A Flow Analysis Approach
for Service-Oriented Architectures

Bernhard Bauer, Melanie Langermeier, and Christian Saad

Software Methodologies for Distributed Systems, University of Augsburg,
Augsburg, Germany
{bauer,langermeier,saad}@ds-lab.org

Abstract. The discipline of SOA (Service-oriented Architecture) pro-
vides concepts for designing the structural and behavioral aspects of
application landscapes that rely on the interaction of self-contained ser-
vices. To assess an architecture’s quality and validate its conformance
to behavioral requirements, those models must be subjected to sophis-
ticated static analyses. We propose a comprehensive methodology that
relies on data flow analysis for a context-sensitive evaluation of service-
oriented system designs. The approach employs a model-based format
for SOA artifacts which acts as a uniform basis for the specification and
execution of various analyses. Using this methodology, we implement
two analyses which reveal blocking calls and assess performance metrics.

These applications are evaluated in the context of two case studies that
have been developed in the SENSORIA and the ENVIROFT projects.

1 Introduction

The field of SOA is concerned with methods that enable the conceptual design
of the relevant aspects of software ecosystems whose components interact in
complex yet well-defined patterns to provide high-level services to consumers.
This abstraction not only supports the task of documenting service landscapes
in enterprises, the model-based formalization also facilitates automated code
generation, following the principles of model-driven development (MDD). In this
sense, SOA models represent integral artifacts of software development processes.
Usually, the target system is first described at a higher level of abstraction
with iterative refinements. To avoid the multiplication of errors in later stages,
problems must be identified as early as possible. Analysis at the model level can
also help in assessing the architecture’s quality and in validating its conformance
to functional and technical requirements before implementation begins.
Current approaches for the analysis of object-oriented models often focus on
trivial metrics such as the number of classes, the number of methods per class
or the number of sub/super classes [6]. Typically, the information aggregated
by these methods only considers immediate neighbors [7]. For some use cases,
canonical analysis techniques are not well-balanced with respect to their expres-
siveness and the resulting implementation effort: For context-sensitive measures
and validation scenarios, methods such as the OCL are not sufficient while sys-
tems based on formal logic tend to introduce unnecessary complexity. The fact

476

that business models are often incomplete or inconsistent further hinders the
application of strict formal systems.

To close this gap, we establish a unified analysis methodology which relies on
the principle of information propagation to enable a context-sensitive evaluation
of SOA models. The motivation for this approach can therefore be summed up
as follows: We intend to provide developers with a generic framework for imple-
menting analyses in the SOA domain that do not necessitate the usage of formal
semantics but, nevertheless, cannot be expressed using traditional constraint
languages such as OCL due to their context-sensitive nature. The technique
is therefore intended as an extension, rather than a replacement, for existing
methods such as formal verification [22].

For this purpose, we employ a uniform model-based format which acts as
a foundation for the specification and execution of analyses to abstract from
the diversity found in canonical modeling languages for SOA. Based on this
representation, we employ the model-based data flow analysis as a declarative
“programming language” for the implementation of various analyses that depend
on the computation of a fixed point (for approximating a system’s run-time be-
havior) and/or the modeling of complex information flows through the designed
architecture. We subsequently demonstrate how this methodology can be applied
to compute performance metrics and check for potential blocking calls in con-
tract and interface-based architectures. The approach is evaluated in the context
of two case studies, that have been published by the SENSORIA [17] and the
ENVIROFI project [8] respectively. We base our work on previous research, in
which we applied a similar strategy to the field of enterprise architecture manage-
ment (EAM) [12]. More specifically, the contributions of this paper comprise the
adaptation of the methodology to the SOA domain, its evaluation in the context
of existing case studies and the implementation of relevant analysis scenarios.
Furthermore, the application to SOA is intended to emphasize the viability of
the proposed methodology across different fields of research.

In the following section, we present an overview over related work and es-
tablish the link to the SENSORIA project. In section 3, we detail the different
aspects of the analysis methodology, namely the flow-based analysis of models
and the generic representation of SOA data. The next two sections describe two
different analysis scenarios and their application to the use cases. The first one
checks for blocking calls (section 4) while the second one derives performance
measures (section 5). We conclude with a discussion of our method (section 6).

