
Enterprise Methods Management
Using Semantic Web Technologies

Peter Rosina and Bernhard Bauer
Software Methodologies for Distributed Systems, Institute of Computer Science

University of Augsburg, Universitätsstr. 6a, 86135 Augsburg, Germany
firstname.lastname@ds-lab.org

Keywords: Methods, modeling, ontologies, semantic web, enterprise architecture.

Abstract: Due to today’s product complexity and variety and a shortening of development cycles, for instance, in the
automotive domain, a conventional knowledge representation and management of the various design methods
is not reasonable anymore. By acquiring the relevant domain and business knowledge from IT applications,
documents and experts and creating ontologies, business rules and queries thereof, domain experts can manage
this knowledge independently and thus react faster to the ever-changing development process.
Using Semantic Web technologies, we created a methods ontology that enables domain experts to analyze and
compare method meta knowledge, e.g., about physical and virtual CAx methods. Furthermore, this particular
domain and business knowledge features interdependencies with the remaining enterprise knowledge, includ-
ing business processes, organizational aspects and the IT architecture. Therefore, we show concepts for the
integration of this method meta knowledge into an enterprise architecture.

1 INTRODUCTION

The task of R&D divisions in the automotive domain
comprises forming ideas for new products, i.e., the
product planning, and the design in different stages
until it is ready for the start of production in the pro-
duction division. Naturally, a multitude of differ-
ent disciplines and departments, for instance, phys-
ical crash tests and virtual simulations, have to col-
laborate, cooperate and interact during this process
which entails the application of a large number of var-
ious technologies and working methods (cf. section
3), for instance, Computer Aided x (CAx) methods.
CAx comprises the Computer Aided Design (CAD)
that provides approaches for the virtual design and
verification of products and their geometry. Further
involved disciplines are the Computer Aided Engi-
neering (CAE) and Testing (CAT); the former pro-
vides methodologies for simulating the behavior of
a car and its functions, e.g., Finite Element Analy-
sis (FEA) for crash simulation; the latter for perform-
ing physical tests, e.g., vehicle management, job, and
testing control, and test result analysis. The involved
tools and methods range from mechanical test beds,

through Hardware in the Loop (HiL) to Digital Mock-
Ups and other pure software applications.

Our goal is to create an integrated model that de-
picts this domain of methods, technologies and tools
in order to support stakeholders in their daily work.
Nowadays, a method selection for a defined purpose,
an analysis of the entirety of methods in a company
and the method monitoring are mainly manual tasks,
ever and anon assisted by basic IT documents, like
spreadsheets. Formalizing this knowledge allow the
involved roles to analyze methods along the product
development process, for instance, for finding virtual
replacements for physical tests. This meta model and
the resulting ontology are introduced and explained in
section 4.

We realized our meta model, resulting ontology
and a prototypical application, following the ON-
TORULE approach (de Sainte Marie et al., 2011). Us-
ing Semantic Web technologies (cf. section 2.1) bears
many advantages: on the one hand, it enables a clear
separation of domain and business knowledge, that
can be extended and modified by domain and busi-
ness experts. On the other hand, this knowledge can
be implemented and managed independently from the

46
Rosina P. and Bauer B.
Enterprise Methods Management Using Semantic Web Technologies.
DOI: 10.5220/0005885400460055
In Proceedings of the Fifth International Symposium on Business Modeling and Software Design (BMSD 2015), pages 46-55
ISBN: 978-989-758-111-3
Copyright c© 2015 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



applications that process it.
Finally, in order to benefit mutually from the addi-

tional knowledge available in an enterprise, we illus-
trate how to combine our method meta model with an
enterprise architecture (EA) meta model in section 5.
The basics about EA are introduced earlier in section
2.2. In section 6, we shortly present a prototypical
demonstrator showcasing the method meta ontology
and its application. Furthermore, we discuss the op-
portunities that emerge by combining method and EA
meta models. The paper is then summarized in the
final section 7.

2 BASICS

2.1 Semantic Web Technologies

Bringing the Semantic Web to fruition is an collabo-
rative endeavor of various research groups, industrial
partners and organizations pursuing the common goal
to enrich the WWW with semantic data, thus trans-
forming the web from an un- or semi-structured docu-
ment based technology to a knowledge-centered one.
(Berners-Lee et al., 2001) developed the vision of the
Semantic Web in order to make the web’s meaning
machine-readable and -interpretable and hence inte-
grate heterogeneous data and infer new information
from existing knowledge bases (KBs) automatically.

Figure 1: Semantic Web layercake (after (W3C, 2007)).

The prominent Semantic Web Stack in Figure 1
depicts the architecture of the Semantic Web, which is
still in development and continuously improved. The
lower layers provide the technological basement for
the subsequent upper layers. The highlighted layers’
containing formats, i.e., RDFS, OWL (W3C OWL
Working Group, 2012), RIF (Kifer and Boley, 2013)
and SPARQL (Harris and Seaborne, 2013), serve as
our technological foundation. This paper represents
an excerpt of our ongoing work, though. Therefore,

we focus on modeling ontologies with the knowledge
representation language OWL. OWL ontologies sepa-
rate a terminological box (TBox), representing the on-
tological concepts, and the modeled individuals in the
assertional box (ABox). Moreover, we do not neces-
sarily apply these technologies for the WWW, but for
the enhancement and realization of enterprise domain
models and their applications.

