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Abstract

As the automotive industry seeks to include more and more fea-
tures in its vehicles while simultaneously attempting to reduce the
number of “Electronic Control Units” (ECUs) that execute the cor-
responding embedded software, the necessary policy shift towards
multi-core technology is in full swing. In order to eventually exploit
the extra processing power, there is much additional effort needed
for coping with the tremendously increased complexity of such sys-
tems. This is largely due to the elaborate parallelization process
(partitioning, mapping and scheduling software parts as tasks on
different cores) that results in a combinatorial explosion and thus
spans a vast search space. Mastering this challenge requires inno-
vative methods and appropriate tools that are specifically designed
for the creation of embedded multi-core applications or the migra-
tion of legacy software [16].

On the basis of the concept presented in [25], we use the results of
its data dependency analysis performed on an “AUTOSAR”' model
(AUTOSAR system descriptions) to determine advantageous parti-
tions as well as initial task-to-core mappings. Afterwards, the ex-
tracted information serves as input for the simulation within an
embedded multi-core timing tool suite. Here, the initial solution
is evaluated with respect to the fulfillment of basic timing require-
ments and metrics like cross-core communication rates, average la-
tencies or core workloads. A subsequent optimization process im-
proves the initial solution and enables a comparative assessment. In
order to demonstrate the benefit of this approach, we apply it to two
models — a fictional mid-sized and a real-life complex one — and
show the advantage compared to a parallelization process without

! The “AUTomotive Open System ARchitecture” standardizes “[...] an open
software architecture for automotive electronic control units (ECUs)” [5],
cf. http://wuw.autosar.org.
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preceding dependency analysis and initial partition/mapping sug-
gestions.
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1. Motivation and Core Issues

In the automotive sector, car manufacturers constantly aspire to im-
prove driving dynamics, include additional infotainment features,
raise traveling comfort as well as enhance the safety and security
properties of their vehicles.

However, adding further functionality — accompanied by car
domains becoming more and more dependent on each other —
increases complexity as well as required processing performance
[11, 37]. Furthermore, there is a prevalent endeavor to save space
and reduce weight by decreasing the number of ECUs, which
can be achieved by replacing them with distinctly less (but more
powerful) “domain controllers” [20, 27]. These intentions drive the
pursuit of finding a possibility for boosting the available computing
performance in order to stay competitive.

In [28], it is assumed that ten times as much processing power as
currently available will be needed in only 10 years. Unfortunately,
the rising demand has exceeded the capabilities of single-core tech-
nology whose processing power is almost completely exhausted
and does not significantly increase anymore [17, 25, 42]. Embed-
ded architectures that feature multiple cores (or in general “inde-
pendent execution units” [7]) are — according to the current state
of research — the only solution to satisfy upcoming requirements. It
is therefore hardly surprising that they are becoming increasingly
important [48].

In the area of desktop computing, the transition to multi-core
platforms started about ten years ago, whereas the automotive sec-
tor was rather recently forced to start migrating its ECU software in
order to pave the way for further technical advancement, because
— based on experience — automotive microcontrollers follow “com-
mon” IT systems with a delay of roughly 5 to 8 years due to the
typical development cycle times of cars [20].

As current automotive software (operating systems as well as
applications) was usually neither designed for being executed in
parallel on the “function level” (as addressed in this paper) nor
on “application level”, its proper migration to multi-core systems
is a challenging task [15, 18, 28]. It involves a paradigm change,



because aspects like “expensive” cross-core communication, syn-
chronization overheads, shared resources, significance of memory
location and the complex scheduling of software parts come into
play when processing is distributed and sequential data consistency
has to be guaranteed [27, 36, 38].

In order to achieve the latter without producing unnecessary in-
terference (i.e. overhead) among cores, it is crucial to appropri-
ately determine the software’s fragments in the first place (“par-
titioning™) and to purposefully distribute them on the cores after-
wards (“mapping”). Moreover, coordinating multiple cores to ex-
ecute parts of a common application is tremendously augmenting
the complexity of software due to dependencies between separately
processed but still complected data including problems like race
conditions, dead locks, non-determinism and insufficient load bal-
ancing (seeking equal workloads for each core) [32, 33]. The com-
plexity rise correlates with the amount of software parts, because
the number of possibilities to distribute them on cores grows ex-
ponentially, which makes an exhaustive design space exploration
infeasible.

When looking at a typical combustion engine management sys-
tem including up to 8000 “Runnable Entities” (REs, AUTOSAR’s
atomic executable and schedulable units), it is obvious that multi-
core approaches massively increase the internal complexity of
ECUs and finding a good partition within such highly intercon-
nected software is costly [10, 15]. This calls for new concepts
to overcome emerging challenges, more specifically, finding suit-
able leverage points and heuristics for the process of migrating
to parallelized versions of existing application software as well
as supporting this process with tools that, on the one hand, au-
tomatize as much work as possible and, on the other hand, il-
lustrate detected problems to the engineer in a meaningful way
[13, 15,27, 28, 30, 39, 40].

Apart from these new requirements emerging in the course of
the “multi-core era”, a well-known aspect remains crucial: The
heavy usage of models and their active inclusion (i.e. not only as
supplement) in the whole process of software development and de-
ployment is indispensable to keep an overview [10, 14]. This be-
comes clear when taking a closer look at the work process in the
automotive sector, which is typically to a high degree based on the
division of labor: For example, there are usually several hundred
engineers working on an engine management system since its mul-
titude of interconnections with other ECUs makes it exceedingly
complex. Efficient collaborative working on such a system is hardly
possible without proper organizational structures and suitable work
items, like models.

In the following, we address the stated challenges by showing
how our data dependency analysis approach (cf. [25]) can be car-
ried forward by specifically covering the process of partitioning,
mapping and scheduling.

2. Approach Overview

In order to mitigate the complexity of parallelized systems, we en-
deavor to effectively support the goal-oriented migration of legacy
ECU software to a suitable multi-core architecture. We focus on
parallelizing a single application addressing “function parallelism”
(also known as “task parallelism™). The proposed migration process
is depicted in Figure 1.

