able to write predictable, real-time
capable software in Java.

4) RTSJ Implementation: The original specification is a
work still in progress and is currently carried on by JSR-
282 [4], specifying RTSJ 2.0 under the lead of aicas GmbH.
The only RT-JVM supporting the newly developed features in
RTSJ 2.0 is the JamaicaVM [5] from aicas GmbH, which is
the implementation we are targeting.

III. MAPPING

In this section we present the three main parts of our
mapping. First, we will show which structural characteristics
of AADL are mapped onto the target language. Second, we
present the timing-related features that can be automatically
transformed into semantically appropriate RTSJ code. Third,
we show how inter-component communication defined in
AADL is transformed into inter-thread communication mech-
anisms in RTSJ.

A. Structural Mapping

The structural mapping of our approach covers the AADL
language constructs type declaration, implementation decla-
ration, subcomponents and the relationships extends, realizes
and refined to that enable a user to structure components and
refine them incrementally.

1) Type and Implementation Declarations: type declara-
tions in AADL are representing interfaces in form of features
that are provided by a realizing implementation declaration. In
Java, the concept of an interface already exists. An interface
defines method signatures which have to be realized by classes
that implement the interface. In order to reuse this interface
concept to reflect the type declaration concept in AADL,
we translate each feature defined by a type declaration into
corresponding method signatures. In our approach, we only
regard data ports which can hold one data element at a
time and therefore can be translated into simple in and out
methods. This mapping is shown in Listing 4 and 5, where the
in/out data port dataIO is translated into its corresponding
in and out methods, each with the declared classifier A as
parameter type.

process processA

features
datalO in out data port A;
end processA
data A
end A
Listing 4. Types in AADL
public interface ProcessA{

void
void

inDatalO (A data);
outDatalO (A data);

public interface A{}

Listing 5. Types as interfaces in Java

Implementation declarations can realize exactly one type dec-
laration and extend exactly one other implementation decla-
ration. Multiple inheritance is forbidden by the standard. The
extended implementation declaration has to realize the same
type declaration as the extending one. One type declaration
can have several implementation declarations, each inheriting
the features defined by the type declaration. Additionally,
implementation declarations can have subcomponents which
specify the inner composition of a component. When trans-
ferred to Java, implementation declarations resemble abstract
classes which have member variables that hold references to
their subcomponents.

process implementation processA.impl

subcomponents
workerl thread threadA .impl;

worker2 thread threadA.impl;
end processA

thread threadA
features
datalO

end threadA

in out data port A;

thread implementation threadA .impl
end threadA .impl

Listing 6. Implementations in AADL

Listing 6 depicts a process implementation processA
of the process type defined in Listing 4 which inherits
the infout data port and adds two thread subcomponents,
workerl and worker2. This implementation declaration

is translated into a Java class as shown in Listing 7. The
class ProcessAImpl implements the interface ProcessaA,
inherits the methods defined by ProcessA and implements
them. The implementation of in/out methods is explained in
detail in III-C3. Likewise, each subcomponent is represented
by its own member variable, i.e., workerl, worker2 and
uses the declared classifier as type, i.e. ThreadAImpl. The
member variables are initialized within the constructor, as all
classes and interfaces can be seen as blueprints which have to
be assembled by an outside entity.

public abstract class ProcessAlmpl implements ProcessA {

ThreadAImpl workerl;
ThreadAImpl worker2;

public ProcessAlmpl(ThreadAImpl workerl ,
Thread Almpl worker2){
this . workerl = workerl;
this . worker2 = worker2;