2.2 Enterprise Architecture
Management

Many enterprises’ IT landscapes have reached a de-
gree of complexity that is only hard to understand and
manage (Hanschke, 2013). Additionally, the IT needs
to be aligned to business services and processes for an
optimal and efficient support. For this purpose, many
organizations have established an EA Management
(EAM), motivated by the circumstance, that business
is changing faster and faster due to shorter develop-
ment cycles, adaptation and reorientation of business
models and an overall need for improving the busi-
ness and IT alignment.

EAM helps companies to reduce costs for main-
tenance and developments when confronted with an
increasing number of systems by analyzing “areas
of common activity within or between organizations,
where information and other resources are exchanged
to guide future states from an integrated viewpoint of
strategy, business and technology” (EABOK Consor-
tium, 2015).

Success factors are a goal-oriented adaption to-
wards changing market and boundary conditions, the
detection of redundancies and the definition, deter-
mination and an ongoing assessment of the various
EAM Key Performance Indicators (KPIs) (Auer et al.,
2011). “Above all, [EA] recognizes that the informa-
tion assets of an enterprise are always in flux, and that
this flux is the steady state” (Wood, 2010).

An EA’s centerpiece is its meta model. It rep-
resents the diverse required aspects of a company’s
IT and business structures. These are, for instance,
elements such as processes, services, organizational
structures, data, applications and technologies. They
are connected and organized via various relations and
clusters which form the EA. The IT architecture can
be further subdivided into architectures covering soft-
ware and technology.

Every company is unique, with diverging require-
ments, goals and focus areas. For this reason, a suit-
able, customized meta model is more important when
introducing an EAM in a company than a tool which
comes along with an inflexible standard meta model.

An EA Framework (EAF) describes a methodol-

Enterprise Methods Management Using Semantic Web Technologies

47



ogy for developing an EA and its use during opera-
tion. It points out the relevant aspects and focuses
that an enterprise should consider when creating in-
formation systems. Some examples for EAFs are The
Open Group Architecture Framework (TOGAF) (The
Open Group, 2011), ISO 19439:2006 or the US Fed-
eral EAF, to name just a few (Matthes, 2011).

TOGAF, together with ArchiMate (The Open
Group, 2013), serves as the foundation for our EA
meta model. It provides a methodology for the design,
planning, development, implementation and mainte-
nance of an EA (The Open Group, 2011). It does not
feature a specific model the companies can use, but
offers meta models and guidelines that should be ap-
plied as seen fit and as required.

TOGAF partitions an EA into four main architec-
ture tiers: the Business, Data, Application and Tech-
nology architecture. The Data and Application Archi-
tecture are part of the Information Systems Architec-
ture. In this paper, we mainly focus on the business
level and its relations to the information systems, for
instance by dealing with business strategy, processes,
organizational structure and business capabilities and
the applications relevant for the execution of the busi-
ness processes.

The meta model along with suitable tools and an
EAF allows the enterprise to document and moni-
tor the business and IT architecture in a holistic way
which enables the architects and managers to react
faster to occurring changes in an agile enterprise. Fur-
thermore, modeling the business and IT architecture
leads to an increased transparency which in return
drives the use of a common vocabulary in the com-
pany and hence reduces misunderstandings. Other
benefits are the advancement of standardization, an
improvement and assurance of quality, a reduction of
IT costs and consequently an improved coping with
risks.

Generally speaking, the above listed advantages
should provide a fillip for any organization. How-
ever, introducing an EAM is especially worthwhile
for big enterprises. Such an enterprise can even be
an “extended enterprise”, that “nowadays frequently
includes partners, suppliers and customers”, as well
as internal business units (The Open Group, 2011).
On the one hand, small organizations shun the under-
taking, because it is wedded to a lot of effort – time-
and resource-wise. On the other hand, a big enter-
prise, with an historically evolved IT landscape and
complex business processes, will see the most bene-
fits from such an endeavor.

3 RELATED WORK

Our model has been mostly influenced by the domain
of CAx methods, in particular, our primary goal was
to model and analyze CAD, CAE and CAT methods.
However, we soon discovered, that a method meta
model covering not only CAx, but a much bigger
selection of working and design methods is of even
greater value.

Depending on the department or company, even
of the same domain, e.g., automotive engineering, a
method can be synonymous to a tool, a process, a
kind of technique for solving or analyzing problems
or a combination thereof. In software engineering,
the term is usually associated with a procedure, i.e., a
segment of a framework, of a software development
methodology, e.g., the waterfall model or an agile de-
velopment framework.

This ambiguity impedes the communication be-
tween people with a different background and leads
to unnecessary misunderstandings and coordination
phases. Thus, a standardization of the semantics
would be worthwhile.

Methods have been used for decades in the do-
main of Design Theory and Methodology – an ap-
proach for the methodical development of products
by using “effective methods to support particular de-
velopment steps and [guide users] to efficiently solve
development tasks” (Birkhofer, 2011). However, ac-
cording to (Pahl et al., 2007), the industry only re-
luctantly adapts design methodological models and
methods.