Both activities in the upper half are supported by our tool,
which is implemented as plug-in based on the “Eclipse Model-
ing Framework™ and the “Model Analysis Framework” within the
“AUTOSAR Tool Platform”? (Artop) [12, 34, 35]. The lower three
activities can be carried out within several third-party tools that pro-

2 Artop facilitates the construction of AUTOSAR tools by serving as Eclipse
infrastructure and virtually acting as “persistence layer” that enables com-
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Figure 1. Overview of the migration process with previously cov-
ered research area “A” (cf. [25]) and currently addressed area “B”.

vide simulation and optimization features for embedded multi-core
systems.

Data Dependency Analysis & Validation: The basis of the ap-
proach is a data dependency analysis run on AUTOSAR models in
order to detect, visualize and solve potential conflicts related to a
software’s distributed execution on multiple cores (corresponds to
area “A” in Figure 1):

1. The analysis identifies a model’s structural elements such as the
aforementioned REs, their variable accesses, their recurrence
(also called “triggering frequency” or “period”), the software
components (SWCs) containing the REs as well as already
imposed timing constraints.

2. The gathered information is assessed and potential conflicts
regarding data consistency are determined.

3. Inconsistencies are addressed by an incremental (stepwise) ap-
plication of timing constraints on the lowest level (i.e. on REs)
for the purpose of achieving “multi-core robustness” in terms
of data consistency.

This semi-automatic process provides the software with a consis-
tent timing model to ensure the preservation of its original sequen-
tial (single-core) behavior on a multi-core platform.

Partitioning & Mapping: This step was broached in [25], where
we mainly addressed the basics of the underlying partitioning algo-
rithm, which was — at this time — not yet expedient when applied to
highly complex models and was lacking a mapping feature.

The fundamental idea is to search on AUTOSAR’s most-fine
grained level (REs) for regions (sets of REs) with a relatively low
coupling and to group them into tasks as means for creating a
suitable partition as well as the subsequent “task-to-core” mapping.
The immense search space can be remarkably reduced by providing
a beneficial starting point for the simulation and optimization that
are carried out to evaluate the initial solution and to search for
further ones. This approach is based on techniques introduced in
[24, 31, 47], which were further developed in [19].

mon base functionality like easy access on AUTOSAR models that adhere
to specific meta-model versions [2].



Since its initial proposition, the algorithm was extended to cope
with highly complex models:

e A configurable search tolerance can be used to loosen the rather
strict criteria for low-coupled regions, so that RE sets, which
violate the demands to a certain tolerable extent, are not dis-
carded.

e The relevance of the connection between two REs is calculated
in order to determine concrete pair-wise dependency weights
depending on the number of variable accesses between two REs
as well as their respective recurrence.

e Based on experience, analyzing a whole model often unneces-
sarily increases the search effort while simultaneously shrink-
ing the result set. This effect can be attributed to the high degree
of interconnection in large models which exacerbates partition-
ing attempts. Thus, different splitting strategies are provided,
e.g., dividing the model into parts with uniform recurrences be-
fore running searches on each of them.

e As these parts often remain highly complex, the search gradu-
ally ignores pair-wise dependencies below a growing threshold
until a sufficient number of regions is found. This “relevance
partitioning” roughly corresponds to the “multi-level partition-
ing” approach of first “coarsening”, then clustering and after-
wards restoring a graph [6].

The quality of a calculated partition and task-to-core mapping can-
not be universally measured because of contradictory goals for par-
allelization efforts, e.g., pooling strongly-connected software parts
(low synchronization overhead), distinctly separating functionali-
ties that should not interfere (support safety) or evenly spreading
computational cost (proper load balancing).

As demonstrated in the Case Study (Section 4), achieving a cer-
tain goal is possible by adjusting the preferences when arranging
the tasks and mapping them to cores, e.g., the preferred granular-
ity of the regions, a concrete load balancing strategy or enforcing
certain regions to be assigned to the same core (via “pairing con-
straints”). In our case, we are seeking a pooling-oriented partition
together with a mapping that enables satisfactory load balancing.

Of course, there are numerous other factors worth taking into
consideration, e.g., if the target platform’s processor is “homoge-
neous” concerning equally equipped cores and how many of them
are available.

In the end, this step’s purpose is to provide an advantageous
starting point (“initial solution”), so that the following simulation
and optimization are supported to find appropriate further solutions
in an adequate amount of time.

Scheduling & Simulation: The subsequent step employs a third-
party simulation and optimization tool in order to evaluate the use-
fulness of the provided solution. There are several software suits
available that are designed to analyze, simulate, validate and op-
timize embedded multi-core systems (cf. Subsection 3.3). Regard-
less of what product is employed, some preparations have to be
made before such a simulation can deliver expressive results:

e Importing an AUTOSAR model together with the calculated
partition and mapping from the previous working step

e Adding basic timing requirements (e.g. task deadlines) to later
allow a general classification into valid and invalid solutions

e Setting up the underlying hardware model, e.g., a generic pro-
cessor or a specific automotive micro-controller

e Choosing an appropriate scheduling algorithm

Running a timing simulation on highly complex models can take
a lot of time, but eventually yields informative findings about a

solution’s general validity, occurring latencies, overhead caused
by necessary synchronization or a basic statements about a soft-
ware’s overall degree of potential parallelization (indicating possi-
ble speed-up). Generally speaking, it can be stated that a “good”
preceding partitioning & mapping facilitates the scheduling step
considerably which is particularly important when being con-
fronted with cross-core communication as a substantial new re-
source bottleneck [27].

Optimization & Comparison: Having gained a first glimpse on
the initial solution’s quality enables a comparison with potential
alternatives. The latter’s creation is facilitated by taking the initial
solution as basis to derive modified versions of it. In general, there
are plenty possibilities to do so either manually or with tooling
support. In many cases, the above-mentioned third-party simulation
tools also provide optimization features.

A focus on “weak spots” discovered by means of interpreting
the simulation results can act as beneficial leverage point for model
changes, e.g., splitting up “chunky” tasks that hamper proper load
balancing or enforcing two heavily communicating tasks to be
mapped to the same core. Having found better solutions in terms
of certain characteristics — like reduced cross-core communication
or a shorter overall cycle time — allows to “close” the round-trip
engineering circle by providing customized data on advantageous
model-specific search parameters for the “Partitioning & Mapping”
step. This iterative proceeding seems sensible in order to effectively
broaden the search span by means of a fresh “solution seed”.