}

@QOverride
public void inDatalO (A data){

}

@Override
public void outDatalO(A data){

}
}

public
void
void

interface ThreadA{
inDatalO (A data);
outDatalO (A data);

public class ThreadAImpl implements ThreadA {...}

Listing 7. Implementations as classes in Java

2) Hierarchies and Refinements: Type declarations and
implementation declarations can be used to create an inher-
itance hierarchy of components by letting one component
extending another or by an implementation declaration re-
alizing a type declaration. The extends relation of AADL
only allows single inheritance and demands the extending
component to be of the same type, e.g., system, process, etc.,
as the one that is extended. Therefore, we can simply reuse the
extends keyword from Java in order to map this relation.
Type declarations inherit all features from their parent fype
declaration which is mapped in Java by the child interface
inheriting all method signatures from the parent interface.
The same concept can be transferred to implementation dec-
larations that are classes instead of interfaces in Java. An
implementation declaration extending another implementation
declaration, inherits all features and subcomponents from its
parent. In Java, a subclass extending a superclass inherits
all non-private member variables, representing subcomponents
and all methods representing features.

In case of an implementation declaration realizing a type
declaration, we will use the implements keyword in Java
to map the semantic meaning. An realizing implementation
declaration inherits all features defined by the type declara-
tion. The same semantic meaning is given by a Java class that

is implementing an interface, whereby all methods declared in
the interface are inherited and implemented by the class.

Problems arise when it comes down to the refine mechanism
in AADL. The refinement of a component encompasses,
among other things, the possibility to refine classifiers of
ports by an extending type declaration. In order to reflect
the classifier refinement of a data port in an extending and
refining type declaration, we have to change the signature
of its corresponding method in Java. Listing 8 shows a
simple refinement of an in data port, where the classifier gets
specialized by the extending type declaration. In Java, this
would lead to an interface definition as shown in Listing 9.
Declared as depicted, the overridden in method for dataIO
is an invalid method signature. In Java, an overriding method
must have the same signature, composed by method name
and parameler types, as declared in the super type. As the
overriding method changes the parameter types, it is not valid.

In order to restrict the possible types for refinement, AADL
defines the property Classifier_Substitution_Rule which can be
associated with a port. Currently, AADL defines three different
values for this property, Classifier_Match, Type_Extension
and Signature_Match. We only consider the former two.
Classifier_Match — the default value — enforces the refined
classifier to be exactly the same as the classifier in the extended
component. Type_Extension allows the refined classifier to be
a subtype of the one used by the extended component.

thread threadA
features
datalO in data port A
{Classifier_Substitution_Rule=>Type_Extension };
end threcadA;

thread threadB extends threadA
features
datalO

end threadB;

refined to in data port B;

data A
end A

data B extends A
end B

Listing 8. Refinement of features in AADL

public interface ThreadA{
void inDatalO (A data);
}

public interface ThreadB extends ThreadA{
@Override

void setDatalO (B data); //Compiler Error

}

public interface A{}
public interface B extends A{}

Listing 9. Erroneous refinement of features in Java

Addressing the previously mentioned problem of invalid
method overriding, we decided to use Java’s default im-
plementation mechanism [6] to prevent an illegal use of
the wrong method for a refined classifier of a data port.
As depicted in Listing 10, the refined in method is de-
fined in interface ThreadB and the now illegal in method,

that is inherited from Threada, is per default throwing
an UnsupportedOperationException. This way we
conform to the semantic meaning of the AADL model, while
only making minimal changes to the inheritance mechanisms
in Java.

public interface ThreadA{
void inDatalO (A data);
}

public interface ThrcadB extends ThreadA{
@Override
default void inDatalO (A data) {
throw new UnsupportedOperationException ();

}

void inDatalO (B data);

}

Listing 10. Valid refinement of features in Java

B. Timing concerned Mapping

In this section, we explain how the different semantics for
timing of threads, data ports and their connections are mapped
from AADL to RTSJ.

As already described in Section II-B1, threads are the core
concept for running software in AADL. As such they have a
semantic defined by AADL that describes their timing behav-
ior in detail. We restrict the Dispatch_Protocol of threads in
this work to periodic, so we will only explain the behavior of
periodic threads and properties altering it.

