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Abstract. Enterprise Architecture (EA) models are established means
for decision makers in organizations. They describe the business processes,
the application landscape and I'T infrastructure as well as the relationships
between those layers. Current research focuses merely on frameworks,
modeling and documentation approaches for EA. But once these models
are established, methods for their analysis are rare. In this paper we pro-
pose the use of semantic web technologies in order to represent the EA and
perform analyses. We present an approach how to transform an existing
EA model into an ontology. Using this knowledge base, simple questions
can be answered with the query language SPARQL. The major benefits
of semantic web technologies can be found, when defining and applying
more complex analyses. Change impact analysis is important to estimate
the effects and costs of a change to an EA model element. To show the ben-
efits of semantic web technologies for EA, we implemented an approach to
change impact analysis and executed it within a case study.

1 Introduction

Today’s organizations have to deal with the complexity of large I'T landscapes
together with fast changing business architectures. Enterprise architecture (EA)
models are used to capture the IT infrastructure elements, the used applica-
tions as well as the business processes. Especially the relationships between the
elements are of major interest in order to understand the organizations’ struc-
ture. The domain of Enterprise Architecture Management (EAM) captures the
process of assessing the current EA of an organization as well as defining and
implementing a target architecture [12]. Thus, EAM is a mean for incorporating
changes throughout the whole organization as well as for driving optimizations of
the architecture, especially the alignment of business and IT. The optimization
of the business processes itself is dealt within the domain of Business Process
Re-engineering.
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Current methods and tools in the EA domain provide means to calculate
specific key performance indicators and visualize the results in an EA model e.g.
an architecture diagram can be annotated in a way, that application systems
running out of support shortly are colored red (see [18]). But combining this
fact with other ones, e.g. the rate of business critical processes supported by
the application, or the availability of a successor application bears challenges.
A vital question in this context is also the effect of a specific change. The change
in one element can cause ripple effects throughout the whole organization. Those
indirect effects of a change are not always obvious, but can cause severe costs for
a project. Especially since EA models are typically very large, humans cannot
capture these effects easily. Change impact analysis is used to calculate the
affected elements and thus provide the enterprise architect further information,
whether a change should be implemented or not. Current implementations of
more complex analyses and measures are highly dependent on the used meta
model. Since every organization has its own, customized EA meta model, re-
using existing analysis methods is not trivial.

In this paper we propose the use of semantic web technologies to represent
EA models and to perform analyses on them. We reuse an existing formalization
in order to transform an EA model into an ontology (Sect.3.1). Then we show
how simple measures and reports can be defined using SPARQL and reasoning.
In order to implement more complex analyses in a flexible way, we propose
to solely define their semantics and finally integrate them in an existing EA
ontology (Sect.3.2). The applicability of our approach is shown through the
implementation of a change impact analysis (Sect. 4) and its execution in a case
study (Sect. 5).

2 Foundations and Related Work

EA models are used to document the organization, its components and the rela-
tionship between those. Thus they provide a mean to capture and understand the
complex dependencies between the business and the supporting I'T infrastructure
[11]. An EA model is documented using an organization specific set of concepts and
relationships between those. Typical examples for concepts are business processes,
application components and infrastructure components as well as use and realize
relationships between those. Existing EA frameworks, like the Zachman frame-
work [27] or TOGAF [22] propose different approaches for the documentation.
There is no common standard for EA models. The actual used meta model is, in
most cases, an adaption of an existing framework, tailored to the specific needs of
the organization. This leads to a high variety of meta models used in organizations
and is a major challenge, when defining methods and techniques to gain value from
the EA model. Current research focuses on the development of EA frameworks
as well as modeling and documentation approaches. EA analysis is not the main
focus and thus not much work exists [16,17]. Existing approaches rely on tech-
niques like XML [3] or a probabilistic extension of OCL [7]. In practice, reporting
and measure calculation in the domain of EA is often performed using SQL data-
bases but also with Excel sheets. In [19] SPARQL was proposed for analyzing an
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EA, as it allows to perform different kinds of analyses with different complexities
using the same technology. These approaches have in common that they are depen-
dent on the underlying meta model, the adaption to a different one requires much
effort. Despite for analysis purposes, semantic web technologies are also proposed
for other reasons in EAM: Chen et al. present a method to integrate data from
several sources into one EA repository using semantic web technologies [1]. Their
goal is to automate the time-consuming documentation process through the use
of semantic web technologies. In [5] a formalization of the TOGAF meta model
using ontologies is presented in order to improve the quality and consistency of an
EA model. The use of semantic web technologies is more common in the domain
of business process analysis. E.g. [4] propose their use to integrate static and pro-
cedural domain knowledge as well as execution data in order to analyze them.