3. Approach in Detail

In the following, we describe the introduced migration process (cf.
Figure 1) in detail and start by explaining how models are prepared
for distributed execution on several cores.

3.1 Data Dependency Analysis & Validation

As already broached, the key of this step is to find a consistent tim-
ing model for an embedded application, so that its original func-
tionality is preserved. In this context, conflicts can occur when
functional blocks — originating from legacy (single-core) software
—are processed in parallel instead of well-matched and rigidly con-
secutive like before. This poses a threat to consistency, which is —
in our case — defined as stability (steady signals/values over a cer-
tain period of time) being paralleled by coherency (signals/values
with uniform data age).

Possible conflicts are, e.g., data not being available in time
or data being read inconsistently. Of course, consistency conflicts
like this can occur in single-core platforms too, but multi-core
systems are more prone to “evoke” them because here it is — due to
concurrency — significantly harder to maintain consistency.

Therefore, it is inevitable to take care of any potentially uninten-
tional behavior within a system. The challenge consists of the al-
ready addressed complexity rise caused by the exponentially grow-
ing number of possibilities to distribute tasks on cores, which leads
— together with scheduling — to a tremendous count of possible exe-
cution sequences including many adverse, i.e. conflict-ridden, ones.
In order to ensure that a system will work properly irrespective of a
certain task-to-core mapping, it is required to distinctly exclude all
unwanted behavior which we achieve by enriching the model with
timing constraints (or modifying existing ones).

As implied in Section 2, our approach as a whole is based on
the following principles:

e Bottom-up: Analysis and validation take place on the most
“fine-grained” level (i.e. REs in AUTOSAR), because a top-
down approach is hardly applicable here as ECU software is
rather constantly refined and extended than newly created (due
to competitive pressure). In addition, abstracted views on the



system can still be created by interpreting gathered low-level
information.

Stepwise: Validation is done stepwise and not all at once for
the purpose of preventing — on the one hand — the generation
of “new” conflicts by overlapping constraint scopes and — on
the other hand — indiscriminately calculating all possibilities at
the beginning which would take more time and would require
disproportionate computing power.

Minimal: Only a minimum set of constraints is imposed in
order to not unnecessarily restrict the degree of freedom for
succeeding steps (and therefore not to unintentionally exclude
promising solutions).

Sticking to this concept, we perform a static data dependency
analysis directly on AUTOSAR models (cf. [25] for more details)
The basic steps are:

1. Parse the model and analyze the data dependencies (“connec-
tions”) between the Executable Entities (i.e. instances of REs)
contained in the SWCs and possible execution sequences of
them based on already imposed EOCs.

2. Classify the detected dependencies and filter out possibly con-
flicting variable accesses among them.

3. Impose timing constraints to restrict all possible execution se-
quences to a set that provides every RE instance with its re-
quired input data in time.

First of all, parsing the AUTOSAR model provides the information
basis needed for further steps: AUTOSAR’s SWCs are the main
structural elements as their “Internal Behavior” comprises the con-
tained REs, the communication taking place within the component
(between several REs) and between different SWCs of one ECU.
Each RE may be instantiated multiple times (e.g. four wheel speed
sensors of a car), so every Runnable Entity instance (REI) has its
own data dependencies, which each arise from the interaction be-
tween at least two REIs. AUTOSAR differentiates seven kinds of
variable accesses used for “local” (intra-SWC) access as well as for
communication that crosses SWC borders, which are all taken into
account.

Furthermore, timing constraints are identified: AUTOSAR pro-
vides seven such constraints and — as explained in the following
two subsections — two of them are currently detected and deployed:
“ExecutionOrderConstraints” (EOCs) and “AgeConstraints” (ACs)
[4, 14]. The former are “[...] used to specify the order of execution
of ExecutableEntities” (i.e. specify a fixed order for multiple REs)
and the latter “[...] to specify a minimum and maximum age that is
tolerated when a variable data prototype is received” (i.e. determine
the tolerated data age of a read variable) [4].

EOCs can dictate a rigid execution order between two or more
REs, which is suitable if they are logically (and semantically)
connected as it is the case in a classical “sensor-controller-actor
system”, where sensors transfer measurement data to a controller
that computes the appropriate action carried out by succeeding
actors, e.g., brakes in an anti-lock braking system (ABS). As op-
posed to that, ACs solve potential conflicts via marking a poten-
tially conflicting dependency as unproblematic by allowing that
certain accessed data originates from a previous “computing cy-
cle™. This is viable if the reading RE does not require current data
to work correctly, e.g., a speedometer that cannot (and is not in-

3 This is not an official but an implicit AUTOSAR element.

4We define a computing cycle as the time elapsed between two events
that involve periodically activated tasks being guided by the slowest (least
triggered) task occurring.

tended to) react within milliseconds due to the speedometer nee-
dle’s inertia.

Taking all this information into consideration allows to map
them on a directed graph illustrating the data-flow by means of
nodes that represent the REs and edges standing for the variable
accesses semantically connecting them.

The second step harnesses the gathered information, so that
the graph can be used to derive sets of node neighborhood, i.c.,
successor and predecessor relations between REIs, for the access
on a specific variable. These sets are useful to make statements
about possible execution sequences and to accordingly classify the
dependencies in order to find possible inconsistencies, which are
represented by every contingency of unintentionally consuming
data before producing it in the scope of one computing cycle.

Furthermore, it is checked whether existing timing constraints
are correctly set (valid). EOCs should only be set for REs that have
the same recurrence, because when dealing with ECU software,
static scheduling is prevalent. Therefore, a once found execution
order stays the same. In contrast, EOCs are rather inappropriate
for REs with diverging recurrences, because the execution order of
them within a computing cycle can change, e.g., when a “consum-
ing RE” is triggered more often than a “producing one”. In such
a case, an EOC demanding the producing RE to be executed first
(within a computing cycle) can cause extra latency if the consum-
ing RE is triggered earlier than the producing one. In such cases,
ACs are the more adequate means.

Besides simply missing constraints, typical fault cases are, e.g.,
EOCs imposed on pairs of REs with diverging periods, EOCs di-
rectly contradicting each other (e.g. “(A before B) && (B before
A)”) or “insufficient” ACs that allow a smaller data age than actu-
ally occurring.