2 Related Work

Although service-oriented architectures have attracted much attention, the con-
cept has often only been applied in an ad-hoc fashion. The SENSORIA project
[17] defines a comprehensive approach for the design, formal analysis and auto-
mated deployment as well as the re-engineering of service-oriented applications
[22]. SOA models are analyzed using formal methods such as process calculi,
temporal logic and stochastic logic. Analyses are both qualitative and quantita-
tive, e.g. conformance with contracts, deadlock freedom of compositions or the

477

analysis of service properties like availability [22]. The formal foundation is tied
to the UML4SOA [13] profile, a high-level domain specific language which incor-
porates behavioral aspects. This profile extends a previous version of the SoaML
standard (to which the first author contributed) with concepts for modeling the
behavior of services, service orchestrations, and service protocols. The current
version of SoaML [3] (published in 2012) introduces two different architectural
styles, based on interfaces and service-contracts respectively, and integrates UML
sequence diagrams for the specification of communication protocols.

The Object Constraint Language (OCL) [2] is a widely used method for the
specification of simple model analyses. For example, [6] provides a library for
the extraction of metrics. OCL constraints enrich the abstract syntax of a mod-
eling language, i.e. the meta model, with a definition of its static semantics.
This means that analysis specifications are tightly integrated with the modeling
ecosystem (i.e. canonical standards and tools) and therefore naturally support
concepts such as generalization and instantiation. In contrast to the proposed
flow-based method, OCL does however not support information propagation and
fixed point convergence and is therefore restricted to basic validation scenarios.

In [12], we established a generic meta model (GMM) which encodes the struc-
tural composition of enterprise architectures in the form of a stereotyped graph.
While we were able to redefine existing analyses using this unified representa-
tion, the lack of specific semantics has been identified as a challenge that must
be addressed in future work.

3 Adaptive Analysis Methodology for SOA

This section describes an adaptive analysis methodology for the SOA domain
which relies on static derivation of context-sensitive properties to validate an
architecture’s correctness and assess different types of quality attributes. The
resulting approximation of the modeled system’s runtime properties can provide
valuable feedback, especially in early stages of the development process.

The design of an analysis methodology intended for use in the SOA domain
poses different challenges: For one, architectures may be encoded in a variety of
modeling languages, c.g. SoaML, UML4SOA or BPMN!. Furthermore, architec-
tures may rely on different paradigms, such as contract- or interface-based styles.
To avoid conceptual and technological gaps, the analysis technique should also
be well-integrated with modeling standards such as the Meta Object Facility
(MOF) and be capable of addressing a wide range of application scenarios.

We address these issues by combining a unified representation of SOA-specific
(meta) model data with a framework for model-based flow analysis. Translation
of the target SOA model into the unified SOA format can be achieved using
canonical methods for model transformation such as Query/View /Transformation
(QVT). Subsequently, the analyses can be executed. Figure 1 provides an overview
of this process. This technique has already been successfully implemented for

! The Business Process Model and Notation (BPMN) can be used to specify behavioral
aspects of services [16].

478

Sensoria Model Blocking Calls Analysis
oviason I
i form- cution
Envi . :
SOaMcvioépMN - ation GMM extended with
SOA concepts

Fig. 1. Procedure of the data flow analysis approach for SOA

the EAM domain [12], a field which shares many of the described challenges,
including the diversity of modeling standards and the fact that models may
be incomplete or even inconsistent. To alleviate the problem of complex anal-
ysis specifications, we will subsequently extend the generic representation with
domain-specific SOA concepts. Sections 4 and 5 exemplify the approach in the
context of two case studies from the SENSORIA and the ENVIROFI project
and two analysis scenarios, detection of blocking calls and computation of per-
formance metrics.

3.1 Flow-Based Model Analysis

The technique of data flow analysis (DFA) is commonly employed in the area of
compiler construction to analyze and optimize the control flow of programs by
examining how information that is computed locally at the nodes (basic blocks)
of a program control flow graph is disseminated. A canonical examples consists
in the reaching definitions analysis, in which variable definitions generated inside
basic blocks are propagated through the graph to determine the availability of
variable assignments at subsequent instructions. By applying fixed point evalua-
tion semantics, it is possible to compute with cyclic equation systems that result
from the presence of loops in the control flow. Analyses are usually specified in a
way that ensures that the result represents a conservative approximation of the
program’s run-time behavior.

The analysis specifications presented in the subsequent sections rely on the
approach detailed in [15] which transfers the notion of data flow analysis to the
modeling domain. Inspired by the related technique of attribute grammars [5], it
supports the declaration of data flow attributes which can be assigned to classes
in a target meta model. In some respects, this process can therefore be compared
to the Object Constraint Language which is often used to formalize the static
semantics of modeling languages by assigning constraints to meta model classes.
However, each data flow attribute is connected to two data flow equations, which
compute the attribute’s initial value and its fixed point iteration result(s) respec-
tively. Furthermore, to compute the result for a specific attribute, its data flow
equation may access values of neighboring attributes, thereby inducing an infor-
mation flow between the model’s elements.