By definition, a method is a systematic proce-
dure for the attainment of something (Oxford Dictio-
naries, 2015) (Merriam-Webster.com, 2015), for in-
stance, for the attainment of [scientific] insights or
practical results (Duden, 2015).

Because our running example originates from the
automotive domain, we also incorporate domain spe-
cific method definitions and are inspired by existing
method frameworks, e.g., from systems engineering
and method development (cf. (Weigt, 2008)).

A method consists of one or many procedures
that are interconnected by logical rules (alternative,
predecessor, successor, etc.) (Hesse et al., 1992)
(Chroust, 1992). Methods are prescriptive which
means they are perceived as some kind of instruc-
tion or plan (Lindemann, 2009) and they cannot be
applied universally, but every method has a particu-
lar stage in the development process where its execu-
tion offers the best outcome (cf. (Meerkamm, 2011)).
More precise, methods are used in development pro-
cesses for supporting a systematic and aimed execu-
tion of tasks (Lindemann, 2009). Additionally, plans

Fifth International Symposium on Business Modeling and Software Design

48



and methods must be adapted to the specific situation
they are used in which means that a method can pro-
duce entirely different results and qualities depending
on its environment. Among others, this includes the
user itself. They have different knowledge, experi-
ences, skills, tendencies and their form on the day is
variable as well. Furthermore, the quality depends on
the tools that are used to execute a method, the type
of business process a method supports and of course
the quality of its input parameters.

According to (Müller, 1990), methodical support
should be coordinated with its respective boundary
conditions. In particular, it should be differentiated
between the boundary conditions of the organiza-
tional and operational layers (Weigt, 2008). Bound-
ary conditions of the organizational kind include role
descriptions, the mapping to business processes, or-
ganizational structures etc. The operational layer
comprises information about the tools used to con-
duct the method, its qualities, time consumption and
costs.

(Cronholm and Ågerfalk, 1999) define the re-
lations between the different method concepts in
even more detail by defining the relations between
them: methods can be vertically linked, thus creating
method chains – the outcome of the previous method
is the input for the next method. A method alliance on
the other hand, is a horizontal composition of meth-
ods, i.e., a family of similar, alternative methods. An-
other important concept is the perspective, i.e., how
methods are perceived and what level of detail and
focus is presented to the user.

Another significant aspect for the definition of
methods, more precise for the framework of meth-
ods (Cronholm and Ågerfalk, 1999), is the methods’
structure. According to (Lindemann, 2009), it is not a
simple task to clearly classify methods and put them
in some hierarchical structure. A kind of network or
graph, e.g., an ontology, is best suited for this task, be-
cause single methods and their partial procedures can
be applied in other methods as modules as well which
“supports a flexible selection, adaption and combina-
tion of methods” (Lindemann, 2009).

A method typically consists of the five bullet
points listed below (Lindemann, 2009):

Purpose / Goal: A task in the development process
which is supported by the method.

Situation: The scope, problem descriptions and
boundary conditions the method is usually appro-
priate for.

Effect: Effects and side effects, that are attained by
executing the method, i.e., the method’s output.

Procedure: The performed steps when executing the

method.

Tools: Form sheets, check lists, software, test beds,
etc.

Braun and Lindemann have analyzed the selec-
tion, adaption and application of product development
methods for the impersonal transfer of method know-
how, which resulted in the Munich Model of Meth-
ods (MMM) (Braun and Lindemann, 2003). It acts as
the foundation for a method model which consists of
method building blocks that are linked by method at-
tributes. Furthermore, the model supports the imple-
mentation of superior tasks and resources and support
(cf. Figure 2) can be related to a procedure.

Figure 2: The Munich Model of Methods (Braun and Lin-
demann, 2003; Lindemann, 2009).

The MMM comprises various steps for applying a
method.

The diagram depicted in Figure 2 is horizontally
split into four phases. It juxtapositions method at-
tributes and the method implementation during the
process action. The first lane deals with the clarifica-
tion of the method’s use case scenario. The following
lanes represent the method selection, its customiza-
tion and its application.

Vertically, the model is divided into different pro-
cess building blocks, i.e., the requirements phase,
boundary conditions and concerns concerning the
method application and of course the method’s goal
and output in the third vertical lane (Braun, 2005).

The single phases are supported by various tools.

The majority of the depicted blocks are also cov-
ered by our method ontology, because the entities
concerning a method definition, like input, output,
goal, procedure etc., necessarily have to be imple-
mented in a model when dealing with design meth-
ods.

Enterprise Methods Management Using Semantic Web Technologies

49



4 METHOD META MODEL

Our method meta model allows to semantically ex-
press the relations of tools and methods in combi-
nation with their tasks and processes on an abstract
layer but also offers the possibility to describe con-
crete methods and their boundary conditions, e.g., the
available time or budget.

Furthermore, our model allows to annotate the
quality of their interactions, based on a maturity scale.
To achieve a common understanding, we created a
method meta model that has been implemented with
OWL later on, by working closely together with in-
dustrial partners and regarding state-of-the-art def-
initions and models. Further necessary knowledge
that has been derived from our gathered requirements,
i.e., to answer requested information, has been imple-
mented in the form of queries and rules. These are not
presented in this paper, though.

