
Context-Sensitive Impact Analysis for Enterprise Architecture
Management

Melanie Langermeier, Christian Saad and Bernhard Bauer
Software Methodologies for Distributed Systems, University of Augsburg, Germany

{langermeier, saad, bauer}@ds-lab.org

Keywords: Enterprise Architecture Analysis, Impact Analysis, Change Propagation, Data Flow Analysis.

Abstract: Since Enterprise Architecture (EA) models are typically very large, it is often difficult for humans to fully
grasp their contents. Due to this inherent complexity, the task of generating additional value from these
models is very challenging without a suitable analysis method. Impact analysis, which is able to determine
the effects which changes have on other architectural elements, can therefore provide valuable information for
an enterprise architect. Whether an element is affected by a change depends on its context, i.e. its (transitive)
connections to other elements and their status with respect to the analysis. In this paper we propose a context-
sensitive approach to the implementation of impact analyses. This method relies on the technique of data-flow
analysis to propagate the effects of changes throughout the model. As a consequence, the specification can be
defined in a very generic fashion, which only relies on relationship classes. Therefore it can be easily adapted
to organization-specific EA meta models as only the relationship types have to be mapped to the respective
classes.

1 INTRODUCTION

Enterprise Architecture Management (EAM) pro-
vides methods for managing the inherent complexity
of the large IT infrastructures encountered in many
organizations. As a result, Enterprise Architecture
(EA) models usually contain many elements which
are connected through complex relationships. It is
therefore vital to provide suitable methods for (semi-
)automatically analyzing their contents to be able to
benefit from this methodology once it has been suc-
cessfully established in an organization.

Although much research has been done in the EA
domain, most of this work focuses on methodolo-
gies for the development and the representation of en-
terprise models. By contrast, approaches and tech-
niques which explore possible applications scenarios
are very rare (Närman et al., 2012; Niemann, 2006).
Regarding the analysis of EA models, a major fo-
cal point exists in their quantification. This encom-
passes the definition and computation of quality at-
tributes such as application usage and service avail-
ability. (Närman et al., 2012) Furthermore, it is pos-
sible to evaluate the performance and cost aspects in
the different layers of enterprise models (Jonkers and
Iacob, 2009). Finally, (Matthes et al., 2012) establish
a catalog of KPIs to measure EA management goals.

One of the most important analysis methods how-
ever, is the so-called impact analysis which allows to
simulate the effects of changes (e.g. the modification
of a CRM system) and to assess risks in the current
architecture (e.g. which business operations would
be affected if a specific server goes offline) (de Boer
et al., 2005). To generate this information, an impact
analysis has to evaluate the dependencies between the
architecture’s constituents. However, in order to make
proper assertions about these relationships, it is neces-
sary to evaluate each element in its respective context.
This means, that its relationships with other elements
in the model have to be taken into consideration. For
example, to examine the impact of a server failure on
business processes, one has to determine which ap-
plications rely on this server. This requires a careful
evaluation of indirect and transitive paths in the model
to ensure that all necessary information is retrieved,
while at the same time excluding irrelevant relation-
ships.

Existing approaches and tools for the creation and
analysis of EA models usually rely on a static meta
model structure. This can be a problem since each
organization tends to employ its own meta model,
making the adaption of existing analyses very difficult
(Kurpjuweit and Aier, 2009). To rectify this situation,
more flexible methods for handling structural depen-

47
Langermeier M., Saad C. and Bauer B.
Context-Sensitive Impact Analysis for Enterprise Architecture Management.
DOI: 10.5220/0005424200470055
In Proceedings of the Fourth International Symposium on Business Modeling and Software Design (BMSD 2014), pages 47-55
ISBN: 978-989-758-032-1
Copyright c© 2014 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

dencies are required.
In this paper we present a technique which sup-

ports the context-sensitive impact analysis of EA
models. It is based on the principle of data-flow anal-
ysis, a method which originates from the field of com-
piler construction. Using this approach, it is possible
to derive context-sensitive information by propagat-
ing contextual information along the model’s edges.
Since the developed analysis distinguishes between
different semantic relationship classes it can be easily
adapted to the conventions in different organizations
by mapping the relationship types in the respective
target domain to the proposed categories. Further-
more, it is possible to extend the analysis with indi-
vidual impact propagation rules. To demonstrate the
viability as well as the generic applicability of this
approach, we implement multiple impact analyses for
different EAM languages.

2 IMPACT AND DEPENDENCY
ANALYSIS

According to (Bohner, 2002), determining the effects
of a change requires an iterative and discovery-based
approach. Change impact analysis can be performed
for a single software system, but also on an architec-
tural level for a full application landscape or an en-
terprise architecture. A related topic which is also of
interest in this context is the analysis of dependency
relationships.