EA models can also be utilized to determine the potential impact of a change
to one or more model elements. De Boer et al. describe in [2] an informal app-
roach to change impact analysis in ArchiMate models. ArchiMate [23] is a mod-
eling language for enterprise architectures, based on the TOGAF standard [22].
They start by considering a change to be either a modification, extension or dele-
tion (or none). A modification is a change that modifies existing functionality,
whereas an extension is a change that preserves existing functionality and adds
new functionality (e.g. changing the signature of a method in contrast to adding
a new method to an existing class); a deletion is a change that removes a whole
component [2]. When calculating the impact of a change, starting from the first
component to be changed, all components in the EA model are visited iteratively —
comparable to a depth-first-search — and are annotated with how they need to be
changed. The type of the relation determines how a relation between two compo-
nents behaves towards a change. An example for such a propagation rule is given
in the following for the relation type access that exists between two components
A and B (e.g. application A accesses a data store B):

— In case of a change starting from A:

e If A is deleted, it has no impact on B, because B doesn’t depend on A.

e If A is extended (or modified) this may change the way, the data stored
in B is handled and thus requires an extension (or modification) of B.

— In case of a change starting from B:

e If B is deleted, the object A can no longer access B. This does not mean
that A needs to be changed, but that the access relation of A is lost. This
has to be signaled to the user, so he can either link the access relation of
A with another data object or delete A or its access relation.

o If Bis extended, it still provides the functionality it did before the change
happened. Thus, A is not subject to change.

e If B is modified, the data or the way data in B is accessed, has changed.
Thus, A has to modified too.

Aier and Kurpjuweit provide an approach for change impact analysis by
calculating the transitive closure of the relationships [9]. Therefore they use a
relational composition operator to define the implicit relations between objects.
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This composition operator must only allow compositions of relation types, which
mean a dependency of objects in the context of change impact analysis. Since the
authors focus on dependency analysis in general, they do not provide a differenti-
ation between different change types. Further change impact analysis approaches
are based on probability distributions [6,21]. Those methods are based on change
probabilities, whom establishment requires a high workload. Thus if this informa-
tion is not available, those methods are not the best approach. Change impact
analysis is also supported in current EA tools. It is typically implemented as
a report that determines a hard coded set of elements, e.g. all applications sup-
porting a specific process and the related organization units (e.g. [18]). Another
approach to determine the impact provided by EA tools are visualizations, e.g.
using an interactive hierarchy graph (e.g. [14]) or through highlighting affected
elements with colors (e.g. [18]). Thereby the tools do not differ between specific
change types out of the box. Additionally the impact is rarely determined in a
transitive way, thus ripple effects are not considered directly.

3 Applying Semantic Web Technologies to EA

We propose the use of semantic web technologies for the representation of an EA
and to perform analysis on them. The transformation of an existing EA model
into an ontology is described in Sect. 3.1. Methods for their analysis are presented
in Sect. 3.2. Despite existing ones, we present a method for the execution of
complex analysis in different EA models.

3.1 From Formal Description to EA Ontology

We present our method for transformation along the meta model shown in Fig. 1.
The meta model is based on ArchiMate [23] and belongs to the case study
used for the evaluation. Nevertheless our method can be applied to any other
EA meta model as well. A Role is a structural concept that can “do” things
(e.g. an employee or a customer of a company). A Process is usually executed
by a Role if (in the model) there exists an assign relationship between these
two concepts. A Service provides functionality that is realized by a Component
(e.g. a software application). A Service can be used by either a Role, an Applica-
tion or a Process. A DataObject (e.g. a database system or a part of a database)
can be accessed manipulatively. Note that every relation type ¢ has a corre-
sponding ¢t~! which does not exist in Fig. 1 due to clarity.