4.1 Method Ontology

The resulting method ontology’s core structure is de-
picted in Figure 3. We use the attribute “core”, be-
cause this ontology can and should be extended with
further ontologies. The ellipses in the figure repre-
sent ontology classes and the directed edges stand for
properties, whereas their beginning is the property’s
domain and the arrowhead represents its range. Mul-
tiple properties between the same classes are consol-
idated into a single edge for a better overview; they
are separated by commas between the edges’ labels,
though.

When talking about a method’s maturity, quality
or other concerns, we have to take into account, that
a method can be applied at several points in a com-
pany’s processes. Usually, the quality of data or re-
sources rises over time, when the product itself is be-
coming more and more ready for series production.
Assuming that we have a method A in our method KB
which can be applied at two different points of time
in the product development process, it is conceivable
that this method is conducted using input resources of
a differing quality. Vice versa, the method’s applica-
tion is resulting in similar, but of differing quality, re-
sources which have to be available at a specific point
of time in the process, e.g., a milestone. Nonethe-
less, it is still the same method, supported by the same
tools and performed by similar procedures. Indepen-
dently, a method can also be applied with the same, or
at least the same quality and kind of, resources multi-
ple times in a process. In order to distinguish between
these (concrete) instances of a method and the gen-
eral (abstract) method they have been derived from,

we have introduced the concepts Concrete Method
and Abstract Method. An abstract method Ma is
a concept that defines a class of process-independent
methods. A concrete method Mc is a concept that de-
fines a class of methods, linked to a process action and
derived from an abstract method Ma.

 

Concrete 
Method

 

Process 
Action

applied_in

 Function

 

Process 
Model

part_of

comprises

 Procedure

consists_of

has_successor
has_predecessor,

derived_from,
is_component_of,
is_alternative_to

 Method

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

 Goal

attains

 Process includes

 Resource

 Tool

produces,
requires

supports

Organizational Layer

Operational Layer 

Abstract 
Method

Figure 3: Structure of the core method ontology.

In Figure 3, both, the Abstract Method and
the Concrete Method, are specializations of the
concept Method. The Method is a specialized
type of a Process model. Methods offer sugges-
tions for specific tasks’ sequences and the fash-
ion on how these tasks are to be conducted
(Lindemann, 2009). Following the example of
(Eisenbarth, 2013), a Process Action is equiva-
lent to a task and hence, a Concrete Method is
applied in a specific task that is again related to
a Process. Because both method types inherit the
object properties of Method, we can model inter-
relationships between Concrete Methods and re-
spectively Abstract Methods, and can also state that
some arbitrary Concrete Method is derived from
a specific Abstract Method. The remaining object
properties allow us to model classes of methods such
as method chains and alliances (has successor,
has predecessor, is alternative to).

The three concepts at the bottom right of Figure
3, namely Procedure, Goal and Function, are used
to formally describe the methods’ contexts, resp. its
comprised procedures (cf. section 3).

An instance of the class Procedure can ei-
ther describe this method’s procedure in textual
form with the given RDFS properties (rdfs:comment,
rdfs:seeAlso, rdfs:label, . . . ) or can be linked to
more complex constructs, like a class Document (not
part of the figure) which again may link to a doc-
ument in the file system. Otherwise, if a method
makes use of another method, object properties, like
is component of shall be used.

Taking into account, that a method is al-

Fifth International Symposium on Business Modeling and Software Design

50



ways purposeful and therefore always focused on
a solution of a problem or task (Lindemann,
2009), a Method attains the concept Goal.
The method’s Goal is the class that can de-
scribe the method’s contribution to the enterprise’s
strategy or overall value creation. For exam-
ple, we can create the classes ProductAssurance
or VehiclePropertyAssurance as a Goal’s sub-
classes. When a specific method assures an arbi-
trary business product, the respective instance can be
linked to the Product of a product ontology.

Usually, a Method is supported by a number of
Tools that are to make its application more effective
and efficient (Lindemann, 2009). The term and there-
fore the respective class Tool covers a wide range of
different auxiliaries or assistive equipment. In the do-
main of CAx, this can be all kind of testing equip-
ment, physical implements, simulation or modeling
software, but also arbitrary business software, statis-
tical analyses or something totally different. Besides,
the term also comprises simple assistive things, like
forms, checklists etc.

4.2 Extending the Method Ontology

Up to now, the introduced method model allows to
observe and compare methods based on their se-
mantic context information, assumed the appropri-
ate SPARQL queries have been implemented, for in-
stance, the application of methods and tools during a
specific process can be queried. Additionally, we fur-
ther extend the method ontology with other ontolo-
gies, covering metrics, resources, descriptions, enter-
prise vocabulary etc., in order to model and be able to
analyze a company’s method landscape in a holistic
way.

Due to limited space, we can only introduce the
overall architecture and a summarized description of
the created ontologies, though.

One of the big advantages of using Semantic Web
technologies is having this vast amount of publicly
available community ontologies, for instance, FOAF
(Brickley and Miller, 2014) or SKOS (Isaac and Sum-
mers, 2009), that can be used as extensions, geared to
the company’s needs. The architecture presented in
Figure 4 illustrates how our core method ontology is
integrated as an upper ontology.