To execute the analysis, the data flow solver is supplied with the meta model,
the data flow specification and the target model. In a first step, the attributes

479

are instantiated for model elements of the respective types and initialized with
their start value. Afterwards, the iteration values are computed by executing the
associated equations. The solver monitors the propagation of data flow informa-
tion between attribute instances and, if necessary, initiates the recomputation
of unstable instances, until a fixed point has been reached.

This approach has multiple advantages: The method is fully integrated with
the modeling domain, thus avoiding potential semantic gaps between different
technological spaces. Furthermore, the declarative nature of the data flow specifi-
cations allows for an intuitive definition of analyses which rely on the (transitive)
propagation of information along model paths. When computing the result for
a concrete element in the model, it is therefore possible to take into account
its overall context, that results from (transitive) connections to other elements.
Finally, the fixed point semantics enable a conservative approximation of the
run-time behavior of the modeled system.

3.2 Generic Meta Model

In the field of SOA, many competing standards and practices exist. It is therefore
essential to provide a unified basis for analysis specifications to avoid the constant
adaptation of existing analyses. Instead, the interpretation of language artifacts
will be encoded in transformations for different source languages such as SoaML.

In previous work [12] we established a generic meta model (GMM) for enter-
prise architecture analysis. This format constitutes a high-level view on model
data by abstracting from characteristics which may vary between different stan-
dards. In essence, it conforms to a stereotyped graph which incorporates model-
oriented extensions such as properties and generalization relationships. It is im-
portant to note that a GMM instance represents both meta and model data. Case
studies carried out in the field of enterprise architecture analysis have shown that
this approach supports a wide variety of different modeling paradigms although
the lack of domain-specific semantics tends to complicate analysis specification.

To provide better support for SOA-specific features, we extended the origi-
nal GMM with concepts found in canonical ontologies, modeling languages and
reference models from the SOA domain [10]. In their work, Kreger and Estefan
examine different standards and conclude that the specifications agree on a set of
core concepts. Based on this study, we established an abstract SOA model which
incorporates features from The Open Group’s SOA ontology [19] and Reference
Architecture [20] as well as the OASIS Reference Model [14]. Figure 2 shows the
resulting meta model with the essential classes and relationships.

The identified core concepts have been woven into the GMM as shown in figure
3. This representation can therefore be understood as a domain-specific language
tailored to the specification of structural analyses in the SOA domain. While the
right hand side encodes model data in the form of stereotyped Nodes, Fdges and
Properties, the left hand side represents the meta structure of the respective SOA
language. Each specific concept inherits from the generic MetaModelNode while
each relationship type is represented as a sub class of MetaModelEdge. Since they

480

E Orchestration

calls 0.1
P behavior| 0.~
EI S e composed
consumes/ ;T 0 provides
consumed by / 0.~ 0.1\ provided by
H Service Provider| [Service Cansumer]

Fig. 2. Meta model capturing the core structure of service-oriented architectures

| MetaModelProperty
= type : EString

X |5 StereotypedElement | GenericModel

|- GenericMetaMode 5 MetaModelStereotype o

eotype

properties | g * edges A
elements

superType
0.1 0.4 0..1 0.+ Dk 0.* |elements
source outgoin:
|| MetaModelNode S &£ MetaModelEdge B | e 0.* 0.1
target incoming F] ModelEdge outgoing sourc! E| ModelNod
0.+
A 0.1 - A ||

incoming target
¥ 0.1 L)

|| ConsumationEdge [ProvisioningEdge

| ServiceConsumerNode] ServiceProviderNodg iR
- 0..*

E ModelProperty
E BehaviorEdge = value : EString

I
&

ionEdgd

[E SserviceNode |[E OrchestrationNodd
!

[CallEdge

Fig. 3. Generic Meta Model [12] adapted for the SOA domain

are also specializations of the abstract class StereotypedElement, these concepts
act as “data types” for model data.

The chosen layout allows for a certain degree of freedom when importing SOA
models, as language-specific characteristics can be represented without modifica-
tions to the GMM, eliminating the need to adapt existing analyses. This generic
approach is viable, since data flow analyses rely on information propagation and
can therefore cope with extensive changes in the underlying language’ structure.

The potential downside of this approach consists of increased complexity in
the transformation logic. The benefits of the generic representation, namely the
robustness of the analyses themselves, must therefore be weighed against the
effort required for the translation of SOA models. If it can be expected that the
underlying structure remains constant, it can therefore be beneficial to tie the
data flow specifications directly to the target language’s meta model.