1) Period, Deadline and Priority: Periodic threads must
have a period, i.e., an interval at which they are executing
code. The period can be given by the property Period in form
of a number and a time unit, e.g., 200 ms or 3 sec. Period can
be directly translated into RTSJ by using a PeriodicTimer
for which a period can be given. A Timer is an event trigger
and meant to be used in conjunction with the aforementioned
AsyncEventHandlers, so the code to be executed is
encapsulated in the handleAsyncEvent () method of the
handler.

Another timing-related AADL property is the Com-
pute_Deadline of a thread which states until when
the computation has to be done at the latest. In
RTSJ, an AsyncEventHandler can have so called
ReleaseParameters which define a deadline and a
deadlineMissHandler that is called in the case of a not
fulfilled deadline.

Although not actually being a timing-related property, the
Priority is nevertheless essential for every priority-based
scheduler. It can be given for each thread and can be repre-
sented by PriorityParameters in RTSJ which again are
associated with AsyncEventHandlers. Listing 11 and 12
depicts the mapping between a thread implementation defined
in AADL, with the three mentioned properties associated,
and a class in RTSJ representing an instance of this thread
implementation.
thread implementation threadA .impl

properties
Dispatch_Protocol => periodic;

Period => 200ms;

Priority => 35;

Compute_Deadline => 100ms;
end thread.impl;

Listing 11. Timing in AADL

public class ThreadAlnstance extends ThreadImplA {
private AsyncEventHandler handler =
new InnerAsyncEventHandler ();
private Timer timer = new PeriodicTimer
(null ,new RelativeTime (200,0),handler);

class InnerAsyncEventHandler
extends AsyncEventHandler{

public InnerAsyncEventHandler (){
setDeamon (false);
setSchedulingParameters
(new PriorityParameters (5));
ReleaseParameters rps =
timer.createReleaseParameters ();
rps.setDeadline (new RelativeTime (100,0));
setReleaseParameters (rps);

public void handleAsyncEvent(){
//Logic
}

}
}

Listing 12. Timing in RTSJ

By default, all AsyncEventHandlers are treated as
Daemons, i.e., background tasks that are only executed as
long as the main thread in Java is running. In order to make an
AsyncEventHandler a foreground task (which is executed
independently from the main thread) we have to explicitly call
setDeamon (false). The SchedulingParameters
of ThreadAInstance’s InnerAsyncEventHandler
are used to reflect the Priority of threadA.impl. The
Dispatch_Protocol and Period are directly translated into
a PeriodicTimer with its period set to 200 ms. The
handler for this timer is InnerAsyncEventHandler
as it extends AsyncEventHandler. Finally,
the ReleaseParameters are used to map the
Compute_Deadline.

2) Input_Time and Output_Time at Data Ports: Timing is
not only important in the context of threads and their execution
time, but also for ports and the time when they are receiving or
sending data. Based on Input_Time and Output_Time property
values given for a port, there are basically two possibilities
for data ports in AADL.

First, a data port receives/sends data at a given lifecycle
event of the thread it belongs to, i.e., dispatch, start, comple-
tion or deadline, without any additional offset. In this case,
the receiving/sending can be done by the thread itself.

Second, the data port defines its timing with a given offset
in relation to one of the above mentioned lifecycle events.
In this work we only consider a positive offset as sensible.
In this second case, the thread is no longer able to do the
receiving/sending on its own, but has to start a parallel task
at the given lifecycle event. This parallel task then executes at
the given offset and receives/sends data from/to a data port.

public class ThreadAlnstance extends ThreadAImpl{
private InDataPort<Object> dataln;
private InDataPort<Object> datalnWithOffset;

private final void dispatch () {
datain.receivelnput ();
new Handler(datalnWithOffset);

private final void start() {...}
private final void compute() {...}
private final void completion() {...}

class InnerAsyncEventHandler
extends AsyncEventHandler{

public void handleAsyncEvent(){
dispatch ();
start ();
compute ();
completion ();