The remaining ontologies, e.g., a process, re-
source and metrics ontology, are mapped to the core
ontology.

Independent from the chosen mapping paradigm
between the ontologies, a company wants to model
its own KB, covering their use cases. This domain on-
tology is depicted in Figure 4 as Method Ontology X.

...
 

Process Ontology
Resource OntologyUpper Method 

Ontology
(Core Ontology)

Method Ontology X
(Domain-specific Method 

Ontology)

Concrete Method Mc_01 Abstract Method Ma_01
Concrete Method Mc_01

Concrete Method Mc_01

Concrete Method 
Instance Mc_01 Abstract Method Ma_01

Abstract Method Ma_01

Abstract Method 
Instance Ma_01

classificationclassification

generalization

Metrics Ontology

links

Figure 4: The method ontology’s architecture.

The domain ontology specializes the concepts of the
upper ontologies with domain specific ones and pro-
vides the TBox for our specialized assertions (ABox),
i.e., Concrete Method Instances Mc u and Abstract
Method Instances Ma v.

For instance, it can be used to provide a necessary
taxonomy for the domain of CAx methods by intro-
ducing new concepts, e.g., CAE Method, CAD Method
and CAT Method or a more general method, like
dc:MethodOfInstruction from Dublin Core. Along
with new kinds of methods, apposite, more special-
ized metrics or other arbitrary parameters can be in-
troduced in the same way.

The knowledge for creating an own domain-
specific ontology can either be acquired from exist-
ing company sources, like documents, or from experi-
ence, by interviewing experts as described in the ON-
TORULE methodology (de Sainte Marie et al., 2011).

In order to compare methods based on their KPIs,
for instance, the method’s cost, input and output qual-
ity, maturity or duration, we developed a metrics on-
tology, covering the required quality attributes. Next
to selection criteria, the metrics can act as indica-
tor for strengths and weaknesses in the company’s
method framework and allows to detect gaps, e.g.,
processes that are scarcely supported by methods.
This information is valuable for the strategic method
development. The model can also be extended with
arbitrary execution or evolution quality attributes (the
so called “ilities”), like usability, reliability, manage-
ability etc. Which kind of non-functional require-
ments to choose is facultative and up to the company’s
knowledge and methods engineers.

In accordance with the distinction between
concrete and abstract methods (section 4.1), we
also distinguish between Concrete Resources and
Abstract Resources in the developed resource on-
tology. This model covers the required inputs and
produced outputs of our methods. When modeling
an Abstract Method, the knowledge engineer can
define the type of resources that are required or pro-

Enterprise Methods Management Using Semantic Web Technologies

51



duced by this method, for instance, a general place-
holder parameter for an abstract CAD model name.
But not until the Concrete Method instance is mod-
eled and assigned to a process action, the Concrete
Resources can be named, for example, a particular
drawing. Following current best practices, like the
example of the W3C Product Modelling Incubator
Group (W3PM, 2009), our resource ontology, is in-
fluenced by a standard product model, namely STEP
(AP 214/242) (ISO, 2014). We decided not to model
a product’s inner structure, like PDM systems do, but
to confine ourselves with more abstract concepts, be-
cause our method ontology’s purpose is still to model
only the meta level of the method landscape, i.e., anal-
ogous to the method concept, we treat the products as
a black box.

Furthermore, we have used SKOS to manage
the heterogeneity of the enterprise’s vocabulary, i.e.,
methods and policies, like regulations (Omrane et al.,
2011). This way, multiple labels can be annotated to
all the ontology’s entities which makes them gener-
ally intelligible, e.g., by enabling a multilingual use or
making the semantics more comprehensible for peo-
ple with differing professional backgrounds.

5 ENTERPRISE INTEGRATION

The main objective of this integration has been a com-
bination of method knowledge with an EAM in a
product development division. This way, the input of
strategic, business and IT decisions on methods and
vice versa can be easily inferred, while the knowledge
can be maintained independently.

Integrating our method meta model into an EAF
bears many advantages. First of all, the combined
meta models allow stakeholders to perform novel
kinds of analyses, like impact analyses or discov-
ering business and IT relations. For example, the
concern “Which system/application supports which
methods?” or the responsibility of the modeled ac-
tors and roles can be identified. Furthermore, a com-
pany benefits from such a mapping approach through
a concerted and defined meaning of the modeled con-
cepts and vocabulary. OWL, especially the extension
SKOS, supports the use of various labels, hence dif-
ferent vocabularies can be attached to the concepts, if
required.

As a prerequisite for the integration of our method
meta model into an EA meta model, we first need to
obtain a formalized model. We have decided to use
TOGAF and ArchiMate as a foundation for our EA
model because of their popularity and maturity. How-
ever, the Open Group does not provide a formalized

model of their framework but considers TOGAF as
an approach that should be further refined and imple-
mented. Nevertheless, using ontologies and other Se-
mantic Web technologies for the realization of EAs
has been done for years now (Ortmann et al., 2014).

As a consequence and inspired by the above men-
tioned EA frameworks and meta models, we also cre-
ated our own EA ontology. Since our method meta
ontology has been realized using OWL, we also ap-
plied this language when designing our EA ontology,
depicted in Figure 5.