3.3 Case Studies

The case studies, which form the basis for the evaluation of the proposed method-
ology, consist of two models that rely on different architectural styles. The first

481

is an extended version of the automotive case study On Road Assistance from
the SENSORIA [17,9] project. The second describes a Personal Environmental
Information System (PEIS) and was developed in the ENVIROFI [8,11] project.

- wservicesArchitecturen i T
i Scheduler B
A b
P e
,’ requestor y Lml = == metadata requestor ‘\\\
- - . - -
- _ Environmental, e uparicipants E s
’ tpatficipanty a] / k :Resource parecipan b
- — oI | —
o Fusor \ Dataseﬂetlnevai / \\ Discovery ¢ MDAF 2N
’ e ~. Service -7 S,
‘,J pravider W g oo \\
- provider
i Eparicipants g]| ™= = «paricipants 2] 3
% Data Archive Catalogue A
i
! 2
I /7 I Sz III
Il pollenRequ esl/m metRequestor AQRequestor ;
AT i ’—"'"-.\ iaamEm
\ // Pollen Data £ b ¢Air Quality Datd) :Publishing \} /
\ : , : i ; : v !
\ '_ Service ;} .Elet Ry Se""f.é ‘. Senice ' Service :
3 ~ = ~ s ~ L i
i L= K = i
\\ pollen Pm\ri:lyD metProvider éfQ =3 requestor ,’
~ ’
h tparicipants 2= paricipants =] «paricipants 2] 5
N. |po:Pollen Data met: Met Data aq: AQData //-'
~
~ = = '

e -

Fig. 4. Service Architecture for the participant Scheduler in the PEIS use case [11]

The On Road Assistance scenario supports the driver of a car if an engine
failure makes it impossible to reach the planned destination. For this purpose,
the SOA participant OnRoadAssistant invokes multiple services to find the
“best” repair shops (garages) and rental car stations nearby, once the driver
has made a security payment. The architecture uses the interface-based style of
the SoaML specification [3] while behavioral aspects regarding service compo-
sition are modeled using the UML4SOA profile [13] developed by SENSORIA.
We extended the definitions from [9] with a second participant AssistanceStore
(excerpts can be seen in figure 5). The interactions between both participants
form the basis for the analysis of blocking calls in section 4. Mappings between
the UML4SOA /Activity Diagram and the extended GMM are shown in table 1.

The second scenario represents a Personal Environmental Information Sys-
tem, which generates personalized reports of pollen, air quality and meteoro-

Table 1. Mapping of UML4SOA concepts to the extended GMM

|E'$t. GMM concept |UML4SOA/ActiUity Diagram concept
ServiceNode Servicelnterface
OrchestrationNode [ActivityDiagram

AggregationEdge Servicelnterface > Port

BehaviorEdge Port > LinkPin > ActivityDiagramElement > ActivityDiagram
UseEdge ActivityDiagram > ServiceSendAction > LinkPin > Port > Ser-
vicelnterface

482

logical data depending on the current location of the user (cf. figure 4). The
architecture relies on the contract-based SoaML approach [3]. Internal partici-
pant behavior is modeled using BPMN [1]. As proposed in [11] and [16], the
BPMN diagrams have been enriched with mappings that connect service actions
to their corresponding service interfaces. In this case, a different set of mapping
rules has to be applied to correctly represent the contract based architectural
style as depicted in table 2.

Table 2. Mapping of (contract-based) SoaML/BPMN concepts to the extended GMM

|Ext. GMM concept |SoaML/BPMN concept |

ServiceNode ServiceContract

OrchestrationNode [BPMNDiagram

AggregationEdge ServiceContract > ServiceContract

BehaviorEdge ServiceContract > Participant > BPMNDiagram, ServiceCon-
tract > Participant > ServiceArchitecture

UseEdge BPMNDiagram > SendAction > Service

4 Analysis of Blocking Calls

Dependencies relating to the orchestration of services are an important aspect
of service-oriented architectures. In larger systems, the call hierarchies (directly
and indirectly invoked services) are often not obvious which may lead to blocking
calls/deadlocks. In [4], Acciai et al. propose a type system to ensure deadlock
freedom of the subsequent conversations after service invocation in well-typed
CaSPiS processes. We implement a light-weight alternative to this approach
based on a static approximation of the system’s runtime behavior with the goal
of detecting potential cyclic invocations.

In the general case, detecting blocking calls in an orchestrated architecture
requires the identification of all the direct and indirect service calls that are
required for the execution of a service. If this set contains the original service, the
architectural design may result in a deadlocked system. Since orchestrations are
typically described via process diagrams (e.g. UML Activity Diagrams, BPMN
or BPEL models), the analysis has to focus both on the internal composition of
a process and the (transitive) interactions between different orchestrations. By
computing a fixed point of required service calls for each service, it is possible
to either guarantee that the architecture will not result in blocking calls or to
indicate potentially problematic situations to the user. In the following we will
describe how this analysis can be specified and applied to both case studies.