According to Aier and Kurpjuweit [9] an EA meta model can be formalized
as tuple M = (C,T, R), where C'is a set of concepts, T is a set of relation types
withVteT: 3t teT: (¢t )"t eT,and RC C x C x T is the set of relations
that can exist between two concepts.

An EA model is described as tuple A = (E,T*,Q, F), where E is a set of
objects, being an instance of a concept, T is the transitive closure of the relation
types T, QQ C E x E x'T* is a set of relations that exist between two objects, and
F.: E — C'is a function that returns the concept of an object.
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Role Application
f A

realize assign

Process used by  realize access

~~ used by
used by
Service access — Data Object

Fig. 1. EA meta model of the case study

For a model A to be a correct instance of a meta model M we will require
the following condition to be fulfilled: V(e1,ea,t) € @ : (Fe(e1), Fe(ea),t) € R
Applying this formalization to our example, we get six different concepts and
four different relations (with their inverse):

C = {Role, Application, Function, DataObject, Process, Service}

T = {use,usedBy, access, accessed By, realize, realized By, assign,
assigned By}

R = {(Application, Service, realize), (Service, Application, realized By),
(Role, Service, use), (Service, Role, usedBy), ...}

Due to space limitations we do not list all triples of R here. Consider Fig. 1 for
the other triples. The integration of this formalism in real applications is not
straightforward. Additionally, to benefit from deduction and SPARQL [26] we
translated it into an OWL2 ontology [15]. Given a meta model M = (C,T, R)
we first create an owl:Class for each ¢ € C. However, all classes have to be
marked disjoint to each other, as components in a EA model can only be instance
of one class (see definition of F.). For each relation type ¢t € T of the meta model,
we create an owl :0bjectProperty. Every object property has to be linked
with its corresponding inverse through the owl : inverseOf annotation. Finally
the set of triples R is represented using the rdfs:domain and rdfs:range
information. The primary idea is to set the domain c1 and range c2 of a object
property o according to the triple (c1,¢2,0) € R. However, in EA it is possible to
use one relationship type for several pairs of classes. These are the relationships
t € T with | {(c1,c2)|(c1,c2,t) € R} | > 1. In our example usedBy is used for the
relation between Service and Process but also between Service and Application.
According to [20] we decided to solve this problem with superclasses in order
to have the reasoner work correctly. For the usedBy relationship, this would
indicate a new superclass ServiceUser. For the relation types access and realize
the same procedure will be applied. At least we have to implement the EA Model
(B, T*,Q, F) in the ontology. For each e € E an individual Z will be created.
Using the rdf : type assertion the respective type F, is assigned to Z. For each
relationship (e1, es,t) € @ an object property assertion with relation type t € T’
is defined between the corresponding individuals for e; and es.
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3.2 Analyzing the Enterprise Architecture

Having transformed an EA model into an ontology, semantic web technologies
can be employed to gain benefits from the modeled information. The easiest way
is the deduction of implicit knowledge using the reasoning capabilities. Often
relationships are only modeled in one direction. A typical example is the used By
relationship. For every application, the used services are known and modeled in
the EA. But from the perspective of a service, not all applications that use it are
known. In this case the inverse of each relationship can be deduced and provides
further knowledge about the EA. Especially the users of a service are getting
important, when it comes to decision about potential changes.

Using semantic web technologies it is possible to realize existing methods for
the deduction of implicit dependencies. For example the composition operation
proposed by [9] or the relation composition proposed by [24]. Such a relationship
composition can be used for dependency analysis as proposed by the former
authors, but also for generating landscape maps. A landscape map is a matrix
that is used to visualize dependencies between EA elements [25]. Such a matrix
is a common mean for EA management.