}

}
}

public class Handler extends BoundAsyncEventHandler{
private InDataPort<Object> dataln;

public Handler(InDataPort<Object> dataln){

this.dataln = dataln;
setSchedulingParameters

(new PriorityParameters (5));
Timer timer =

new OneShotTimer

(new RelativeTime (30,0), this);
timer. start ();

}

@Override
public void handleAsyncEvent() {
dataln.receivelnput();

Listing 13. Data port timing in RTSJ

In Listing 14, two exemplary data ports are given. First,
an in data port with no explicitly defined Input_Time which
is set to Dispatch and 0 ns offset per default. Second, an in
data port with an Input_Time set to Dispatch and a positive
offset between 30 ms and 40 ms. In Listing 13 the timings of
those two in data ports are translated into the direct method
call datain.receiveInput () and a parallel handler. The
handler executes the same method with an offset of 30 ms
which is the lower bound of the offset specified in the AADL
model. The Priority of the handler is set to the same value as
the thread that creates it, i.e. 5.

thread threadA
features
dataln in data port;
datalnWithOffset in data port
{Input_Time => ([Time => Dispatch;
Offset => 30ms 40ms]); };
properties
Priority => 5;
end threadA;

thread implementation threadA .impl

end threadA .impl
Listing 14. Data port timing in AADL

3) Immediate, Delayed and Sampled Connections: Al-
though a specific Input_Time or Output_Time can be given
for a port, the connection between two ports also has implicit
effects on the timing aspects of a port. This implicit behavior
is expressed by setting the Ziming property of a connection
between two data ports of two periodic threads to immediate,
delayed or sampled.

By default, all connections are set to be sampled as this
has no effects on the timings given directly via Input_Time or
Output_Time. The receiving thread would always receive the
latest data from the sending thread.

For immediate connections, the Input_Time of the receiver is
forced to be start as 10_Reference_Time and zero offset. The
Output_Time for the sender is assumed to be completion as
10_Reference_Time and also zero offset, but can be overridden
if a single value for Output_Time is given. An immediate
connection enforces the receiver to be delayed until the sender
completes execution. This ensures predictable communication
within one dispatch frame, as depicted in Figure 2. In RTSJ
this behavior is enforced by using a common synchronization
object for the immediate connection, on which the receiving
thread calls wait () as long as the call to isDirty () of the
corresponding port returns false. The sending thread then
wakes up the receiving thread after writing a new value to the
respective port, by calling notifyAll () on the common
synchronization object.

\ -
[1200ms j————— > (100ms f————— >
\/ -7 s N7 ’
—————— » sender p———G———p receiver P—————-
7 / - Vi Vi
L 4 L 4
sender sender sender
P Y e Y e
« receiver receiver receiver

100ms 100ms 100ms

v

Fig. 2. Communication via Immediate Connection [2]

Delayed connections initiate the transmission of data at
the deadline of the sender, thus having an OQutput_Time
with deadline as 10_Reference_Time and zero offset. Ac-
cordingly, the receiver has an Input_Time with dispatch as
10_Reference_Time and zero offset as well. This way, the data
is received at the next dispatch of the receiver following or
equal to the sender’s deadline as depicted in Figure 3.

C. Communication-related Mapping

AADL defines several mechanisms concerning communica-
tion between components. Regarding our employed subset of
AADL, we only consider port connections and the property
Classifier_Matching_Rule. First, we will explain in detail how
the mentioned property is semantically defined and then how
the mapping of modelled port connections into RTSJ code is
done.

sender sender
———p Iy

~
~ ~ .
~ . > receiver

100ms. 100ms 100ms

=< receiver
> —

A\ 4

Fig. 3. Communication via Delayed Connection [2]

1) Classifier_Matching_Rule: The Classi-
fier_Matching_Rule property defines how the classifiers
of two connected data ports must conform to each other.
Two possible values are currently of interest for our approach
Classifier_Match and Type_Extension. Other possible values
that are not covered by our work are Equivalence, Subset and
Conversion. Classifier_Match is the simplest case, whereby
the classifier of the source port has to match exactly the
classifier given at the destination port. Classifier_Match is
also the default value applying to every connection if not
specified otherwise. The rule Type_Extension enforces the
destination port to have a classifier that is either the same
as the one of the source port or a subtype, e.g., a data type
declared to be extending the source’s classifier. By default,
both possibilities are covered by the extends semantics of
Java. The mapping declared in Section III-A automatically
leads to valid Java code, regarding the classes used as
parameter types in methods that represent ports.