4.1 Analysis Specification

To assess implicit service calls, we assign a data flow attribute requiredServices to
the ServiceNode class in the architecture’s GMM representation whose instances

483

compute the sets of invoked services for each node. A second data flow attribute
serviceCalls computes the set of called services for OrchestrationNodes. The
respective data flow equation rules are shown in algorithms 1 and 2.

Algorithm 1. Data flow equation for the attribute requiredServices

1: DFA-EQUATION ServiceNode::requiredServices returns Set<ModelNode>
Set<ModelNode> services = new Set<ModelNode>();

2
3 // acquire values from composed services

4 foreach (ModelEdge outgoingAggregation in self.outgoing)

5 if (outgoingAggregation.target.stereotype is ’ServiceNode’)

6: services.addAll (outgoingAggregation.target. requiredServices());
7
8
9
0

// acquire values from called services in the orchestration
foreach (ModelEdge outgoingBehavior in self.outgoing)

if (outgoingBehavior.target.stereotype is ’Orchestration’)

services.addAll (outgoingBehavior.target.serviceCalls());

=

11: return services;

Algorithm 2. Data flow equation for the attribute serviceCalls

: DFA-EQUATION OrchestrationNode: :serviceCalls returns Set<ModelNode>
Set<ModelNode> services = new Set<ModelNode>();

1

2

3: // acquire values of called services from the orchestration
4: foreach (ModelEdge outgoingCall in self.outgoing)

5: if (outgoingCall.target.stereotype is ’ServiceNode’)

6 services.addAll (outgoingCall.target. requiredServices());
7

return services;

The result set for the attribute requiredServices is first initialized with an
empty call set (line 2). For aggregated services, the required calls of the sub-
structures must be added as well. This is accomplished by requesting the value
of requiredServices at those elements (which will implicitly trigger the data flow
solver to recursively evaluate these dependencies) and adding them to the result
(lines 4 - 6). To include behavior-related invocations, lines 8 - 10 process service
calls of orchestrations (computed by serviceCalls for OrchestrationNodes).

The data flow solver will automatically terminate once a fixed point has been
reached, i.e. no more elements are added to any result set. By examining the
values computed by requiredServices for ServiceNodes, it is possible to detect
whether a service may trigger its own invocation. If this is not the case for any
service, the system will never execute a blocking call. Otherwise, a deadlock
might exist, although not every execution necessarily results in that situation.

4.2 Case Study

The described analysis has been carried out for both use cases. For this purpose,
the meta and model data has been transformed into the extended GMM format
using the mappings from tables 1 and 2. For reasons of clarity, we will depict
the results in the original representation rather than using the GMM concepts.

484

<<Request>> <<Request>> <<Service>>
crStriicass locationService: cred!tchargeSerwce: _ client
: . ~LocationInterface ~creditChargelnterface :Clientinterface
EvaluationService ' [o
:Evaluationinterface Activity Diagram <<Participant>> 2]
- - OnRoadAssistant
! — —
R t>> = L] n 7
<< . e .
Fuas <<Request>> Activity Diagram
selectGarageService selectRentalCarService
=~SelectBestinterfdce ~SelectBektinterface

<<receive>> [rovgaragelist
age [find

e et i e e e e e e i G

. <<serviceL hannel>> <<serviceChannel>>
<<serviceChanpel>>

(<<serviceActivity>>
selectGarages

<<Service>> <<Sefvice>>

selectGarageService selectRentalCarService
SelectBestinterfgce :SelectBestInterface
1

Start <
Al
<<Request>> D
i j & - <<Participant>>
Eva\uationSemce Ativity P 2]
~Evaluationinterface Diaaran SortAndEvaluate

Fig. 5. lllustration of the blocking call in the use case On Road Assistance|9]

Figure 5 shows the identified potential deadlock for the OnRoadAssistance
model. In this case, we assume that data flow analysis started with the Service-
Interface SelectGarageService, which relies on the providing participant Assis-
tanceStore (bottom). Its ServicePoint delegates to the internal component Sort-
AndFEvaluate, which has an associated Activity Diagram describing its internal
behavior (right corner of figure 5). In this diagram, the selectGarageService is
connected to the ReplyAction selectBestGarage via a LinkPin. Here, the set of
preceding SendActions contains only the action getGarageEvaluation, which is
linked to the RequestPort FvaluationService. This service, in turn, is connected
to a ServicePort of the OnRoadAssistance participant.