In order to reach the goal of “multi-core robustness”, the vali-
dation process is intended to resolve the model’s potential conflicts
to prevent every unintentional consuming before producing. This
is achieved by imposing a minimal amount of timing constraints to
restrict all possible execution sequences to a set that provides every
REI with its required input data in time.

It is important to know that EOCs do heavily restrict the “de-
gree of freedom” for mapping the REs (grouped as tasks) to cores.
Thus, the potential for parallel execution is greatly reduced when
a model is highly order-constrained. Parallelism can even be en-
tirely prevented if the EOCs’ combination lead to a single-chain
execution order. Therefore, as little EOCs as feasible are imposed,
whereby they are preferably set in a local scope (e.g., being valid
only within a SW-C). In the case of imposing constraints on depen-
dencies that cross SW-C borders, ACs are an appropriate choice,
because their (global) effect is less limiting and they do not per se
reduce the number of possible execution orders (which is advan-
tageous for the multi-core use case). However, ACs and EOCs are
not mutually exclusive, but rather can be very expedient in combi-
nation (depending on the specific situation). This is in particular the
case if a variable is used for different purposes, e.g., the value of a
current wheel speed is frequently read by an ABS but only seldom
by the speedometer.

After eradicating all potential conflicts including those that in-
fluence parallelization behavior, it is possible to ensure a system’s
validity with regard to data age and the corresponding model is
ready to be split up safely into functional blocks that can be mapped
on different cores.

3.2 Partitioning & Mapping

After having found consistency threats and solving them with the
aid of constraints, the next logical step is to determine how the ap-
plication can be split up and distributed in a feasible way: “Parti-
tioning” means breaking up a model into sets of REs according to



a given objective, while the succeeding “mapping” is intended to
determine tasks within the obtained partitions and to assign them
to specific cores, so that their later execution can be scheduled.

3.2.1 Overview

Unfortunately, there is no general-purpose approach to find a parti-
tion or mapping and it is difficult to assess whether a specific solu-
tion will satisfy a certain property. Thus, it is crucial to thoroughly
consider the desired aspects of the target system and the objectives
in advance, which is usually done according to specific goals like ...

e having only little coupling between the tasks and therefore
rather few communication and/or necessary synchronization
(“pooling”),

e assuring certain safety requirements like distinctly separating
highly critical tasks or

e preserving the processing of logically related software parts on
one core, e.g., REs contributing to one common function.

As there are numerous possibilities to fractionalize a model,
finding an “optimal” partition according to specific goals is ranked
as NP-hard problem [8]. In addition, searching for an advantageous
“task-to-core” mapping entails traversing an overwhelmingly huge
solution space, because the number of mapping possibilities grows
exponentially according to the amount of given tasks. Together,
both activities represent one of the biggest challenges when trying
to build an optimized multi-core system.

An easy sample calculation shows how the search space quickly
escalates even for small examples: The “Brake-by-Wire™ applica-
tion from “TIMMO™ and “TIMMO-2-USE”® consists of clearly
organized 18 REs [45, 46].

Assuming that each RE is supposed to be mapped separately
on onc of three available cores, there are about 388 million
(387420489, i.c. 3'%) different ways to do so. After choosing one
of these distribution solutions, there are again many possible exe-
cution sequences: there are over six quadrillion (“18 factorial”, i.e.
6 % 10®) sequences for executing all REs successively on one core.
And there are a lot (exponentially) more options in a multi-core set-
ting, because most REs can theoretically be processed in parallel
(fully or partially overlapping). Generally speaking, every random
set of REs can be simultaneously executed as long as it is valid re-
garding the absence of two REs being interconnected by an EOC.
The exact count of possibilities depends on the number of avail-
able cores (defining the maximum set size), the number of tasks
encapsulating the REs and possibly given minimum requirements
for load balancing (together with execution times).

Therefore, we aim to reduce the number of possibilities to con-
sider by first providing a beneficial initial partition and secondly
— based on this starting point — an advantageous initial mapping,
which increases the efficiency of the following scheduling, sim-
ulation and optimization. As the partition is created with respect
to imposed constraints and existing dependencies, the subsequent
computational effort is limited to a “corridor” of preferably promis-
ing solutions. Since it cannot be guaranteed that proper paths are
not discarded, this process should be repeated in order to ensure a
balance between searching deeply and broadly.

3 The project “TIMing MOdel” developed “[...] a common, standardized
infrastructure for the handling of timing information during the design of
embedded real-time systems in the automotive industry”.

The project “TIMing MOdel - TOols, algorithms, languages, methodol-
ogy, and USE cases” provides “[...] tools, algorithms, languages, methodol-
ogy, and use cases for dealing with timing requirements and properties for
timing analyses during the development of distributed embedded automo-
tive systems”.

Without a given partition and if no further knowledge of the
system is available, a simulation tool would be forced to draw on
simple strategies to obtain initial tasks, e.g., preferably encapsu-
lating REs with equal recurrences and therefore creating homoge-
neous and easily relocatable tasks. Such regions are particularly
suitable for being executed on a common core, so that the duration
of one “computational iteration” on this core is not needlessly de-
layed due to RES’ recurrences that are cumbersome to reconcile.
However, such a partition can be very adverse too, especially when
load balancing is hampered by strongly differing task sizes or when
— as it is almost always the case — cross-core communication is an
issue and heavily connected REs are not assigned to the same core.
According to our experience, this holds particularly true for highly
complex models like the one used in the Case Study (cf. Section 4).

3.2.2 Partitioning

As stated in Section 2, “low coupling” (corresponds to “pooling™)
acts as standard partitioning objective. It is determined by counting
the dependencies that cross region borders within a certain parti-
tion, i.e., data accesses that are “broken” by assigning the involved
REs to different regions. Restoring these dependencies (preserving
their function) requires additional synchronization effort, because
at scheduling, the execution of the respective REs has to be coor-
dinated according to their specific cross-linking. Furthermore, we
start from the premise that a target system’s processor has “homo-
geneous”, i.e. equally equipped, cores.