2) Port Connections: Port connections in AADL are always
defined within a component implementation declaration. Each
connection has a source port and a destination port. In Figure
4 a process with two thread subcomponents is depicted, where
all components are connected via directed port connections.
For our mapping we identified two categories of port connec-
tions within a given component implementation declaration.
First, port connections that have a subcomponent’s port as
destination, e.g., downward or subcom_conl. Second, port
connections that have a port of the component itself as
destination, e.g., upward.

datain dataout]
[

downward upward

1 sendReceive o
extDataln simple::sendreceive.impl extDataOuf

1]
SRDataln sRDataOU

ST worker [}
wbDataOut simple::workerimpl ~ wDataln

Fig. 4. Port connections within a component

In order to map these two categories of connec-
tions, we decided to generate a seperate class — a
”"ConnectionBroker” (CB) — for each component, that
takes care of transmitting data over connections declared
within that component. Listing 15 exemplarily shows a CB
for the process depicted in Figure 4. The CB has a member
variable (myself) for the process it manages the connections
for, as well as for each subcomponent of myself, ie.,
sendReceive and worker.

The actual transmission of data takes place in the method
sendOnConnection (), where the name of the connection
is passed as a unique identifier. If called, the method decides
— based on the connection’s name — which corresponding
in/out methods of the component or one of its subcom-
ponents have to be called. Depending on the chosen in/out
method’s parameter types, the transmitted data may have to
be cast to the corresponding type.

In Listing 15, the case "subcomp_conl” is a representative
of the first of the two above-named connection categories
and represents the eponymous connection in Figure 4. As the
destination port of this connection is sRDataIn of the thread
subcomponent sendReceive, the corresponding method
inSRDatalIn () is called on the subcomponent member
variable sendReceive. The port declares the base type
Boolean as classifier, therefore the transmitted data is cast
to this type.

The second category of connections is represented by the
case “upward” in Listing 15. Also representing the epony-
mous connection in Figure 4, its destination is the out data
port dataout of the component itself. Thus, the respective
out method of myself is called. The given data is cast to
Boolean, as declared by the out data port dataout.
public class ConnectionBroker{

private SomeProcessImpl myself;
private SendReceivelmpl sendReceive;

public ConnectionBroker (Componet myself,
SendReceivelmpl sendReceive ,...){
this . myself = myself;

}

public void sendOnConnection(String connection ,
Object data){
switch (connection) {
case “subcomp_conl”:
sendReceive.inSRDataln ((Boolean)data);
break;

case “upward”:
myself.outDataout ((Boolean)data);
break;

Listing 15. Connections in RTSJ

3) In and Out methods: As explained in Section III-C2, a
CB is a sufficient possibility to manage the transmission of
data within a component. In case of communication inside
a subcomponent or outside of the given component, a CB

calls the in/out methods of the respective component. The
in/out methods take care of further routing the given data
to their destination. The in methods of subcomponents handle
this routing via their own CB, but in order to forward the given
data over an out port of the component itself, a component
has to use the CB of its parent component. Therefore, each
component has — in addition to its own CB broker — a
member variable parentBroker, as depicted in Listing 16.
Below, the implementation of in and out methods of a
generic component are explained in detail.

For in methods of a component, there are two possibilities.
The first is, there are outgoing connections for the given in
data port within the component. Thus, the method forwards
the incoming data via the component’s CB, as shown in
the method inMethodForwarding () in Listing 16. The
second is, there are no outgoing connections declared for the
given in data port within the component. Then, the respective
in method stores the incoming data within a designated port
member variable, e.g. inPort, as depicted by the method
inMethodFinal ().