Organization
Unit

Business
Function

Role

Business
Process

Actor

Business
Service

Data
Entity

Application
Component

Technology
Component

owns

participates in,
owns

owns,
governs

orchestrates,
decomposes

provides governed
interface to access

participates in

performs task in

accesses supports,
Is realized by

implements,
uses

provides,
consumes

is processed by

is implemented on

decomposes

accesses,
performs

supplies,
consumes

Business
Object

accesses

accesses

is implemented on

contains

Figure 5: Enterprise Architecture ontology based on TO-
GAF and ArchiMate meta models.

An important requirement for this EA ontology
has been a suitable coverage of the concepts known
from our core method meta ontology, together with
the extended method ontologies. Thereby, we want to
make use of newly generated relations, for instance,
from methods to business objects or capabilities. The
TOGAF Core Content Metamodel, combined with
the Archimate Design approach fulfill this require-
ment and can be extended when specialized concepts
are needed as illustrated in Figure 6. We use the
same generic concepts (OWL meta model) and extend
the EA concepts with a more specific domain meta
model.

After selecting the EA model, we need to establish
mappings from our method ontologies’ concepts and
entities to the already existing elements in the EA.

Technically, we could pursue different mapping
techniques for combining our ontologies: we could
use the other ontology’s concept URIs directly, which
is the standard way in Semantic Web. For exam-
ple, by importing the ontology into ours, we can
use ea:BusinessProcess as a replacement for our
method:Process in the method ontology. However,
a fundamental idea behind our integration is the re-
tained separation of both KBs, because each domain

Fifth International Symposium on Business Modeling and Software Design

52



Entity

Relation

ProcessApplication

M
o

re
 g

en
er

ic

M
o

re
 s

p
ec

if
ic

Generic concepts

Enterprise Architecture 
concepts

Domain- and company-
specific concepts

Figure 6: Meta models at different specificity levels (after
(The Open Group, 2013)).

– the method knowledge and the EA knowledge –
is the particular responsibility of a dedicated orga-
nizational unit and hence, changes in the other on-
tology can be opaque. An alternative option would
be to use an upper ontology, like UMBEL (Giasson
and Bergman, 2015), which is certainly a reason-
able choice when combining lots of domains. We
do not need such an explosion of our domain for the
scenario at hand, though. The technique we have
chosen to map the TBoxes is the use of an own
mapping ontology for combining the various con-
cepts, for instance, by using owl:equivalentClass or
rdfs:subClassOf. This option can be implemented
very fast, the mappings are traceable in one ontol-
ogy, and it offers a good overview for a manageable
amount of concepts, which is sufficient for the proto-
typical introduction presented in this paper.

Furthermore, next to matching the ontologies’
TBoxes, we make statements about the individu-
als in the ABoxes that represent our model. The
respective individuals, e.g., the modeled processes,
are usually matched using OWL notation, as in
owl:sameIndividual. However, it is often the case,
that two individuals are only nearly exactly the same.
Therefore, the use of a ’Similarity Ontology’, along
with object properties like so:identical, is a good idea.
It allows to express different levels of identity (Halpin
et al., 2010).

EA Ontology Method Ontology

Process
Business
Process

Business
Resource

Business 
Object

Tool
Application 
Component

Application
Tool

rdfs:subClassOf

Resourcerdfs:subClassOf

Mapping

Goal

rdfs:subClassOf

owl:equivalentClass

rdfs:subClassOf

Goal owl:equivalentClass

Business
Service

Methodsupports

Figure 7: Mapping of EA and method ontology.

When comparing our core method ontology’s with
our EA ontology’s concept names, we encounter
some obvious similarities. An equal or similar
name, however, does not automatically infer syn-
onymous semantics. The considered key concept
Process from our method ontology and the concept
Business Process from the EA ontology are iden-
tical, though, especially when regarding the TOGAF
“Process Modeling Extension”. The conceptual map-
ping between both ontologies is depicted in Figure 7.
We state that both concepts are equal even though the
different processes can vary in their granularity.

Our intentions for the methods’ input and output
Resources are semantically covered by the concept
Business Object, known from the ArchiMate Busi-
ness Layer Metamodel. This concept “represents a
business entity (e.g. an invoice) that is used during
the execution of a business process” (Buckl et al.,
2008). Processes can perform all kind of create, read,
update and delete (CRUD) operations on a business
object, which either represents a virtual or physical
object (or both) (The Open Group, 2013). This ap-
plies to our methods’ relations and the correspond-
ing resources, as well. However, only a subset of
the modeled EA business objects are pertinent for the
analysis of our meta method ontology and vice versa.
Therefore, both concepts share the common subclass
Business Resource (cf. Figure 7). This subclass is
modeled in a domain ontology, importing the upper
method ontology.

The same reasoning applies to the concepts Tool
and Application Component. A lot of business
software is of no interest for the method domain and
tools of the method domain can also include physical
devices and implements. Consequently, we introduce
the concept Application Tool. The various indi-
viduals in the ontologies’ ABoxes are then mapped
to their counterpart using properties that express the
appropriate similarity.

Additionally, Methods represent a link between
Business Services, process actions and tools.
They express, how and when a business service can
be applied to a specific process.