Typically, any change which is made to a model
element also affects its neighboring elements (direct
impact). However, as these changes may in turn af-
fect other elements (indirect impact), the effect prop-
agates throughout the model. Consequently, even a
small change in a single element can cause ripple-
effects, resulting in non-trivial consequences. While
the direct impact can be derived from the connectiv-
ity graph, the computation of indirect impacts (n-level
impacts) requires reachability information. However,
since this method approximates potential impacts, it
tends to overestimate the result by generating false-
positives. The precision of the analysis can be im-
proved by using a constraint mechanism or by incor-
porating structural and semantic information (Bohner,
2002).

Most of the work regarding impact analysis
of software focuses on the code level (Lehnert,
2011). Approaches which evaluate architectures usu-
ally only regard concepts such as components, pack-
ages, classes, interfaces and methods. Due to the
limited amount of supported types and the domain-
specific characteristics, these approaches are not suit-

able for use in EAM.
Nevertheless, some techniques which target the

UML are more closely related to the EAM domain.
(Briand et al., 2003) propose a methodology for sub-
jecting analysis and design documents to an impact
analysis to detect side effects of changes in the con-
text of UML-based development. To restrict the set
of affected model elements they propose the use of a
coupling measure and a predictive statistical model.
The impact analysis itself is specified using the OCL.
(von Knethen and Grund, 2003) developed an ap-
proach which supports traceability by providing re-
quirements engineers, project planers and maintain-
ers with the ability to monitor the effects that changes
have on software systems. They differentiate between
three types of relationships to define the traces: repre-
sentation, refinement and dependency. To determine
the change impact, they (semi-)automatically analyze
requirement traces using these three categories.

(Kurpjuweit and Aier, 2009) and (Saat, 2010) pro-
pose techniques for EA dependency analysis. Saat
focuses on time-related aspects (org. ”zeitbezogene
Abhängingkeitsanalysen”) by considering for each el-
ement its life time, the status (current or proposed) as
well as the life cycle phase with its duration. How-
ever, no execution or implementation details are pro-
vided for this approach. Kurpjuweit and Aier devel-
oped a formal method for flexible and generic depen-
dency analysis. To determine dependent elements,
they use the transitive closure of a set of relations.
They also define an expansion function, which allows
to consider special relation semantics, e.g. hierarchi-
cal refinement or reflective relation types.

(Holschke et al., 2009) as well as (Tang et al.,
2007) propose the use of Bayesian Belief Networks
(BBN) for EA modeling. These approaches rely on
causal dependencies as well as inference methods for
BBN and a diagnosis analysis to determine the im-
pact. The former realizes a failure impact analysis,
theoretically described in the pattern catalogue (Buckl
et al., 2008), using the diagnostic analysis1 and the
modeling tool GeNIe. As a result, architectural com-
ponents can be ranked with respect to their critical-
ity for a business process. However, this approach
focuses on availability, not on changes. Tang et al.
employ a combination of predictive reasoning to de-
termine affected elements and diagnostic reasoning to
determine the cause of a change. Prior to the analy-
sis, the architect has to assign a probability to each
root node and a conditional probability table to each

1Jagt, R.M.: Support for Multiple Cause Diagnosis with
Bayesian Networks. Vol. M. Sc. Delft University of Tech-
nology, the Netherlands and Information Sciences Depart-
ment, University of Pittsburgh, PA, USA, Pittsburgh (2002)

Fourth International Symposium on Business Modeling and Software Design

48

non-root node.
Propagation rules are another method for deter-

mining the impact of changes. This technique al-
lows to define effects that depend on structural and se-
mantical properties. An iterative application of those
rules to a model yields the direct and indirect im-
pacts. (de Boer et al., 2005) present such rules for
the most important relationships in ArchiMate mod-
els, differentiating between the removal, the exten-
sion and the modification of an architectural element.
However, the definitions are given in an informal and
textual manner and no technical realization is sup-
plied. (Kumar et al., 2008) propose rules that encode
the dependency relationships of the attributes of en-
tities. Changes are thereby propagated to determine
the impact on a defined set of element types, namely
business goals, processes, services and infrastructure
components as well as the relations runs on, provides,
executes and delivers. No mechanism is specified for
implementing the change propagation. (Aryani et al.,
2010) also rely on the propagation concept to define a
conceptual coupling measurement for software com-
ponents. Based on this information a dependency ma-
trix is established which allows to predict change im-
pacts.