For out methods, there is only the possibility of forwarding
the given data via the parentBroker. An out method
resembles a broadcast as it sends the given data on all outgoing
connections that are declared within its component’s parent
component. This is done via the sendOnPort () method
of the parentBroker. This method works similar to the
sendOnConnection () method, as shown in Listing 15.
Merely the unique identifier is different, as several subcompo-
nents of the parent component might have the same name for
their out data ports. Thus, the concatenation of the components
name and its out data port’s name is used.
public class Component{

private ConnectionBroker broker;

private ConnectionBroker parentBroker;

private InDataPort<Object> inPort =
new InDataPort<Object >();

public void inMethodForwarding(Object data){
broker.sendOnConnection(”conl”, data);

broker.sendOnConnection(”conX”, data);

}

public void inMethodFinal(Object data){
inPort.setFWData(data);

}

public void outMethodForwarding (Object data){
parentBroker.sendOnPort
(”compName+portName”, data)

Listing 16. In and out methods in RTSJ

IV. USE CASE

The following use case is based on an autopilot, developed
by students of the practical course “Avionik Praktikum” at
the University of Augsburg. The goal of this course was to
write a working autopilot for a quadrocopter that is simulated
in X-Plane [7]. The autopilot software is running on a

separate device — a Raspberry Pi 2 with special autopilot
hardware from Erle Robotics S.L. [8] — and communicates
with the simulation via UDP messages. The software is
written completely in Java, respectively RTSJ, and is running
within the JamaicaVM [5] from aicas GmbH on a real-time
Linux. The current state of the software encompasses seven
components which are loosely coupled via a software bus.
There are four basic components — PitchController,

RollController, HeadingController and
AltitudeController — that control the pitch,
roll, heading and altitude of the quadrocopter. These
basic components translatc higher level commands -

PitchCommand, RollCommand, HeadingCommand and
AltitudeCommand — from the PositionController
and FlightMissionExecutionController into
ThrottleRequests for each of the quadrocopter’s
engines. Those ThrottleRequests are aggregated
via the MixThrottlesController into one
ThrottleCommand which is then sent back to the
simulation. The whole communication is handled via
messages that are sent over the Bus component which
broadcasts every message to all registered components and
also back to the Simulation. Figure 5 depicts this architecture
and shows all messages being ecxchanged between the
components.

FlightMission
ExecutionControl

PositionControl
AltitudeCommand/ MixThrottlesControl
PitchCommand/
Rolicommand/ Position
HeadingCommand
Position/
PositionCommand

ShutdownCommand/

HeadingCommand
ThrottleRequest/

ShutdownCommand

ThrottleCommand

[T ThrottleRequ:

Position/
[< Rollcommand

RollControl Position
Simulation
ThrottleCommand— |

Position/

PitchCommand Position/

HeadingCommand

_Position/ . ttieRequest
AltitudeCommana.

ThrottleRequest

HeadingControl

PitchControl

AltitudeControl

Fig. 5. Architecture of the Autopilot

Each component is currently implemented as a RTT. All
threads have a Period of 10 Hz or 100 ms, and are hence
periodic. Thus, the messages are sampled, no immediate or
delayed connection exists between the components. Given
this starting point, we modeled the same autopilot with our
approach, using the defined subset of AADL elements of
Subsection II-B.

We decided to represent the messages that are sent over
the bus via one common super data type declaration. This
data type declaration BusMessage is then realized by
several data implementation declarations which represent

the more specific messages and values of these messages
as data subcomponents, e.g., the message Position is
mapped onto a data implementation declaration that con-
tains four data subcomponents: altitude, latitude,
longitude and loiter. The first three subcomponents
use Basic_Type::Float as classifier and the last one Ba-
sic_Type::Boolean.