The final depicted mapping between both ontolo-
gies deals with the motivation extension, since meth-
ods as well as stakeholders in EA intend to achieve a
Goal.

The remaining concepts of the core meta method
model feature no counterpart in the EA ontology,
even though both models feature a concept named
Function. A function in TOGAF “delivers business
capabilities closely aligned to an organization [. . . ].
Also referred to as ’business function”’ (The Open
Group, 2011), whereas a function in our meta method

Enterprise Methods Management Using Semantic Web Technologies

53



model represents an appropriated behavior of a tech-
nical system (Weigt, 2008).

6 EVALUATION

The combination of an enterprise architecture with
our method ontologies and the respective domain
models enable methods engineers, enterprise archi-
tects, domain experts and other stakeholders to con-
duct novel kind of analyses. For example, we can
compare and hence select the most suitable methods,
based on the modeled KPIs, at specific process phases
in the product development. Furthermore, a purpose-
ful development and shutdown of methods is made
possible by performing analyses based on the base-
line and target architectures.

The new concepts and contributions, namely the
use of standard Semantic Web languages, the EA
integration, the evolved method meta model, along
with the extending ontologies and the corresponding
queries and rules, have been modeled, formalized and
executed with a chosen set of test scenarios that show-
case the proof of concept.

An earlier, specialized version of the introduced
method meta model, together with a prototypical im-
plementation as seen in Figure 8, has been developed
and published during the FP7 ONTORULE project
(Rosina and Kiss, 2011). This demonstrator proofs
the feasibility and illustrates the benefits of our ap-
proach. However, it has been implemented using
an alternative knowledge representation and rule lan-
guage (ObjectLogic), covering a tailored meta model
that realizes a particular automotive use case.

Figure 8: Extract of the demonstrator showing various pos-
sible method applications (Rosina and Kiss, 2011).

7 CONCLUSION

The developed ontologies presented in this paper de-
pict the domain of design methods, including their
context information, for instance, references to the
processes they are used in, quality attributes and the

methods’ in- and outputs. This allows us to predi-
cate statements on expected qualities, costs, time con-
sumption or other KPIs which is a strong motive for
domain experts when selecting an appropriate method
best suited for the task at hand. They have been re-
alized using Semantic Web standards, however, we
omitted almost the entire technical part in this paper,
concentrating on the conceptual models. A former
technical realization is referenced in the evaluation
section, though.

Another novelty is the integration into an EA on-
tology, which bears many mutual benefits. It enables
the analysis of relationships on a strategic level, fos-
tering a targeted method development, on the business
level, e.g., between roles, processes and methods, and
also on a business to IT level, for instance, by provid-
ing an overview of the applied method software tools.

However, the application, documentation, the ex-
ecution and the maintenance of a formalized method
management is expensive, can be complex and is
wedded to effort, because it is mainly a manual pro-
cedure.

REFERENCES

Auer, G., Basten, D., Berneaus, M., Däberitz, D., Freitag,
A., Haas, H., Kröber, G., Schmidtmann, V., Schweik-
ert, R., Stettiner, E., Thielscher, J., Triebel, T., Weber,
M., and Weisbecker, A. (2011). Enterprise Architec-
ture Management neue Disziplin für die ganzheitliche
Unternehmensentwicklung. Bundesverband Informa-
tionswirtschaft, Telekommunikation und neue Medien
e. V., Berlin, Germany.

Berners-Lee, T., Hendler, J., and Lassila, O. (2001). The
Semantic Web. Scientific American, 284(5):34–43.

Birkhofer, H., editor (2011). The Future of Design Method-
ology. Springer-Verlag London Limited.

Braun, T. (2005). Methodische Unterstützung der strate-
gischen Produktplanung in einem mittelständisch
geprägten Umfeld. PhD thesis, TU Munich, Munich,
Germany.

Braun, T. and Lindemann, U. (2003). Supporting the selec-
tion, adaptation and application of methods in product
development. In International Conference on Engi-
neering Design, ICED’03. Design Society.

Brickley, D. and Miller, L. (2014). FOAF Vocabulary
Specification. http://xmlns.com/foaf/spec/. Re-
trieved 2015-04-20.

Buckl, S., Ernst, A., Lankes, J., and Matthes, F. (2008).
Enterprise Architecture Management Pattern Catalog.
Technical report, Software Engineering for Business
Information Systems (sebis), Munich, Germany.

Chroust, G. (1992). Modelle der Software-Entwicklung
- Aufbau und Interpretation von Vorgehensmodellen.
Oldenbourg-Verlag, Munich, Germany.

Fifth International Symposium on Business Modeling and Software Design

54



Cronholm, S. and Ågerfalk, P. (1999). On the Concept
of Method in Information Systems Development. In
Käkölä, T., editor, 22nd Information Systems Re-
search In Scandinavia (IRIS 22), Keuruu, Finland.

de Sainte Marie, C., Escudero, M. I., and Rosina, P. (2011).
The ONTORULE Project : Where Ontology Meets
Business Rules. In Web Reasoning and Rule Systems,
volume 6902, pages 24–29, Galway, Ireland.

Duden (2015). ’methode’. http://www.duden.de/
rechtschreibung/Methode. Retrieved 2015-04-20.