This concept is realized by the “Single Entry Region Analy-
sis” algorithm that searches for virtually isolated RE sets within
the model. They are characterized by a common starting point (the
“entry node”) and by not having any dependencies to outside nodes
before a common end point (a merger node) “closes” the region.
Details on the algorithm, an exact definition, its origin and imple-
mentation are available in [25].

As broached in Section 2, the algorithm used to be not produc-
tive enough for highly complex models as its strict rules were not
defined for heavily interconnected graphs. In order to make it appli-
cable to all models, we purposefully extended it to meet the emerg-
ing requirements:

Search tolerance: Being configurable according to the specific
model’s complexity, the algorithm accepts a certain number of “iso-
lation violations” without immediately discarding the identified RE
set. This is useful to perform a search that takes the average node
degree (i.e. the number of dependencies per node) into considera-
tion, making it possible to find “hot spots” even in dense graphs.
Based on experience, it is — in most cases — relatively easy to de-
tect a sensible upper limit for this tolerance, because found groups
beyond this “turning point” are often too bulky and not significant
anymore.

Dependency weights: Treating the connection between all node
pairs equally is obviously not expedient when having to decide
which one to “break” while trying to form RE sets. Therefore,
we calculate weights for the connection degree of every connected
node/RE pair using the information usually available in AUTOSAR
models: the REs’ period and the number of dependencies (vari-
able accesses) connecting them. The weight value rises according
to periods getting smaller (meaning a higher triggering frequency)
and a rising number of dependencies. The formula is:

weight = (1/periodl + 1/period2) x dependencies.

It is easily adaptable if further information (like the amount of
transfered data of a specific variable access) is given and serves
as basis for the later introduced “relevance partitioning”.

Splitting strategy:  As previously mentioned, it is basically advan-
tageous to identify groups whose REs have a uniform recurrence.
This can be achieved by different strategies:



“Split, then analyze”: In our experience, building subgraphs
that consist of uniformly triggered REs and then running par-
titioning searches on each of them, has produced the most valu-
able results for highly complex models. In addition, the overall
search effort is remarkably reduced.

e “Analyze, then split according to periods™: This strategy takes
the graph as is and assumes that the search finds sufficient
groups, which can afterwards be split according to the number
of diverging RE periods occurring. This is rather suitable for
small heterogeneous or for huge but loosely connected models.

“Do not split, discard mixed regions”: Here, identified regions
are discarded if they do contain REs with diverging periods.
This can be useful for models with a small amount of different
periods that are nevertheless relatively complex.

“Do not split, keep mixed regions”: As pretty simple strategy,
this approach is rather used as starting point to gain an insight
into the possible partitioning degree of a model in general.

Relevance partitioning: 1t is in most cases rather fruitless to
pursue simple partitioning approaches like, e.g., “Sparsest Cut”
which repeatedly cuts a graph into two (roughly) equal-sized pieces
[9]. This is due to strongly differing model structures which are
usually not suitable for being strictly divided into 27 parts.

Thus, we use a more sophisticated approach vaguely resting on
“Multi-Level Partitioning” (MLP), which better adapts to specific
model structures [6]. MLP reduces a graph via “edge contraction”
(“coarsening”) in order to cluster and afterwards restore it. How-
ever, we do not “erase” nodes/edges but gradually increase the rel-
evance threshold for dependencies taken into consideration by the
search until the graph is “manageable” enough to find appropriate
RE sets.

Due to the dynamic adaption, the algorithm can cope with mod-
els of any size and complexity. However, this does not mean that
every application can be efficiently parallelized but it is almost al-
ways possible to identify a proper partition according to circum-
stances.

3.2.3 Mapping

The partitioning algorithm determines preferably large RE sets,
which can — hierarchically structured — contain smaller ones. This
is done deliberately in order to maintain RE sets of every size and
therefore to retain all granularities for a later mapping of tasks to
cores.

As the count for both, the mapping of tasks to cores and the
possible execution sequences, strongly depends on the initial num-
ber of tasks, seeking to prevent a too fine-grained partition (many
small tasks) is a reasonable trade-off because fine granularities pro-
vide more flexibility but they involve much more effort to distribute
and are harder to synchronize.

As opposed to this, a coarse-grained partition “[...] can more
easily result in an improvement” and thus seems appropriate as a
first step [29]. However, having only very few large tasks can make
it difficult to distribute them properly on different cores without
again causing overhead for additional synchronization, e.g., if be-
ing forced to map two intensively connected partitions on different
cores or when trying to achieve even workloads for cores (load bal-
ancing).

Of course, the latter — as well as the whole mapping process —
is only possible when the target hardware is known as the number
of available cores and their dependencies among each other (e.g.
differing features) are crucial.

Our principles remain pooling and load balancing, for which we
need to sensibly choose a suitable size for each available RE set in
order to find the most convenient mapping. This is due to the fact

that a partition does usually not contain groups with uniform size
and therefore following a rather coarse-grained approach should
not lead to a brute force method like “streamlining” the partition
by reducing large groups.

Eventually, we take the following aspects into consideration
when creating a mapping:

e Number of cores (or generally speaking “independent execution
units”) being available on the target platform

e Task clustering strategy: preferred relative regions size (if they
are nested) and handling of remaining REs (e.g., a new task for
each or create clusters according to periods)

e Distribution: assignment of tasks to cores according to algo-
rithms that take heed of the expected workload caused by the
tasks and that draw on well-known patterns like “bin packing”
or “round robin”

For our Case Study (Section 4), we use an exporter ool that cre-
ates a CSV file comprising these aspects. Additionally, it produces
basic timing requirements, i.e., task deadlines according to given
periods, to support the succeeding simulation.

3.3 Scheduling & Simulation

In order to determine the actual benefit when harnessing the infor-
mation acquired by the previous two steps, it is necessary to create a
final schedule and to simulate the software’s execution on a multi-
core platform. This step (and the following optimization) can be
carried out by use of various third-party tools that are designed for
simulating (and optimizing) embedded real-time software, such as:

e “chronSIM” by Inchron GmbH is a “[...] tool for design, vi-
sualization, quality testing and analysis of embedded systems”
[21].

e “SymTA/S & TraceAnalyzer” by Symtavision GmbH are “[...]
tools for scheduling analysis, architecture optimization and tim-
ing verification for: ECUs and software integration, Embedded
networks and communication, Distributed embedded systems
(E/E)” [43].

e “TA Tool Suite” by Timing-Architects Embedded Systems
GmbH is intended to be integrated in “[...] whole development
process of multi-core systems” and is used for “[...] designing,
developing, and verifying embedded multi- and many-core-
systems” [44].