In (Lankhorst, 2012), a tool for impact-of-change
analysis is described. The author represents enterprise
architectures in XML and uses the Rule Markup Lan-
guage (RML) to define transformations which repre-
sent the rules which define the impact-of-change. The
RML rules are analyzed through a pattern matching
of the antecedent against the input XML. If a rule
matches, the variables will be bound and an output
XML is generated based on the rule output.

3 A CONTEXT-SENSITIVE
APPROACH TO IMPACT
ANALYSIS

The foundation for the definition of any impact is
the computation of reachable elements. Accord-
ing to (Bohner, 2002), reachability denotes transitive
connections, whereas dependability refers to directly
connected elements. To determine reachability rela-
tionships we employ data-flow analysis, a technique
which is based on the principle of information propa-
gation. This allows to directly implement the follow-
ing recursive specification: An element is reachable
if at least one predecessor element is reachable. In
this context, a predecessor is defined as the source el-
ement of an incoming edge. Since there are typically
no isolated areas in an EA model, this would normally

result in almost all elements being classified as reach-
able. For a more focused analysis, we therefore need
to extend the reachability computation with contex-
tual information. For this purpose, we establish two
different categorization mechanisms for relationships.
For each relationship class in these categories we de-
fine a change propagation rule which specifies how a
change will be propagated through the model.

In the following we will first formalize the rep-
resentations of model and meta model data in a way
which ensures the applicability of the approach even
if an organization employs a customized version of
the meta model. We will then describe a data-flow
based specification of a naive reachability analysis
and subsequently propose extensions which enable a
context-sensitive analysis of change impacts.

3.1 Formalizing the Meta Model and
the Model

The high diversity of meta models results in a major
challenge when devising techniques in the context of
EAM. To overcome this issue, we developed a generic
meta model which is able to support any EA language
based on traditional modeling paradigms. Apart from
abstracting from the particular structure of an input
language, this approach has the benefit of combining
meta model and model data in a single representation.

Figure 1: Generic representation for EA (meta) model data.

A condensed version of this specification is de-
picted in figure 1. The relevant elements can be de-
scribed as follows: Each concept of the respective
target EA language is translated into either a Meta-
ModelNode or a MetaModelEdge. Connections be-
tween these elements have to be established accord-
ingly during the transformation process. Both types

Context-Sensitive Impact Analysis for Enterprise Architecture Management

49

also carry additional meta information such as their
stereotype, the concept’s name and its properties. In-
stances from the target EA model are converted into
ModelNodes and ModelEdges and connected to their
respective meta model stereotypes.

3.2 Analyzing Reachability for EA
Models

The computation of reachability information forms
the basis for the subsequent impact analysis. An ele-
ment is declared reachable, if there exists a path con-
necting the element to the starting point (indirectly
connected elements). The reachability analysis is car-
ried out using the Model Analysis Framework (MAF)
(Saad and Bauer, 2011) which supports the specifi-
cation and execution of data-flow based analyses on
models.

Data-flow analysis is used by compilers to derive
optimizations by examining the structural composi-
tion of program instructions. Canonical examples in-
clude the calculation of reaching definitions and vari-
able liveness. For this purpose, the program is con-
verted into a control-flow graph with the nodes rep-
resenting the basic blocks and the edges denoting the
flow of control. A set of data-flow equations is then
evaluated in the context of each node. Each equation
takes the results computed at the immediate prede-
cessor nodes as input, applies a confluence operator
(union or intersection) to combine these sets and fi-
nally modifies the values to reflect the effects of the
local node’s instructions. Effectively, this method
describes an equation system which propagates in-
formation throughout the underlying graph, thus en-
abling a context-sensitive evaluation of each instruc-
tion. If loops are present, fixed-point evaluation se-
mantics are employed to approximate the runtime be-
havior of the program.

In (Saad and Bauer, 2013) we discussed an adap-
tion of this analysis technique to the modeling do-
main which we referred to as a generic “programming
language” for context-sensitive model analysis. This
approach defines a declarative specification language
that allows to annotate data-flow attributes at meta
model classes that can subsequently be instantiated
and evaluated for arbitrary models. This technique
has several significant advantages: Data-flow analy-
sis provides inherent support for the implementation
of recursive specifications which iteratively propagate
information throughout a model. Also, since informa-
tion is routed along model edges, each model element
can be evaluated in its overall context, thus eliminat-
ing the need for static navigational expressions which
are common in languages such as OCL. This is impor-

tant in the EAM domain where the structure of both
meta models and models is highly dynamic. Finally,
the usage of fixed-point semantics allows to imple-
ment a correct handling of cyclic paths.