Now, each component is mapped onto a thread in AADL,
whereby the four basic controllers — Pitch-, Roll-,
Heading- and AltitudeController — are modeled via
AADL’s extension and refinement mechanisms. The common
parent thread type declaration is BasicController that
defines the features position and command as in data ports
and throttleRequest as an out data port. Afterwards,
we create four type declarations for for pitch, roll, heading
and altitude, extending BasicController and refining the
command in data port to its corresponding message type,
e.g., PitchCommand, RollCommand, etc. The remaining
controllers are modeled as separate thread type declarations,
as they do not share common features.

We were not able to map the Bus component, because the
defined subsct of AADL only allows data ports for communi-
cation. Thus, we connected each sending component with its
receiving counterparts, resulting in the explicit communication
architecture depicted in Figure 6 in contrast to the implicit
communication architecture in Figure 5.

After finishing the modeling we generated the system im-
plementation declaration depicted in Figure 6. As we do not
consider AADL model elements like process, device or system
yet, only seven threads with their corresponding inheritance
hierarchy were generated together with their features and
timing properties. The messages were also generated and were
used as parameter types for the in and out methods of each
thread’s ports. The only work left to be done by a programmer
is writing the control logic for the designated methods of each
controller and assemble those threads by instantiating them in
a main class. The generated code takes care of timing and
communication aspects of all threads without any influence
by the programmer.

V. RELATED WORK

In the context of AADL, a lot of work was done regarding
code generation for different target platforms like [9] or [10].
[9] focuses on AADL and Simulink [11] for modeling archi-
tecture and behavior and then generating the corresponding
Ada and SPARC code. [10] is a stand-alone AADL model
processor that supports code generation, targeting C real-time
operating systems and Ada for native and Ravenscar targets.
However, as we decided to use RTSJ as target language, we
concentrate on work that has the same target language or
at least Java without the real-time capabilities of RTSJ. To
the best of our knowledge, we are aware of three different
approaches, namely [12], [13] and [14].

[13] focuses on medical applications and a generation
of AADL system models into Java code for a given refer-
ence platform. The generated code has to be compliant with

aopit plane
| ool
il awoplot adtopilProcess gl
e

g RolKanling

L — connnd tcsiRegues
e — i
s Pl |

| olConmand <

I
‘aopitFightlisiontsecuionContlimpl o
iorin posionConmand
putdownCommand

postondy
MeadigCanmu

& e

it ThorteReques rotieConmar

i
i
|

o
I
i
i
i
i
i
|
i
i
i
i
i
i

i

i

L

Fig. 6. Architecture of the Autopilot in AADL

the specified publish/subscribe mechanisms of the underlying
middleware. As reference platform, they use an open source
”Medical Application Platform” (MAP) called "Medical De-
vice Coordination Framework” (MDCF). Although some of
the presented generation mechanism are relevant for our work,
the highly specialized target platform contradicts our more
general-purpose approach, as we use plain RTSJ without any
further assumptions about the underlying platform.

[12] indeed uses RTSJT as target language, but focuses on
the partitioning of systems defined in AADL for ARINC 653
compliant systems and how this partitioning can be maintained
in the generated code. Moreover, a major part of the work deals
with communication between partitions and is not concerned
with a generalized generation approach.

[14] in contrast is very similar to our approach regarding
their goal of a general mapping between AADL and RTSIJ.
However, their work is simplifying most of the aspects that
our work investigates in detail. To allege an example, they
simplify the Data Port communication to always happen either
at dispatch, start or deadline. The properties Input_Time and
Output_Time are completely ignored as well as timings dic-
tated by the Timing property of data port connection. Threads
arc not forced to run consccutively if a Data Port connection
between them is marked as immediate. Another distinction
to our work is the targeted version of RTSJ. While they are
targeting version 1.0.2, we use mechanisms from version 2.0
which facilitates the realization of semantics determined by
AADL.