Like already mentioned in Section 2, there are some basic steps
that are necessary before being able to perform a simulation:

Import the AUTOSAR model: As we conduct our data de-
pendency analysis and the consistency validation directly on
AUTOSAR system descriptions, it is crucial that the employed tool
can handle such models by processing its structural elements (REs,
SWCs, variable accesses) as well as included timing information
like the REs’ recurrence and timing constraints (ACs, EOCs). In
general, every piece of information that can be retrieved further
refines the simulation, e.g., data on the REs’ execution times re-
markably improves a simulation’s accuracy.

Include data on partitioning and mapping: This information can
either be stored directly in the AUTOSAR models (like described
in [25]) or it can be imported from an external file. We currently use
the latter approach to import necessary data from an CSV file: the
assignment of REs to tasks, the mapping of tasks to specific cores,
the tasks’ recurrence and task priorities.

Setting basic requirements: In addition to the aforementioned
data on tasks and their core assignment, it is essential to add basic
timing requirements for them, i.e., upper limits (deadlines) for the



tasks’ response time according to their respective periods. They
enable the basic assessment of a simulated solution regarding its
general validity.

Configuring the hardware model: Providing the simulation with
concrete details on the target hardware helps to enhance the signifi-
cance of the results. This includes — among other things — the num-
ber of cores, their clock rate (frequency), their cache and available
shared memory. In addition, existing signals (i.e. the model’s vari-
ables) have to be initially mapped to certain memory modules. In
the Case Study (Section 4), we use the model of a real-world auto-
motive microcontroller featuring three cores and assign the signals
to core-local memories according to the made task-to-core map-
ping.
Selection of scheduling algorithm: Usually, a simulation tool
provides different algorithms for the scheduling of the tasks. Popu-
lar examples are “Rate-Monotonic scheduling”, “Deadline Mono-
tonic Scheduling”, “Earliest Deadline First” or “Proportionate
Fairness” [3, 26, 41]. There is no universally valid heuristic helping
to select the optimal one according to a certain model. Therefore,
running tests with a couple of them seems to be expedient.

The more concrete parameters are set, the more realistic and
expressive the obtained results are. In particular, we selected the
following key figures to represent the solution’s quality:

e General validity: A solution is valid if the simulation proves that
all basic timing requirements of the tasks are fulfilled, i.e., all
tasks are fully processed before they are triggered again.

e Average latency: If compared to the best known other solu-
tion, the maximum response time for a whole model (derived
from the latencies of its tasks) is a meaningful value revealing
needlessly caused overhead. In addition, it gives a hint on the
model’s overall potential degree of parallelization.

e Communication overhead: As different cores execute tasks that
depend on each other, a certain rate of “cross-core communi-
cation” is virtually always inevitable. Like the latency, this rate
can be assessed relative to other solutions through comparison.

e Average core load: This indicates how uniform the division of
processing work is (proper load balancing).

This measured data serves as basis of comparison for solutions
calculated by the succeeding optimization.

3.4 Optimization & Comparison

After the simulation has returned key figures for the initial solution,
further ones can be generated by using it as alterable seed. Accord-
ing to the strategy of the applied optimization software, the initial
solution is modified to a certain extent and then re-assessed in order
to learn if the changes are beneficial. In the Case Study (Section 4),
the employed third-party optimizer uses a genetic algorithm to au-
tomatically create new “solution generations”. Doing this manually
by inspecting the simulation results and purposefully varying (now
simpler to identify) critical parts is also expedient yet most likely
more time-consuming.

The outcome of the optimization is heavily influenced by the
set of parameters which can be changed by the algorithm. Our
approach does not exclude any part of a solution from being altered.
Thus, no limits are set for modifying a model, which allows a
variety of different optimizer settings. Some common ‘“leverage
points” for variation are, e.g., changing the core assignment of tasks
and — accordingly — the signals’ mapping to core-local memory,
altering task priorities or splitting given tasks at several positions.

In the end, the crucial insight is if the optimization can — in
regard to the mentioned key figures — deliver distinctly better solu-
tions and how much additional effort (most notably time) is neces-

sary. If the latter remains within acceptable limits, the optimization
results can give valuable feedback for the “Partitioning & Map-
ping” step in the form of, e.g., narrowing down the “corridor” of
expedient amounts of groups and their sizes or indicating which
groups are recommended to be assigned to one common core from
the very start (“pairing”).

4. Case Study

In order to illustrate the applicability and benefit of our approach,
we apply it to two AUTOSAR models: the mid-sized sample “De-
moCar” originating from the “AMALTHEA Project”’ and a part
of a huge real-world engine management system from Continen-
tal (“Continental EMS”). The former consists of one SWC con-
taining 43 REs with 3 different recurrences, 71 variables/signals
and 59 variable accesses (dependencies). The latter comprises 178
SWCs including 552 REs with 20 different recurrences, 11460 vari-
ables/signals and 45399 variable accesses.

First, our “Data Dependency Analysis Tool” (cf. Section 2) an-
alyzes the structure, variable accesses and timing properties of the
models. The subsequent partitioning step employs the “split with
respect to periods, then analyze” splitting strategy and conducts
a coarse-grained low-coupling search (with increasing fault toler-
ance) on parts of the models. For the DemoCar, it is relatively
easy to quickly find a near-to-optimal result as it is structured in
an straightforward way and does not include many data dependen-
cies. The Continental EMS is significantly more complex, thus only
a combination of rising tolerance values and onward coarsening al-
lows to find justifiable partitions. Our tool needs less than a minute
for the analysis and partitioning search when being run on conven-
tional laptops or desktop computers.

We create two partitions for both models: one with rather small
RE sets, one with large RE sets. In order to enable a comparison
to searching without a preceding data dependency analysis and
partitioning/mapping, we also include a simple partition for both
models that assigns all REs with uniform period to one task/group
(simulating a situation where no further knowledge about a system
is available).