Using MAF, a reachability analysis for model ele-
ments can be specified in the following way:

1: analysis reachability analysis {
2: attribute is reachable : Boolean initWith false;

3: extend node with {
4: occurrenceOf is reachable calculateWith
5: self.incoming.source.is reachable()

6: ->includes(true);

7: }
8: extend startnode with {
9: occurrenceOf is reachable calculateWith true;

10: }
11: }

As described above, an element e1 is reachable
from another element e2, if there exists a path be-
tween e1 and e2. Here, we assume that the meta
model defines the classes node and startnode, the
latter one being a specialization of the former one.
We further classify changed elements in the model
as startnodes for the analysis. The reachability sta-
tus is computed by a data-flow attribute is reachable
of type boolean which is initialized with the value
false (line 2). Lines 3-7 attach this attribute to all in-
stances of the node class. To determine the reacha-
bility status of a node, the data-flow equation in lines
5-6 accesses the is reachable values computed at the
respective node’s predecessors, thereby directly im-
plementing the recursive specification. Finally, lines
8-10 overwrite this equation at startnodes which are,
by definition, always reachable.

3.3 Context-aware Change Propagation

The execution of the reachability analysis in section
3.2 will result in an large result set, containing mostly
false positives regarding change impact. By enrich-
ing the rules with context-specific declarations, the
impact set can be restricted to contain only meaning-
ful data and to additionally reflect different types of
changes.

In the following, we will differentiate between the
change types extend, modify and delete as proposed
by (de Boer et al., 2005). Extensions refer to cases
where new issues are added but the initial function-
ality or structure remains the same. Consequently,
extensions do not propagate to depending elements.
By contrast, a modification also affects the function-
ality or the structure and therefore it cannot be guaran-
teed that initially provided issues will still be available

Fourth International Symposium on Business Modeling and Software Design

50

or that their behavior remains unchanged. Finally,
deletion indicates that an element will be removed
from the enterprise architecture. The change types
are prioritized as follows: delete overrides modifies
overrides extends overrides no change (NO). Depend-
ing on the respective requirements, additional change
types can be implemented.

Due to the lack of detailed information in enter-
prise architecture models, an accurate definition of the
impact of a change is not possible. We therefore pro-
pose to approximate the impact using a worst case and
a best case analysis similar to the practices in software
analysis. For the worst case, the impact is defined as
the maximal set of affected elements, whereas the best
case includes only the minimal set. The real impact
typically lies somewhere between both cases.

To implement the context-dependent impact anal-
ysis, we define rules which are able to differentiate be-
tween the different change and relationship types. To
make the technique generically applicable, we intro-
duce custom relationship classes to which the specific
relationship types in the target EA language can be
mapped. The developed specifications can be divided
into two categories: In section 3.3.1 describe how the
propagation of effects is influenced by different rela-
tionship classes while section 3.3.2 introduces an ad-
ditional classification along different effect types.

3.3.1 Change Propagation Rules Depending on
Relationship Classes

To classify the relationships of an enterprise architec-
ture, we grouped them according to their semantics,
which we identified through a literature review of ex-
isting EA frameworks and their meta models. This in-
cludes the Core Concepts Model (CC) of ArchiMate
(The Open Group, 2012) and the DM2 Conceptual
Data Model of DoDAF (U.S. Department of Defense,
2010).

Overall, we were able to identify five classes of
relevant EA relationship types: Locate denotes the al-
location to some location or organization unit. Any
kind of provision of functionality, information and be-
havior is of the type provide while the consume class
denotes the consumption of those elements. Struc-
tural dependency relationships define the structure or
organization of entities in one layer. The behavioral
dependency class on the other hand summarizes rela-
tionships which declare dependencies between the be-
havior of elements in a single layer which are neither
of the type provide nor consume. The following table
lists all classes along with corresponding examples
from the ArchiMate Core Concepts and the DoDAF
DM2.

Table 1: Classification of EA relationships.

class examples
locate CC: assignment

DM2: is-at
provide CC: realize, assess

DM2: provide, performedby
consume CC: used by, access

DM2: consume
structural
dependency

CC: aggregate, composite
DM2: part-of

behavioral
dependency

CC: trigger, flow to

Note that the mapping in table 1 is only a sugges-
tion based on our interpretation of the concepts and
has to be adapted if an organization assigns different
semantics to these types. It is also important to real-
ize that each relationship may belong to multiple cat-
egories. In the worst case analysis, the strongest rule
will be chosen while the best case analysis will use
the weakest one.