Analysis of the component’s behavior indicates that the FEwvaluationService
may trigger the execution of the selectGarageService and the selectRentalCarSer-
vice. As both implement SelectBestInterface, this element will be added to the re-
sult set. Subsequently, the algorithm determines the service calls of selectRental-
CarService, which is provided by the SortAndFEvaluate participant and uses the
EvaluationService. Afterwards, the execution of the data flow rules terminates,
as the analysis has converged in a fixed point. Because the call hierarchy of Se-
lectBestInterface is cyclic, the absence of blocking behavior cannot be guaranteed
for this architecture. The concrete result sets for all services are as follows?:

ClientInterface: { LocationService, creditChargeService, FEvaluationService,
SelectBestInterface, FindInterface }

EvaluationService: { SelectBestInterface, EvaluationService }

SelectBestInterface: { EvaluationService, SelectBestInterface }

For the PEIS example, the connection of BPMN actions to the used services is
modeled via links as proposed by [16] and [11]. The call hierarchies for Resource

2 Since the LocationInterface, the CreditChargelnterface and the FindInterface have
no required service calls, they have been omitted from this representation.

485

Discovery Service and Publishing Service are empty since they have no required
service calls. The result set for Pollen Data Service, Meterological Data Service
and Air Quality Data Service consists only of the Publishing Service. Finally,
the Environmental Data Retrieval Service may request the invocation of Re-
source Discovery Service, Pollen Data Service, Meteorological Data Service, Air
Quality Data Service and Publishing Service. Since no result for the attribute
requiredServices contains the associated service itself, we can conclude that the
architecture of the Scheduler participant in the PEIS has no blocking calls. This
is also evident from the structural overview shown in figure 4: Even without
detailed knowledge about the inner structure of the participants, there exists no
sequence of service calls that could potentially result in a cyclic invocation.

5 Performance Analysis

Performance aspects can be of vital importance in an SOA environment, espe-
cially if the architecture relies on a complex orchestration of many services. In
this case, a static assessment of the run-time properties can provide valuable
early feedback to the developer which can help in improving the system design
to shorten response times for critical components. Examples for this kind of anal-
ysis include a method based on layered queuing networks for UML4SOA models
that have been extended with MARTE (a UML profile for real-time systems)
[21] or the use of queuing network modeling [18]. The latter proposal applies the
analysis to a distributed message passing architecture with asynchronous mes-
sage streams (messages are being queued at the components) where the response
time of a system is defined as the Population/Arrival Rate. The latter denotes
the number of incoming requests per time unit while the former describes the
sum of currently processed and all waiting requests [18].

Transferring this method to the SOA domain necessitates some adaptations
since the system’s functionality is not only expressed by participants’ internal
components but also by service orchestrations. Furthermore, instead of having a
single arrival rate for the whole system, each service may possess its own arrival
rate which has to be based on the rates of all its requestors and an internal rate.
The population of a service then depends on the internal population plus the
population of all requested services during the provisioning.

It should be noted, that - in contrast to the blocking calls analysis - the eval-
uation of the performance metrics does not induce a fixed point computation.
Instead, the declarative nature of data flow analysis specifications in combina-
tion with the information propagation principle is used to realize succinct and
intuitive implementations of the recursive formulae.

5.1 Analysis Specification
Response time for (composite) services is computed by three data flow attributes:

— arrivalRate (rs): the arrival rate for each service,
— population (ps): the population for each service, and
— responseTime (ts): the response time for each service

486

Furthermore, the SOA model must be enriched with additional data: Services
require a property service time (ss) which denotes the execution time for internal
actions (excluding external service requests). A second property local arrival
rate (1) specifies the number of local consumer requests not triggered by other
services. Based on this information, the attribute arriwalRate can be computed
using the data flow equation shown in algorithm 3.

Algorithm 3. Data flow equation for the attribute arrivalRate

: DFA-EQUATION ServiceNode::arrivalRate returns Integer
Integer rate = self.localArrivalRate;

1
2
3: // for all calling services

4: foreach (ModelEdge incomingCall in self.incoming)

5: if (incomingCall.source.stereotype is ’Orchestration’)
6 rate += incomingCall.source.arrivalRate();

7

return rate;

The arrival rate of a Service equals to the sum of the local arrival rate (line 2)
and the arrival rates of all requesting services (lines 4 - 6). For this purpose, the
latter part requests the arrivalRate result for the orchestration(s) from which
the service is invoked, thereby computing the arrival rate from its service (and,
if necessary, the compound services) recursively.