Another widespread method for EAM is the definition of reports and the
calculation of specific measures. Reports can e.g. be a list of all applications
assigned to a specific organization unit or all processes that use applications
hosted on a specific server. [13] proposes a catalog of key performance indicators
for EA management, including e.g. the Application criticality ranking. This mea-
sure is calculated using the following definition: The number of applications with
criticality rating available divided by the total number of applications. Assum-
ing that the required information for a report or measure is modeled in the
EA, the calculation of those using SPARQL [26] is straightforward. Since it is
a minor effort to define such SPARQL queries, it is no problem to specify them
individually for each organization.

The re-implementation effort of an analysis increases with the complexity of
the calculation routine. Examples for more complex analyses are the performance
and cost analysis proposed by [8] or the different analyses proposed in [16].
These analyses are dependent on a specific meta model and adapting them to
an existing EA initiative requires much effort. We propose the combination of
SPARQL and reasoning for the specification of more complex analyses to enable
their execution in an existing EA model with slight adaption effort. Therefore,
the concepts required to perform the analysis have to be defined in an own
analysts ontology. This ontology is the foundation for the specification of the
analysis, either using SPARQL or through respective assertions in the ontology
(and deduction). For the execution of the analysis in an existing EA model the
analysis ontology has to be imported. It is also possible to import both the EA
and the analysis ontology in a new one. Using mapping constructs like class,
property and data equivalency or subclass definitions the analysis concepts are
mapped to the EA concepts. Running the reasoner infers the axioms that are
required to execute the analysis in the EA model. The former defined analysis
can now be executed without further adaptions.



674

4 Implementation of Change Impact Analysis

The generic approach in the previous section for the definition and adaption of
complex analysis is now applied to change impact analysis. The foundation for
the implementation of change impact analysis is the informal specification pro-
vided by de Boer et al. [2]. First we specify the required analysis semantics in an
ontology and show how it can be integrated in an EA ontology (Sect. 4.1). Then
we present an implementation approach using SPARQL in order to determine the
effects of a change (Sect. 4.2). A second implementation approach uses the ability
of the reasoner to deduce the change type of an element from the change semantics
of the relationship (Sect. 4.3). We implemented both approaches using the ontol-
ogy editor Protégé!. We did not implement a stand-alone application. As reasoner
we used HermiT. The SPARQL queries were stored in a text file and executed in
Protégé to execute the change impact analysis.

4.1 Defining and Integrating Change Semantics

The EA ontology created in Sect. 3.1 contains the EA relevant semantics. Defining
the analysis based on this knowledge makes it difficult to execute it on other EA
models with a different meta model. Therefore we define the required knowledge
to perform change impact analysis in a separate ontology. This ontology contains
information about the change semantics, i.e. concepts that indicate how changes
made to a component affect the components that are in a relationship with it.
De Boer et al. define the change semantics in an EA model based on the
type of change and the type of the relationship [2]. They differentiate between
the change types modification, extension, deletion and no change (see Sect.2).
Depending on the type of relationship such a change will be propagated or not
propagated along the relationship. It is also possible that a change is only signaled
to the user, who has to decide about the actual propagation. The signaling is
used, when the propagation is dependent from further aspects and not only the
relationship type. For example the deletion of a service does not definitely imply
the deletion of the realizing application. Nevertheless, there may be demand for
action, which will be signaled to the user. According to these considerations, we
know, how a change in the objects A resp. B will go through the model. If e.g. B
has been changed, we have to — comparable to a depth first search — check all the
relationships that link B with other objects for changes. If there is a relationship
that propagates the change, for this element the same review has to be done.
For each of the change types, we create a new owl: ObjectProperty. These
are: extensionPropagatingAssociation, modificationPropagatingAssociation, dele-
tionPropagatingAssociation and deletionSignallingAssociation. In order to use
these change semantics in a specific EA ontology, the change concepts and
the EA concepts have to be mapped to each other. All relation types t €
T are defined as specializations of the type of changes they propagate. E.g.
the relation A realized by B, will always propagate a respective change in B.

' A free, open-source ontology editor and framework. See http: / /protege.stanford.edu/.
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Following the object property realizedBy is a owl : subPropertyOf extension-
PropagatingAssociation, modificationPropagatingAssociation and deletionProp-
agatingAssociation. The reasoner enables the deduction of the type of change
propagation of a specific relationship, since the superior relation always applies
implicitly. I.e consider an arbitrary object property p, the set of its superior
object properties Ps (i.e. p is specialization of each ps € Ps) and two individuals
A and B:

VpsePS:(ALB):(A& ) (1)

An example structure of ObjectProperties can be found in Fig. 2. The inferred
assertions by the reasoner for a specific ObjectProperty are shown in Fig. 3.