EABOK Consortium (2015). Enterprise Architecture Body
of Knowledge. http://www2.mitre.org/public/
eabok/index.html. Retrieved 2015-04-20.

Eisenbarth, T. (2013). Semantic Process Models - Trans-
formation, Adaption, Resource Consideration. PhD
thesis, University of Augsburg, Augsburg, Germany.

Giasson, F. and Bergman, M. (2015). Upper Mapping
and Binding Exchange Layer (UMBEL) Specifica-
tion. http://techwiki.umbel.org/index.php/
UMBEL_Specification. Retrieved 2015-04-20.

Halpin, H., Hayes, P. J., McCusker, J. P., McGuin-
ness, D. L., and Thompson, H. S. (2010). When
owl:sameAs isn’t the Same: An Analysis of Identity in
Linked Data. In The Semantic WebISWC 2010, pages
305–320.

Hanschke, I. (2013). Strategisches Management der IT-
Landschaft. Carl Hanser Verlag München, Munich,
Germany.

Harris, S. and Seaborne, A. (2013). SPARQL
1.1 Query Language. http://www.w3.org/TR/
sparql11-query/. Retrieved 2015-04-20.

Hesse, W., Merbeth, G., and Frölich, R. (1992). Software-
Entwicklung - Vorgehensmodelle, Projektführung und
Produktverwaltung. In Handbuch der Informatik, vol-
ume 5.3. Oldenbourg-Verlag, Munich, Germany.

Isaac, A. and Summers, E. (2009). SKOS Simple Knowl-
edge Organization System Primer. http://www.w3.
org/TR/skos-primer/. Retrieved 2015-04-20.

ISO (2014). ISO 10303-242:2014 - Industrial automation
systems and integration – Product data representation
and exchange – Part 242: Application protocol: Man-
aged model-based 3D engineering.

Kifer, M. and Boley, H. (2013). RIF Overview (Second
Edition). http://www.w3.org/TR/rif-overview/.
Retrieved 2015-04-20.

Lindemann, U. (2009). Vorgehensmodelle, Grundprinzip-
ien und Methoden. In Methodische Entwicklung tech-
nischer Produkte, chapter 3. Springer-Verlag Berlin
Heidelberg, Garching, Germany.

Matthes, D. (2011). Enterprise Architecture Frameworks
Kompendium. Springer Berlin Heidelberg.

Meerkamm, H. (2011). Methodology and Computer-Aided
Tools - a Powerful Interaction for Product Develop-
ment. In Birkhofer, H., editor, The Future of De-
sign Methodology, chapter 5, pages 55–65. Springer-
Verlag London Limited.

Merriam-Webster.com (2015). ’method’. http://www.
merriam-webster.com/dictionary/method. Re-
trieved 2015-04-20.

Müller, J. (1990). Arbeitsmethoden der Technikwis-
senschaften: Systematik, Heuristik, Kreativität.
Springer Verlag.

Omrane, N., Nazarenko, A., Rosina, P., Szulman, S., and
Westphal, C. (2011). Lexicalized Ontology for a Busi-
ness Rules Management Platform: An Automotive
Use Case. In Olken, F., Palmirani, M., and Soltara,
D., editors, Rule - Based Modeling and Computing
on the Semantic Web, volume 7018, pages 179–192.
Springer Berlin Heidelberg.

Ortmann, J., Diefenthaler, P., Lautenbacher, F., Hess, C.,
and Chen, W. (2014). Unternehmensarchitekturen
mit Semantischen Technologien. HMD Praxis der
Wirtschaftsinformatik, 51:616–626.

Oxford Dictionaries (2015). ’method’. http:
//www.oxforddictionaries.com/definition/
english/method. Retrieved 2015-04-20.

Pahl, G., Beitz, W., Feldhusen, J., and Grote, K. H.
(2007). Pahl/Beitz Konstruktionslehre: Grundlagen
erfolgreicher Produktentwicklung. Methoden und An-
wendung. Springer Berlin/Heidelberg, 7th edition.

Rosina, P. and Kiss, E. M. (2011). D4.3 - AUDI R&D Busi-
ness Orchestration System. ONTORULE Project.

The Open Group (2011). TOGAF Version 9.1. Van Haren
Publishing, Zaltbommel, Netherlands.

The Open Group (2013). ArchiMate 2.1 Specification. The
Open Group, Berkshire, United Kingdom.

W3C (2007). Semantic Web layercake diagram. http://
www.w3.org/2007/03/layerCake.png. Retrieved
2015-04-20.

W3C OWL Working Group (2012). OWL 2 Web Ontol-
ogy Language Document Overview. http://www.
w3.org/TR/owl2-overview/. Retrieved 2015-04-
20.

W3PM (2009). Product Modelling using Semantic
Web Technologies. http://www.w3.org/2005/
Incubator/w3pm/XGR-w3pm/. Retrieved 2015-04-
20.

Weigt, M. (2008). Systemtechnische Methodenentwicklung.
PhD thesis, Universität Karlsruhe (TH).

Wood, D., editor (2010). Linking Enterprise Data.
Springer-Verlag New York, Inc., New York, NY, USA.

Enterprise Methods Management Using Semantic Web Technologies

55