To formalize the change semantics of these
classes, we employ the following syntax:

A.X → B.Y (1)

This statement indicates that if element A is changed
in the manner X then element B has to be changed in
manner Y . A and B represent the source and the target
of the relationship while X , Y ∈ {modify, delete, ex-
tend}. It is also possible to cluster change operations
on the left hand side. A.{X ,Y} → B.Z means that if
A is changed in the manner X or in the manner Y , B
has to be changed in the manner Z. Optionally, it is
possible to differentiate between a worst case (WC)
and a best case (BC) impact on the right hand side of
the rule.

We will now demonstrate this concept using the
location relationship. Assuming that an applica-
tion component (A) is hosted by a organization unit
(B), this connection is mapped to the class located
at. If a change to the application component has
no effect on the organization unit the rule will be
A.{del,mod,ext} → B.NO. If, on the other hand, the
organization unit is deleted, the application compo-
nent loses its host. In the worst case it needs to be
deleted as well while in the best case it will simply
be assigned to another host. This is formalized as:
B.del→WC : A.del, BC : A.ext. Finally, if the organi-
zation unit is modified or extended, the worst case de-
mands that the application component has to be mod-
ified too while, in the best case, it remains as is. This
can be addressed with the rule: B.{ext,mod}→WC :
A.mod, BC : A.NO. Change rules for other relation-
ship classes are defined in a similar manner as shown
in table 2.

Context-Sensitive Impact Analysis for Enterprise Architecture Management

51

Table 2: Impact rules for the relationship classes.

class rule
located at A.{del,mod,ext} → B.NO

B.del→WC: A.del BC: A.ext
B.{ext,mod} → WC: A.mod BC:
A.NO

provides A.del→WC: B.del BC: B.ext
A.mod→WC: B.mod BC: B.NO
A.ext→WC: B.ext BC: B.NO
B.{del,mod,ext} → A.NO

consumes A.{del,mod,ext} → B.NO
B.{del,mod} →WC: A.mod BC: A.ext
B.ext→ A.NO

structurally
dependent

A.del→WC: B.del BC: B.mod
A.{mod,ext} → B.NO
B.{del,mod} → WC: A.mod BC:
A.NO
B.ext→WC: A.ext BC A.NO

behaviorally
dependent

A.{del,mod,ext} → B.NO
B.{del,mod,ext} → A.NO

3.3.2 Change Propagation Rules Depending on
Effect Types

In addition to the classification along the lines of rela-
tionship types, a differentiation between different ef-
fect types can be useful as well. We therefore define
the following three effects: strong, weak and no effect.
The type of effect has to be specified for each direc-
tion of a relationship. The notation X −Y indicates
that a change in the source has a effect of type X on
the target and vice versa. Overall, this leads to six ef-
fect classes: Strong-Strong, Strong-Weak, Strong-No
effect, Weak-Weak, Weak-No effect and No effect-No
effect.

The semantics of these effects can be defined us-
ing rules similar in nature to those presented in section
3.3.1. They are shown in table 3.

Table 3: Impact rules for the effect classes.

effect rule
strong A.del→WC: B.del, BC: B.ext

A.mod→ B.mod
A.ext→ B.ext

weak A.del→WC: B.mod, BC: B.no
A.mod→WC: B.mod,BC: B.ext
A.ext→WC: B.ext, BC: B.NO

no effect A.{del,mod,ext} → B.NO

If A strongly affects B, this indicates that if A is
deleted, in the worst case, B has to be deleted as well
and, in the best case, it only needs to be extended. A
modification in A leads to a modification of B and the
same applies to extensions. If, for example, an appli-
cation component realizes a service, then the appli-
cation component has a strong impact on the service
while the service may only have a weak impact on the
application component. This specific interpretation of

realize would result in an assignment to the Strong-
Weak class. A weak effect denotes that the deletion
of A conducts no change in B in the best case and a
modification in the worst case. A modification of A
in the worst case requires a modification of B. In the
best case it has only to be extended. Finally if A is
extended, in the best case B must not be changed, in
the worst case it has to be extended, too. If the rela-
tionship is mapped to no effect, any change of A has
no effect on B.

Further examples for effect mappings of Archi-
Mate relationships are:

• Strong-Weak: realize

• Strong-No effect: aggregation

• Weak-No effect: use, assign

• Weak-Weak: triggers

3.3.3 Realization of the Rules

The rules defined in sections 3.3.2 and 3.3.1 can be
realized as data-flow equations. First, the meta model
and model data has to be converted to the generic rep-
resentation presented in section 3.1. Then, the status
of the changed elements whose impact should be ana-
lyzed is set to the respective value while the result for
all other elements is initialized with no change. After-
wards, these values will be iteratively recomputed to
propagate the effects of the changes. For illustration
purposes, we include a Java-based implementation of
the rule which calculates the best case result based on
the presented effect types:

1: Object node changestatus bestcase(Node currentNode){
2: for (Edge edge : currentNode.getIncomingEdges()){
3: Status sourceStatus = edge.source.getStatus()
4: Status currentStatus = currentNode.getStatus()

5: if (edge.effectClass == StrongEffectTarget)
6: if (sourceStatus == (DEL||EXT))
7: return computeStatus(currentStatus, EXT)
8: else if (sourceStatus == MOD)
9: return computeStatus(currentStatus, MOD)

10: if (edge.effectClass == WeakEffectTarget)
11: if (sourceStatus == (DEL||EXT))
12: return computeStatus(currentStatus, NO)
13: else if (sourceStatus == MOD)
14: return computeStatus(currentStatus, EXT)

15: if (edge.effectClass == NoEffectTarget)
16: if (sourceStatus == (DEL||MOD||EXT))
17: return computeStatus(currentStatus, NO)
18: }
19: for (Edge edge : currentNode.getOutgoingEdges()){
20: ...
21: }
22: }

Fourth International Symposium on Business Modeling and Software Design

52

The status of the current element (currentNode)
depends on the status of the connected elements as
well as the direction of the relationship. Therefore,
to correctly determine the change status, all incom-
ing (lines 2 - 18) and outgoing edges (lines 19 - 21)
have to be processed. The status value which has
been computed for a connected element is retrieved
through an invocation of getStatus() (line 3). This
call instructs the data-flow solver to recursively com-
pute and return the requested value. Based on the type
of each incoming edge, it is then decided whether it
has a strong effect (line 5), a weak effect (10) or no
effect (15) on its target. The concrete type of the
change is determined by evaluating the status of the
edge’s source element (lines 6-9, 11-14, 16-17). Fi-
nally, computeStatus() is invoked to compute and re-
turn the status of the local element. To implement the
priorization relationships between the change types,
e.g. to ensure that a weak change like no change can-
not override a stronger one like delete, this method
takes both the current and the newly computed status
as input. A similar approach is used to calculate the
result for the source elements of outgoing edges (line
19-21).

3.4 Customization of the Impact
Analysis

In the case where the rules proposed in section 3.3
are not sufficient to capture all requirements of the
organization, it is possible to customize the analysis.
For example, if a specific relationship type cannot be
mapped to one of the proposed classes, a new rule
can be created. In addition to evaluating relation-
ship types and change status of connected elements,
a rule may also consider the type of the connected
elements or class properties. It would also be possi-
ble to extend the rule definitions with the ability to
quantify a change (e.g. in terms of costs). These
features can be implemented through additional data-
flow attributes. For example, to compute potential
savings on IT maintenance, the maintenance costs of
all deleted application and infrastructure components
and their corresponding services could be aggregated.

Another customization consists of a modification
of the rule set to support change probabilities. Instead
of a single status, we can define four separate data-
flow attributes, which compute the respective prob-
abilities for the types delete, modification, extension
and no change. Additionally, the rule specification
would have to be extended. For example, a rule could
be defined as:

P(A.del) = X → P(B.del) = 0.8×X (2)

This means that if the probability that A is deleted is
X , then the probability that B has to be deleted is 0.8×
X or, in other words, if A is deleted then in 80% of the
cases B will be deleted as well.

4 EVALUATION

Most of the research work regarding change impact
analysis has been carried out theoretically and thus
has not yet been applied to real architecture models
(e.g. (de Boer et al., 2005), (Kurpjuweit and Aier,
2009), (Kumar et al., 2008)). An exception exists in
the work of (Tang et al., 2007) who employ predic-
tive and diagnostic reasoning in BBN. However, one
disadvantage of their approach can be found in the
high effort required to annotate probability informa-
tion. The technique proposed in this paper simpli-
fies analysis specification through a generic represen-
tation of model data and through predefined and ex-
tensible categorizations of relationships and effects.

Many existing approaches do not address prob-
lems relating to cyclic dependencies or contradicting
results, the latter one for example being a weakness
of the tooling proposed by (Lankhorst, 2012). Fur-
thermore, the issue of the scalability of the technique
which is based on pattern matching and model trans-
formations is not considered and the employed RML
technique is highly dependent on specific usage sce-
narios as well as on the respectively chosen EA lan-
guage. By utilizing the data-flow analysis method
with its inherent support for cyclic dependencies, re-
cursive specifications and iterative result computa-
tion, we are able to address these challenges. The
scalability of DFA (and the Model Analysis Frame-
work in particular) has been demonstrated in the con-
text of other domains including the analysis of exten-
sive AUTOSAR models (Kienberger et al., 2014).