4.2 Impact Analysis with SPARQL

According to de Boer et al. [2], we want to perform a step-by-step analysis of our
EA ontology. Given an individual Z that is changing and the type of the change
(extension, modification, deletion) we can calculate the impact of the change as
described in pseudo code in Listing 1.1, with

— changed_element is the URI of the individual Z that causes change analysis
with change type c.
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— Properties (c) is a function that maps a change type to its corresponding
set of object properties.?

— Visited are the individuals of the ontology that have been visited. Initially
Visited = 0.

— Result C I x O is a set of tuples that contain an individual of the ontology
and the object property of the relationship that has been found.

— ToBeVisited is the set of individuals that remain to be visited (initially it
only contains changed_element).

— p is the individual that is currently being visited.
— S is the result of the SPARQL query.

Listing 1.1. Ontology-based dependency analysis in pseudo code.

1 BEGIN DependencyAnalysis

2

3 ToBeVisited = {changed_element}.

4 Visited = { }.

5 Result = { }.

6

7 WHILE ToBeVisited IS NOT EMPTY.

8 p = ToBeVisited.getElement ().

9

10 FOREACH property IN Properties(c)

11 S := SELECT ?object

12 WHERE{ p my:property 2?object }.
13

14 FOREACH s IN S.

15 INSERT TUPLE (s, property) INTO Result
16 IF NOT EXISTS.

17 ENDFOREACH.

18

19 INSERT DISTINCT (S MINUS (Visited INTERSECT S))
20 INTO ToBeVisited IF NOT EXISTS.

21

22 DELETE p FROM ToBeVisited.

23 INSERT p INTO Visited.

24 END FOREACH.

25

26 ENDWHILE.

27 RETURN Result.

28 END.

First we assign one of the individuals of the set ToBeVisited to p (L. 8).
Then for each object property property, that needs to be considered for the
change type ¢, we query the individuals that are related to p via property using
SPARQL (1. 10-12). The query result is stored into the set S. The individuals
in S are added to the Result set (1l. 14-17), including the object property type
property. Each element of S, that is not yet in the set Visited, is added to
the set ToBeVisited (1. 19, 20). Finally we remove p from ToBeVisited and
store it in Visited (Il. 22, 23). We repeat these steps until there are no more
individuals in ToBeVisited. All individuals that are affected by the change
are now in the Result set, including their respective change propagation type.
Therewith we can decide whether the individual is really affected, or — in case
of a deletion — only needs to be signaled to the user.

% ¢.g. Change type extension is mapped to {extensionPropagatingAssociation} and

deletion is mapped to {deletionPropagatingAssociation, deletionSignallingAssocia-
tion}.
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According to Table 1 there are several cases, where there is only a signal for
a possible impact propagated. Considering the following scenario:

On—1

O o Om — Om, Om—+41
e A (2)

with Vi € {0,1,...,n} : K € I K T, AK #Z; 1.

We assume that all relations o; in the chain trigger only a signal about a
potential change to the user and furthermore, that for all individuals with index
<m the user already decided that they should be changed, however for Z,,, the
user decided that it is not affected by the change. Then all individuals with index
>m do not have to be signaled to the user (except when they could be affected
by the change through other individuals). In order to realize this behavior in our
algorithm Listing 1.1 we need to ask the user after line 8, whether p should be
changed or not — in case that c is signaling for all (p, ¢) € Result. If the user
decides, that p does not need to be changed, then all tuples with p at their left
position need to be removed from Result and p also needs to be removed from
ToBeVisited. The algorithm can then continue with line 7.