After the arrival rate has been determined, it is possible to calculate the
internal and the composed population. The internal population is defined as p’, =
T -, with ugs = rs - 85 representing the utilization of service s. The population
of a composition is given as p; = p’ + >_ p;, where p; are the populations of the
requested services. The data flow equation is listed in algorithm 4.

Algorithm 4. Data flow equation for the attribute population

1: DFA-EQUATION ServiceNode::population returns Integer

Integer utilization = self.arrivalRate() * self.serviceTime;
Integer population = utilization / (1 - utilization); // internal population

// add populations of all directly requested services
foreach (ModelEdge outgoingEdge in self.outgoing)
if (outgoingEdge.target.stereotype is ’Orchestration’)

foreach (ModelEdge outgoingCall in outgoingEdge.target.outgoing)
if (outgoingCall.target.stereotype is ’ServiceNode’)
population += outgoingEdge.target.population();

Lo ok L

FA
@

return population;

The internal population of a Service is computed using the model property
service time and the data flow attribute arrivalRate (lines 2 - 3). For the overall
population, this result is added to the populations of all Services, that are called
in the respective Orchestration (lines 5 - 9). This process involves a recursive
access to the population attribute (line 9) for which the data flow solver ensures
that the indirectly required services are considered as well.

487

5.2 Case Study

We will now illustrate the performance analysis for the service FindInterface in
the OnRoadAssistance model. The mappings of the meta model concepts are
equal to those in the blocking calls scenario. In this case, we assume deadlock
freedom and therefore will not consider the FwvaluationInterface and its con-
nections. The internal service times are given as spindrnterface = 0,03s and

SClientInter face = 0,00s. The local arrival times are rlClienﬁnterface = 10 and

l .l _ ;
Tfind(?a,ragesServices - TfindRentalCarSta,tionsS’eTmice =9 requeStS/S' Al’l&l}/'SlS exe-

cution starts by evaluating the FindInterface’s population which automatically
triggers the computation of its arrivalRate. In addition to the arrival rates of the
implementing service ports T findGaragesService and T findRentalCarStationsService
the corresponding request ports are determined based on the behavior diagram
of the OnRoadAssistant participant. The ports are used to provide the client
service port, i.e. the set of usingServicePorts for both request ports, which con-
tains only one element, the client. The arrival rate of the client service port
is equal to its local arrival rate, because this port has no connections to other
request ports. The arrival rate for the FindInterface is thus computed by:

RFz‘ndInte'r‘face = TfindGaragesService T Tclient + T findRentalCarStationsService

+Trclient = 5 +]-O+ 5 -+ 10 =30

The utilization is then calculated as UFindInterface = TFindInter face * SFindInterface
=30 - 0,03 = 0,9 and, consequently, the internal population yields:

UFindInterface

. _ -9
PFindInter face l—upindInterface

Since no service calls are required for the provisioning of the FindInterface,
its overall population is equal to the internal population and the analysis of
this interface is finished. The results show that the FindInterface will have a
utilization of 90%, with a population of 9. The application of the performance
analysis for the PFIS use case can be carried out in an identical fashion.

6 Discussion and Conclusion

In this paper we presented a comprehensive analysis methodology for SOA mod-
els, which combines a generic representation of (meta) model data with an analy-
sis technique that relies on information propagation and fixed point computation
to enable a context-sensitive evaluation of model elements and the approximation
of run-time behavior. We have demonstrated the viability of this methodology
in the context of two use cases and two analysis scenarios, which implement a
deadlock analysis and an evaluation of performance metrics respectively.

As shown in previous work, the unified representation has the benefit of pro-
viding a simple, yet concise foundation for the specification of flow sensitive
analyses. To further improve the accessibility of this approach, we extended the
generic structure of the GMM with SOA specific characteristics. It is thereby pos-
sible to base analyses on common SOA semantics while preserving the support
for a wide range of different modeling languages and styles. By propagating lo-
cally computed information through the model, the data flow technique supports

488

the implementation of context-sensitive analyses. As information is propagated
across multiple (transitive) relationships, the specifications are invariant against
a variety of structural changes in the underlying modeling language.

It should be noted that complications may arise if the concepts of the re-
spective SOA language cannot be directly mapped to the analysis specification
types. While it would generally be possible to implement the necessary adapta-
tions in the transformation logic, a more generic solution for this problem would
be advantageous. This could, for example, be realized through a sophisticated
mapping technology which supports the translation of complex SOA concepts
to suitable structures in the GMM representation. Possible implementations of
this are for example graph transformations or semantic web technologies.

Dedication. We would like to thank the organizers for their hard work in co-
ordinating this festschrift in honor of Martin Wirsing’s emeritation and for the
opportunity to contribute to it.