For a practical evaluation, we implemented the
proposed methods in the form of an addin for MID In-
novator (MID GmbH, 2014) using the MIDWagen ex-
ample which is shipped with the tooling. MIDWagen
describes the IT landscape of a car rental organization
with its actors, business services, business processes,
application components and services as well as the
required infrastructure components and services. Al-
though it is not a real world example, the level of de-
tail and the extensibility of the underlying EA lan-
guage enables a thorough evaluation of the viability
and the robustness of our technique.

To illustrate the application of our approach, we
focus on a modification of the Booking System. We
assume that this component, which is responsible for
payment transactions, has to be modified due to secu-

Context-Sensitive Impact Analysis for Enterprise Architecture Management

53

rity issues. We further state that this change will only
affect the Payment service while the Bonus Booking
service does not have to be adapted. The modification
of the Payment application service (AS) also causes
a change to the supporting Return service, which in
turn will affect the Payment business service (BS) as
well as the Renter role. Figure 2 shows the respective
excerpt from the MIDWagen model.

Figure 2: Excerpt of the ArchiMate model for the MID-
Wagen Use Case (MID GmbH, 2014) with the worst case
change propagation path.

For this scenario, we employ the relationship clas-
sification described in section 3.3.1. Since the model
is given in the ArchiMate language, we are able to use
the mappings listed in table 1.

In figure 2, the resulting worst case change prop-
agation path is indicated by red arcs. Solid lines rep-
resent paths along with a change is forwarded, while
dashed lines stand for relationships, which are con-
sidered but do not result in a change propagation. The
final impact set consists of the elements {Payment
AS modified, Bonus Booking modified, Return mod-
ified, Collect Bonus modified, Payment BS modified,
Renter modified}, while the final result set for the best
case analysis is empty. Both results represent realistic
approximations which have to be interpreted consid-
ering the severity of the modification. In the best case
scenario (e.g. performance issues), the modification
of the Booking System does not affect the provided
functionality, and therefore the service does not need
to be changed. In the worst case, for example a sub-
stantial change in the functionality due to security is-
sues, the effects of the change propagate to the role
in the business layer which is potentially affected by
the modification. Both impact sets represent approx-
imations, which can be of great value for estimating

the real effects of a change especially in early design
stages.

Carrying out the analysis using the effect classes,
the result consists of {Payment AS modified, Return
modified, Payment BS modified, Renter modified}.
This result, which lies in between the worst and the
best case of the relationship analysis, is able to pro-
vide more detailed information in the case where the
required data is available.

5 CONCLUSIONS

In this paper we proposed a context-sensitive impact
analysis technique for EA models. The approach re-
lies on two underlying concepts: The problem of di-
verse EA languages is addressed by a generic repre-
sentation of model data while the data-flow analysis
method enables an intuitive specification of analyses,
which depend on the iterative propagation of results.

We argued that a traditional reachability analysis
which returns all direct and indirect neighbors of an
element is not suitable in the EA context and there-
fore has to be extended with context-sensitive prop-
agation rules. For this purpose, we defined a rela-
tionship classification which reflects the semantics of
different edge types as well as the semantics of the
change types extend, modify and delete. By apply-
ing this concept, change effect propagation depends
both on the change type as well as on the meaning
of the relationships which connect the respective ele-
ments. For example, if an element which is still in use
is deleted, this change will affects consumers. If, on
the other hand, the element is extended, leaving the
existing functionality unchanged, the potential effect
is not propagated.

For a more focused analysis, we proposed two
different kinds of relationship classifications. Sec-
tion 3.3.1 categorizes relationships according to their
semantics with respect to the architecture by defin-
ing the classes located at, provides, consumes, struc-
turally dependent and behaviorally dependent. In sec-
tion 3.3.2, the severity of a change on the respective
source and the target elements is considered by intro-
ducing the categories strong, weak and no effect. In
both cases we defined propagation rules in the form of
DFA equations for best and worst case analysis. By
extending these definitions, it is possible to include
support for organization-specific semantics and addi-
tional relationship types. Executing the analysis us-
ing the DFA solver of the MAF framework yields the
results which can be interpreted as estimations that
reflect the best and worst case of the actual impact.

The combination of the generic model represen-

Fourth International Symposium on Business Modeling and Software Design

54

tations, extensible DFA-based analysis specifications
and the classification approach for relationships en-
sures that this technique can be applied to the various
EA conventions found in different organizations. Fur-
ther work has to be done to determine a suitable visu-
alization of the results. It would also be interesting to
evaluate rules for other impact scenarios such as fail-
ure impact analysis which analyzes the availability of
architecture elements. Finally, it should be explored
how the computation of best and worst case results
could be improved through an integration of proba-
bility distributions. At the moment we only support a
simple and naive way for the integration of probabili-
ties.