4.3 Impact Analysis with Defined Classes

As second alternative we propose the use of reasoning capabilities to deduce the
effect of a change from the available information. Therefore we extend the analysis
ontology with the classes DeletedComponent, DeletionSignaledComponent,
ExtendedComponent and ModifiedComponent. In order to represent the external
change that triggers the analysis, we add three data properties, isDeleted, isFz-
tended and isModified. If an individual Z of the ontology is affected by the change,

the reasoner should deduce that it is instance of the respective change class. Given
extensionPropagatingAssociation
—-—

two individuals Z; and Zs with the relationship Z,
74, the reasoner should deduce, that if 75 is extended, also Z; has to be extended
(indicated by the assertion owl : type :ExtendedComponent). To enable this
deduction, we add inverse object properties for all kinds of change propagating

ally also a modificationReceivingAssociaten, deletionSignalReceveivingAssocia-
tion and a deletionReceivingAssociation are added. Each of them is enriched with
the assertion about the respective inverse propagating object property. For each
change class we are now able to specify an equivalent class expression. Those
class definitions are shown in Listing 1.2 using the Manchester OWL Syntax.
For the class FxtendedComponent this says: An individual that has owl : type
:ModelingComponent and that has an :extensionReceivingAssoc-
iation with another : ExtendedComponent has also the type : Extended-
Component. Additionally an individual is member of this class, if it is annotated
with the data propery :isExtended true. The expressions for the classes
DeletedComponent and ModifiedComponent are defined in the same way using
the corresponding receiving object property. An individual is a member of the
class DeletionSignaledComponent, if owl:type: ModelingComponent can
be inferred and if it has a: deletionSignalReceivingAssociation from
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a :DeletedComponent. If the user decides that a DeletionSignaledComponent
needs to be deleted, he has to assign the isDeleted data property to it. This way,
it is ensured that the DeletionSignaledComponents are kept minimal, and further
assertions are only made if the user decides about the deletion.

Listing 1.2. Class definitions in Manchester OWL Syntax

1 Class: cs:ModifiedComponent

2 EquivalentTo:

3 ((cs:modificationReceivingAssociation some cs:ModifiedComponent)
4 or (cs:isModified some {true}))

5

6 Class: cs:ExtendedComponent

7 EquivalentTo:

8 ((cs:extensionReceivingAssociation some cs:ExtendedComponent)

9 or (cs:isExtended some {true}))

10

11 Class: cs:DeletedComponent

12 EquivalentTo:

13 ((cs:deletionReceivingAssociation some cs:deletedComponent)

14 or (cs:isDeleted some {true}))

15

16

17 Class: cs:DeletionSignaledComponent

18 EquivalentTo:

19 (cs:deletionSignalReceivingAssociation some cs:deletedComponent)

For the execution of this analysis in a specific EA model, the relationship types
t of the EA ontology have to be mapped to the respective change propagation
properties (analog to the procedure in Sect.4.2. The change receiving properties
can be deduced from this information by the reasoner. After asserting the actual
change using the data properties, the reasoner can be synchronized and deduces
the membership of the individuals in the four change classes. The result can be
retrieved with a simple SPARQL query.

5 Case Study

We evaluated our approach using the PEIS (Personal Environmental Information
System) case study from the ENVIROFI project®. A description of the use case
can be found in [10]. This case study is a good representative to validate our
approach. Since the meta model is based on ArchiMate, a popular EA modeling
technique, the typical EA elements and dependencies are covered. Additionally
the size of the use case is large enough to be able to test the propagation of
change effects, whereas humans can still retrieve the actual effect of a change to
be able to compare the results. An overview of the EA model of PEIS is shown
in Fig. 4. The meta model for PEIS was already introduced in Sect. 3.1 in Fig. 1.
According to the method proposed in Sect. 3.1 we manually transformed the EA
model into an ontology. Using the reasoning capabilities we inferred the return
directions of each relationship. As expected, reports like the number of uses of
an application can be defined in a fast and easy way using SPARQL. Finally
we applied our approaches proposed in Sects. 4.2 and 4.3 to the PEIS use case.