The mapping is geared towards an embedded platform featur-
ing three cores (details below). The initial distribution follows a
“bin packing” approach that estimates the specific RE set’s core
utilization and assigns it accordingly as task on the least busy core
aiming at a proper load balancing.

In addition, process requirements are created that define funda-
mental deadlines for each task considering their recurrence. That
means that the included REs’ uniform period determines the whole
task’s maximum response time. They are mandatory for the purpose
of classifying later found solutions into “valid” (viable) or “invalid”
(unsuitable).

We use the above-mentioned “TA Tool Suite” (TATS) to sim-
ulate and optimize the models as it provides the required import
functions for both, AUTOSAR system descriptions and task assign-
ments provided via CSV files.

In order to achieve results that are as realistic as possible, we
use the model of an “Infineon AURTX TC27x”® microcontroller as
hardware platform, which is “[...] designed for ultimate reliability
in harsh automotive environments” [23]. It features three process-
ing cores that can be regarded as homogeneous [18, 22].

In TATS, a separate scheduler is assigned to each core. A selec-
tion of algorithms is available for the scheduling of the tasks on one

7“AMALTHEA is an open source tool platform for engineering embedded
multi- and many-core software systems.” [1].
8 The “AUtomotive Realtime Integrated NeXt Generation Architecture” is

a microcontroller family for the automotive sector featuring three indepen-
dent 32 bit “TriCore” CPUs [23].



core. For this case study, we chose either “EDF” or “AUTOSAR”
as strategy for all cores within one test run. The last necessary ad-
justment is the mapping of signals/variables to the memory. We
initially assign the signals to the local memory of the core read-
ing them. If multiple cores are involved, we distribute the signals
equally across them.

Now, the simulation can be carried out. We simulate an exe-
cution of the system that lasts one second and delivers extensive
feedback as well as our selected key figures. The crucial informa-
tion is whether the basic requirements are met, i.e., if the hardware
is — considering the given tasks, mapping and schedule — capable
of executing the software fast enough to keep up with the recurring
tasks.

Based on this, the succeeding optimization is conducted to com-
pare the initial partition/mapping with further possible solutions
calculated by a genetic algorithm employed in TATS. We consci-
entiously selected appropriate basic settings for the optimization,
namely a simulation time of one second, “maximum Normalized
Response Time” (mNRT) and “Inter-Core Communication rate”
(ICC) as optimization goals, an exploration size setting with ini-
tial population size 32", variation count “16” and selection count
“16” as well as “stagnation for 5 iterations” and similar ranges of
“generations” as stop criteria.

The most important setting is the granted “degree of freedom”
when altering the initial solution. It is represented by selecting
which modifications are allowed during optimization. We use the
following options offered by TATS [44]:

e “Runnable Sequencing” (RS), to “[...] change the order of
runnables inside call sequences.”

e “Task Splitting with Enforced Migration” (TS-EM) to “[...]
enforce migration of tasks to other schedulers/cores.”

e “Task Splitting with Inter Process Activation” (TS-IPA) to “[...]
split tasks into several subtasks.”

e “Process Allocation” (PA) to “[...] change the scheduler where
processes are allocated to.”

e “Periodic Stimulus Offset Assignment” (PSOA) to “[...] change
the Offset of Periodic Stimuli.”

e “Automatic Task Parallelization” (ATP) to “[...] partition tasks
into several subtasks which run in parallel on different cores.”

Among these, TS-EM and TS-IPA, PO and ATP as well as TS-IPA
and ATP are each considered mutually exclusive because they in-
terfere with each other. With respect to that and in order to cover a
broad search span, we apply different “strategy sets” to find prefer-
ably advantageous solutions. The steady basic setting is to allow RS
and PA as well as to choose maximum allowed splitting/migrating
values for either TS-EM or TS-IPA. The concrete sets arising out
of this are:

1. allow RS, PA, TS-EM and ATP with optimization goal mNRT
2. allow RS, PA, TS-EM and ATP with optimization goal ICC
3. allow RS, PA, TS-IPA and PSOA with optimization goal mNRT
4. allow RS, PA, TS-IPA and PSOA with optimization goal ICC
The optimization of complex models like the Continental EMS
can — due to the vast search space — take up to a whole day even
with low exploration sizes and performed on a rather powerful
laptop like the one we used (Dell M6700, Intel Core i7-3729QM,
8GB RAM, SSD hard drive, Winl0 64 Bit). The results include a

variety of data and statistics of these we concentrate on the ones
representing the key figures described in Subsection 3.3:

e The general validity is represented by entirely fulfilled “Process
Requirements™ (deadlines).

e The average latency is expressed through the “maximum Nor-
malized Response Time”.

e The communication overhead is shown as “Inter-Core Commu-
nication rate”.

e The core load balance is indicated by the difference of the
cores’ individual “CPU Load (Utilization) average”.

The results of our test run series are shown in Figure 2 (“Demo-
Car”) and Figure 3 (“Continental EMS”).

Test Runs for the AMALTHEA DemoCar

Partltlon-lng SC?Edu“?g Optimization & Comparison
& Mapping & Simulation
groups algorithm strategy set: optimiz. init #solutions
(distribution) <met deadlines> | RS, PAand ... goal rank | valid § all
simple AUTOSAR TS-EM, ATP mNRT n/a | 165§ 241
(on one core) <0/3> TS-IPA, PSOA mNRT n/a | 186 { 225
EDF TS-EM, ATP mNRT n/a | 208 { 305
<0/3> TS-IPA, PSOA mNRT n/a | 144 | 177
"SERA 24" AUTOSAR TS-EM, ATP mNRT 56. | 173 | 177
(distributed) <22/24> TS-IPA, PSOA mNRT | 251, 253 | 257
TS-EM, ATP IcC L, 327 | 337
TS-IPA, PSOA ICC 180. | 319 | 337
EDF TS-EM, ATP mNRT 59. | 176 | 177
<24/24> TS-IPA, PSOA mNRT 174.{ 174 § 177
TS-EM, ATP ICC 4. 238 1 241
TS-IPA, PSOA ICC 62, ! 157 | 177
"SERA 31" AUTOSAR TS-EM, ATP mNRT 72. | 177 § 177
(distributed) <29/31> TS-IPA, PSOA mNRT | 193.} 193 | 193
TS-EM, ATP ICC 1 177 § 177
TS-IPA, PSOA IcC 124.} 333 § 337
EDF TS-EM, ATP mNRT 51. | 193 { 193
<31/31> TS-IPA, PSOA mNRT | 289.} 289 | 289
TS-EM, ATP Icc 1. 177 § 177
TS-IPA, PSOA ICC 124. 1 333 i 337

Figure 2. Results for the test runs of our approach performed on
the “AMALTHEA DemoCar”

The included tables show how different combinations of spe-
cific partitions, mappings, scheduling algorithms for the simulation
and optimization strategies are used to search for advantageous so-
lutions. The rows can be interpreted as follows:

e Partitioning & Mapping:

= “Simple” indicates a grouping without further knowledge as
basis of comparison whereas “SERA X" denotes partitions
and mappings found by our approach including a number of
“X” tasks (RE sets).