VI. CONCLUSION

In this work we presented a mapping approach from an
AADL subset to RTSJ which maintains the semantics given by
the AADL standard. This approach enables developers of real-
time, performance-critical systems to shift structure, timing
and communication-related concerns into design phase. Hence,
they are able to perform analyses regarding communication
and timing during design phase, while resting assured that
the implementation will reflect their design choices. The

10

application of our approach is shown via the implementation
of an autopilot for quadrocopters. For this purpose the software
of the quadrocopter is modeled in AADL and is then generated
by our implementation. The usecase shows three advantages of
our approach over an implementation without code-generation:

o The speed-up of development by letting the programmer
focus on application logic instead of writing recurring
code concerned with timing and communication.

o A less error-prone transition from the design of a system
to its implementation.

o The possibility of an earlier detection of timing- or
communication-related errors in the system.

Taken some steps further, this approach can lead to the pos-
sibility of simple Java developers, writing real-time systems,
designed by one competent real-time system designer. In our
further research we will investigate a broader subset of AADL
which encompasses event (data) ports, aperiodic and sporadic
threads and also the error model annex of AADL. Especially
the last one is of interest in order to integrate safety-related
aspects like error-propagation into our existing approach,
by exploiting Java’s exception- and RTSJ’s asynchronous-
transfer-of-control (ATC) mechanisms.

REFERENCES
(1]
[2]

Architecture Analysis and Design Language. Accessed 09. June 2016.
[Online]. Available: http://www.aadl.info/aadl/currentsite/

P. H. Feiler and D. P. Gluch, Model-based engineering with AADL:
an introduction to the SAE architecture analysis & design language.
Addison-Wesley, 2012.

JSR 1: Real-time Specification for Java. Accessed 09. June 2016.
[Online]. Available: https:/jcp.org/en/jsr/detail?id=1

JSR 282: RTSJ version 1.1. Accessed 09. June 2016. [Online].
Available: https://jcp.org/en/jsr/detail?7id=282
JamaicaVM. Accessed 09. June 2016.
http://www.aicas.com/cms/en/JamaicaVM
Default Methods. Accessed 09. June 2016. [Online]. Available:
https://docs.oracle.com/javase/tutorial/java/landl/defaultmethods.html
X-Plane 10. Accessed 09. June 2016. [Online]. Available: http://www.x-
plane.com/desktop/home/

Erle Brain 2, a Linux brain for robots and drones. Accessed 09. June
2016. [Online]. Available: https://erlerobotics.com/blog/product/erle-
brain-v2/

M. Bordin, C. Comar, E. Falis, F. Gasperoni, Y. Moy, E. Richa, and
J. Hugues, “System to software integrity: A case study,” in Kmbedded
Real-Time Software and Systems 2014, , FR, 2014. [Online]. Available:
http://oatao.univ-toulouse.fr/10939/

Open AADL. Accessed 09. June 2016.
http://www.openaadl.org/ocarina.html
Simulink: Simulation und Model-Based-Design. Accessed 09. June
2016. [Online]. Available: http://de.mathworks.com/products/simulink/
Y. Wang, D. Ma, Y. Zhao, L. Zou, and X. Zhao, “Automatic rt-java
code generation from aadl models for arinc653-based avionics software,”
in Computer Software and Applications Conference (COMPSAC), 2012
IEEE 36th Annual. 1EEE, 2012, pp. 670-679.

S. Procter and J. Hatcliff, “Robby: towards an AADL-based definition
of app architectures for medical application platforms,” in Proceedings
of the International Workshop on Software Engineering in Healthcare.
Washington, DC, 2014.

B. Jean-Paul, C. Raphaél, C. David, F. Mamoun, and R. Jean-Frangois,
“A mapping from aadl to java-rtsj,” in Proceedings of the 5th inter-
national workshop on Java technologies for real-time and embedded
systems. ACM, 2007, pp. 165-174.

[31
[4]

5 Available:

[t}

[Online].

[6

=

[7

—

[8

—

9

—

[10] [Online]. Available:
[11]

[12]

[13]

[14]