3 Environmental Observation Web and its Service Applications within the Future
Internet: www.envirofi.eu.
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Fig. 4. EA model of the PEIS use case

Table1 contains an overview over the different relation types and the change
semantics we assigned to them. The left part of the table defines the change
semantic in the original direction, e.g. for A accesses B; the inverse relationship
is defined in the right part of the table. For a relation r: A — B from component
A to component B, the change semantic is defined in Table 1 with:

— p means that the change is propagated (modification is propagated as mod-
ification, deletion as deletion and extension as extension) to the associated
component,

— n means that the change is not propagated and

— s means that the change is signaled to the user, who has to decide whether
or not the change shall be propagated.

If there is a change propagation, we added the respective subObjectProperty
assertion. For example, for the relation A ““3” B only a modification and an
extension is propagated. Following the assertion :access owl:subPropertyOf
:extensionPropagatingAssociation and the assertion :access owl:sub-
PropertyOf :modificationPropagatingAssociation have to be added. This
is done for all cells in Table 1.

For the evaluation of the change impact analysis we defined several test
cases. Every test case contains a specific change to a component as well as the
components that we expect to be affected by the change. The test cases are
defined in manner, that every change type and every change propagation type is

covered at least once. We also considered testing the change propagation from
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Table 1. Behavior of relation types towards a change A — B.

Relation r | when A is changed when B is changed

delete | extend | modify | delete | extend | modify

Access n n n S n p
Assigned to | s p p S n n
Used by S n p S n n
Realizes P p p S n P

the business layer to the lower ones as well as from the infrastructure layer to
the upper ones. The test cases are executed with both of our approaches Our
evaluation was performed manually using Protégé, the reasoner HermiT, and
the textual SPARQL query interface it provides. In the following we present two
of our test scenarios with their respective results.

As first test case we executed the analysis for the change Deletion of Appli-
cation Mediator and got the following result: The Data Mediation Service has
to be deleted, too; the Data Fusion is probably affected by the deletion and
thus signaled to the user. In this case the user decides that Data Fusion is to be
deleted too, he has to add the data property isDeleted to this component. Syn-
chronizing the reasoner again deduces the deletion of the Data Fusion Service.
In this case the retrieved results of the analysis are meaningful to the user and
a good approximation of the potential change effect.

The second test case encompasses the Modification of Personal Assessment
Service. This change is propagated to the processes Display predicted, current
and past MCE as well as their realizing functions. Also the User is affected by
the modification. But also in the other direction the change is propagated to
the realizing application MDAF. In this case the result set is greater than in the
previous scenario. This might indicate that a change in this service can have a
high impact on the business outcome, especially since many elements from the
business layer are affected. However, it may also indicate that the used change
impact rules in Table 1 are too weak and thus the result set is too large.

Summarizing, we observed that the results of an test case are identical for
both approaches. We also realized that we had a strong match between the
components that we had expected and the results returned by the approaches.
In both cases it is meaningful to compare the calculated impact with the actual
impact and if required, adapt the change impact rules. Nevertheless we were
able to execute the change impact analysis on the PEIS EA model with only
restricted amount of effort for the integration of the analysis semantics.

6 Conclusion

In this paper we proposed semantic web technologies for the enterprise archi-
tecture domain. We specified how to transform an EA model into an ontology
and outlined how to add value to those data. Simple reports and measures can
be directly implemented using SPARQL individually for each EA initiative. Due
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to the higher effort for more complex analysis, there is a need for methods to
re-use the analysis definitions. We propose the separate definition of an analysis
ontology and an KA ontology. The EA ontology contains the organization specific
definition of EA concepts and their relationships as well as the concrete instance
elements. The analysis ontology describes analysis specific concepts, which are
used for the specification of the actual analysis. In order to execute an analysis
on an FA ontology, the analysis concepts have to be mapped to the EA ontology.

We demonstrated the use of semantic web technologies in the EA domain
using the PEIS case study. The EA, formerly not modeled in an ontology, was
transformed into an OWL2 ontology. Typical EA reports and measures could be
re-built using SPARQL queries very quickly. As complex analysis we redefined
an existing specification of change impact analysis. We integrated the defined
analysis concepts in the established EA ontology and executed the analysis.
Although the definition of the analysis ontology and the execution specification
was time consuming, the integration into the EA model and the final execution
was slight. Through an iterative refinement of the mapping, the precision of the
analysis results could be improved.
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