= “On one core” acts as initial mapping for the “simple”
partitioning whereas “distributed” follows our approach of
low coupling and load balancing.

e Scheduling & Simulation: “AUTOSAR” and “EDF” are the
employed scheduling algorithms and the ratio below represents
the validity of the initial solution.

e Optimization & Comparison: Here, the settings and strategies
of the specific optimization run are stated together with the rank
of the initially calculated solution among the total number of
determined valid as well as all solutions.

The additional “ICC” optimization runs were only conducted if the
initial solution was not assessed as “predominantly invalid”, i.e.,
violating more than 50% of the deadlines. Thus, they were left out
for both models when the “simple” partitioning/mapping solution
was evaluated. This also applies for the rank of the initial solution



Test Runs for the Conti EMS

Partmon.mg Sc!]eduhr.\g Optimization & Comparison
& Mapping & Simulation
groups algorithm strategy set: optimiz. init #solutions
(distribution) <met deadlines> | RS, PAand ... goal rank | valid § all
simple AUTOSAR TS-EM, ATP mNRT n/a 4 113
(on one core) <1/20> TS-IPA, PSOA mNRT n/a 29 113
EDF TS-EM, ATP mNRT n/a | 106 { 129
<1/20> TS-IPA, PSOA mNRT n/a | 141§ 144
"SERA 47" AUTOSAR TS-EM, ATP mNRT n/a 0 113
(distributed) <37/47> TS-IPA, PSOA mNRT n/a 7 129
TS-EM, ATP IcC n/a o] 177
TS-IPA, PSOA ICC n/a 96 { 305
EDF TS-EM, ATP mNRT 149, 241§ 241
<47/47> TS-IPA, PSOA mNRT 253. | 289 | 289
TS-EM, ATP IcC 4. 305 § 305
TS-IPA, PSOA ICC 117.} 321 } 321
"SERA 248" AUTOSAR TS-EM, ATP mNRT n/a 0 153
(distributed) <222/248> TS-IPA, PSOA mNRT n/a 0 29
TS-EM, ATP IcC n/a o] 177
TS-IPA, PSOA IcC n/a 0 97
EDF TS-EM, ATP mNRT 90. ; 113 § 113
<248/248> TS-IPA, PSOA mNRT 15, 29 29
TS-EM, ATP ICC 3. 129 | 129
TS-IPA, PSOA IcC 8. 85 85

Figure 3. Results for the test runs of our approach performed on
the “Continental EMS”

column “init rank” which is not available if it cannot be compared
to valid ones. Within the latter, a rank is determined by TATS via
comparing the solutions’ specific “fitness” — a value reflecting the
calculated goal achievement.

In order to sum up the outcome of the test runs, we can state the
following: Our approach — especially its focal point described here
— contributes to ...

e ... avoiding most adverse starting points where many basic
deadlines are violated. This is illustrated by comparing the sim-
ulation results of “simple” partitions/mappings to those calcu-
lated by our approach (“SERA X”).

e ... quickly finding promising starting points for optimization
when primarily aiming at low response times.

e ... quickly finding remarkably advantageous starting points for
ICC-optimized solutions, where our EDF-scheduled initial so-
lutions are all valid right from the start in this case study.

e . generally challenge the existing software structure (such as
the assignment of REs to SWCs) by analyzing, partitioning and
mapping directly on RE level and independent from their given
assignment to SW-Cs.

The time saved by providing a viable initial solution comes even
more into effect when the exploration size is increased and opti-
mization durations are — as a consequence of exponential growth —
multiplied, e.g., when several days of optimization do not result in
a — according to a certain goal — considerably better solution than
the initial one that was created within minutes.

In this case study, our specific settings were chosen in order
to compare preferably many and diverging partitioning/mapping
solutions. Distinctly bigger exploration sizes for the optimization
are possible with an significantly increased time exposure or by
utilization of high performance computing resources.

5. Conclusion

Because of the inherent complexity of migrating single-core legacy
ECU software for a proper execution on multi-core platforms, fresh
methods and approaches are urgently needed.

In order to support the efficient parallelization of AUTOSAR
application software on function level, we introduced a tool-
supported systematic approach which helps software engineers in
analyzing, validating, partitioning and mapping AUTOSAR model
data. This process facilitates the subsequent scheduling, simulation
and optimization tasks which are carried out to find proper solu-
tions concerning preferably low overall latency as well as minimal
cross-core communication rates. Our approach is designed to de-
tect and solve potential consistency conflicts right from the start,
to support the parallelization of AUTOSAR models by automati-
cally providing concrete partitions and mappings and therefore by
considerably reducing necessary subsequent search effort.

To verity the potential benefit of our approach, we applied it
to a fictional mid-sized and a real-life complex model to obtain
a variety of different partitioning/mapping solutions which we af-
terwards compared to the previously calculated one. Experiments
have shown that a preceding data dependency analysis and a parti-
tioning/mapping (building on its outcome) can significantly reduce
time and effort for finding a suitable solution.

In closing, it can be stated that the automotive sector’s demands
are rapidly rising. It is already evident, that even many-core tech-
nology becomes increasingly wide-spread (c.g. growing number of
cores with distributed memories or rather heterogeneous connec-
tivity) [27]. Thus, the approach detailed in this paper can serve as
starting point for coping with the challenges that arise from this
development.
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