Personal Dedication of Bernhard Bauer: At the University of Passau, Martin
teached me in Software Engineering and logic based specification methods. No
other person influenced my research interests as profoundly as Martin did. I am
deeply grateful to him for giving me the opportunity to conduct my first research
steps at his chair in Passau and for always being open to my ideas. Apart from
being a great researcher, Martin has also impressed me as a person. His helpful
and friendly guidance as well as his professional expertise formed the motivation
that made Software Engineering my passion and primary research interest.

Thank you very much for the many interesting and enjoyable years!

References

Business Process Modeling Notation (BPMN) 2.0 Specification (2011)

Object Constraint Language (OCL) 2.3.1 Specification (January 2012)

Service oriented architecture modeling language 1.0 specification. Tech. rep. (2012)
Acciai, L., Bodei, C., Boreale, M., Bruni, R., Vieira, H.T.: Static Analysis Tech-
niques for Session-Oriented Calculi. In: Wirsing, M., Holzl, M. (eds.) SENSORIA.
LNCS, vol. 6582, pp. 214-231. Springer, Heidelberg (2011)

5. Babich, W.A., Jazayeri, M.: The Method of Attributes for Data flow Analysis. Acta
Inf 10, 245264 (1978)

6. El-Wakil, M., El-Bastawisi, A., Boshra, M., Fahmy, A.: Object-Oriented Design
Quality Models - A Survey and Comparison. In: 2nd International Conference on
Informatics and Systems (INFOS 2004) (2004)

7. Engelhardt, M., Hein, C., Ritter, T., Wagner, M.: Generation of Formal Model
Metrics for MOF based Domain Specific Languages. ECEASST 24 (2009)

8. ENVIROFI: Environmental Observation Web and its Service Applications within
the Future Internet - Environmental Usage Area, http://www.envirofi.eu

9. Koch, N., Heckel, R., Gonczy, L.: UML for Service-Oriented Systems (second
version). Sensoria Deliverable D1.4b,
http://pst.ifi.lmu.de/projekte/Sensoria/del_54/D1.4.b.pdf

10. Kreger, H., Estefan, J.: Navigating the SOA Open Standards Landscape Around
Architecture. Whitepaper W096, The Open Group (2009)

s

11.

12.

13.

14.

16.

17.

18.
19.
20.
21.

22.

489

Langermeier, M.: A model-driven approach for open distributed systems. Technical
Report 2013-03, University of Augsburg (2013)

Langermeier, M., Saad, C., Bauer, B.: A unified Framework for Enterprise Archi-
tecture Analysis. In: Proceedings of the Enterprise Model Analysis Workshop in
the Context of the 18th Enterprise Computing Conference, EDOC 2014 (2014)
Mayer, P., Koch, N., Schroeder, A., Knapp, A.: The UML4SOA Profile. Technical
Report, LMU Muenchen Version 3.0 (2010)

Metz, R., McCabe, F., Laskey, K., MacKenzie, C.M., Brown, P.F.: Reference Model
for Service Oriented Architecture 1.0. Official OASIS Standard (2006),
http://docs.oasis-open.org/soa-rm/v1.0/

. Saad, C., Bauer, B.: Data-Flow Based Model Analysis and Its Applications. In:

Moreira, A., Schitz, B., Gray, J., Vallecillo, A., Clarke, P. (eds.) MODELS 2013.
LNCS, vol. 8107, pp. 707-723. Springer, Heidelberg (2013)

Sadovykh, A., Desfray, P., Elvesater, B., Berre, A.-J., Landre, E.: Enterprise archi-
tecture modeling with SoaML using BMM and BPMN - MDA approach in practice.
In: 6th Central and Eastern European Software Engineering Conference, pp. 79-85.
IEEE (2010)

SENSORIA: Software Engineering for Service-Oriented Overlay Computers (2010),
http://www.sensoria-ist.eu

Spitznagel, B., Garlan, D.: Architecture-based performance analysis (1998)

The Open Group: Service-Oriented Architecture Ontology. Standard (2011)

The Open Group: SOA Reference Architecture. Standard (2011)

Tribastone, M., Mayer, P., Wirsing, M.: Performance prediction of service-oriented
systems with layered queueing networks. In: Margaria, T., Steffen, B. (eds.)
ISoLA 2010, Part II. LNCS, vol. 6416, pp. 51-65. Springer, Heidelberg (2010)
Wirsing, M., Holzl, M., Koch, N., Mayer, P.: SENSORIA — software engineering for
service-oriented overlay computers. In: Wirsing, M., Holzl, M. (eds.) SENSORIA.
LNCS, vol. 6582, pp. 1-14. Springer, Heidelberg (2011)