ACKNOWLEDGEMENTS

This work was partially sponsered by the FuE-
Programm Informations- und Kommunikationstech-
nik Bayern. The authors would like to thank MID
GmbH for providing their demo use case, licenses for
their tool as well as for their support during the im-
plementation.

REFERENCES

Aryani, A., Peake, I., and Hamilton, M. (2010). Domain-
based change propagation analysis: An enterprise sys-
tem case study. In 2010 IEEE International Confer-
ence on Software Maintenance (ICSM), pages 1–9.

Bohner, S. (2002). Software change impacts-an evolving
perspective. In International Conference on Software
Maintenance, 2002. Proceedings, pages 263–272.

Briand, L., Labiche, Y., and O’Sullivan, L. (2003). Impact
analysis and change management of UML models. In
International Conference on Software Maintenance,
2003. ICSM 2003. Proceedings, pages 256–265.

Buckl, S., Ernst, A., Lankes, J., and Matthes, F. (2008).
Enterprise Architecture Management Pattern Catalog
(Version 1.0). Technical Report TB 0801, Technical
University Munich, Chair for Informatics 19.

de Boer, F., Bonsangue, M., Groenewegen, L., Stam, A.,
Stevens, S., and van der Torre, L. (2005). Change
impact analysis of enterprise architectures. In Infor-
mation Reuse and Integration, Conf, 2005. IRI -2005
IEEE International Conference on., pages 177 – 181.

Holschke, O., Nrman, P., Flores, W., Eriksson, E., and
Schnherr, M. (2009). Using enterprise architecture
models and bayesian belief networks for failure im-
pact analysis. In Service-Oriented ComputingICSOC
2008 Workshops, page 339350.

Jonkers, H. and Iacob, M.-E. (2009). Performance and
cost analysis of service-oriented enterprise architec-
tures. Global Implications of Modern Enterprise In-

formation Systems: Technologies and Applications,
IGI Global.

Kienberger, J., Minnerup, P., Kuntz, S., and Bauer, B.
(2014). Analysis and Validation of AUTOSAR Mod-
els.

Kumar, A., Raghavan, P., Ramanathan, J., and Ramnath, R.
(2008). Enterprise Interaction Ontology for Change
Impact Analysis of Complex Systems. In IEEE Asia-
Pacific Services Computing Conference, 2008. AP-
SCC ’08, pages 303 –309.

Kurpjuweit, S. and Aier, S. (2009). Ein allgemeiner
Ansatz zur Ableitung von Abhngigkeitsanalysen auf
Unternehmensarchitekturmodellen. Wirtschaftinfor-
matik Proceedings 2009.

Lankhorst, M. (2012). Enterprise Architecture at Work.
Springer-Verlag Berlin and Heidelberg GmbH & Co.
KG, Berlin.

Lehnert, S. (2011). A review of software change impact
analysis. Ilmenau University of Technology, Tech.
Rep.

Matthes, F., Monahov, I., Schneider, A., and Schulz, C.
(2012). EAM KPI Catalog v 1.0. Technical report,
Technical University Munich.

MID GmbH (2014). MID Innovator for Enterprise Ar-
chitects. in: http://www.mid.de/produkte/innovator-
enterprise-modeling.html, accessed 15/04/2014.

Närman, P., Buschle, M., and Ekstedt, M. (2012). An enter-
prise architecture framework for multi-attribute infor-
mation systems analysis. Software & Systems Model-
ing, pages 1–32.

Niemann, K. D. (2006). From enterprise architecture to IT
governance. Springer.

Saad, C. and Bauer, B. (2011). The Model Analysis Frame-
work - An IDE for Static Model Analysis. In Pro-
ceedings of the Industry Track of Software Language
Engineering (ITSLE) in the context of the 4th Interna-
tional Conference on Software Language Engineering
(SLE’11).

Saad, C. and Bauer, B. (2013). Data-flow based Model
Analysis and its Applications. In Proceedings of the
16th International Conference on Model Driven Engi-
neering Languages and Systems (MoDELS’13).

Saat, J. (2010). Zeitbezogene Abhängigkeitsanalysen
der Unternehmensarchitektur. Multikonferenz
Wirtschaftsinformatik 2010, page 29.

Tang, A., Nicholson, A., Jin, Y., and Han, J. (2007). Using
bayesian belief networks for change impact analysis in
architecture design. Journal of Systems and Software,
80(1):127148.

The Open Group (2012). ArchiMate 2.0 specification: Open
Group Standard. Van Haren Publishing.

U.S. Department of Defense (2010). The DoDAF
Architecture Framework Version 2.02. in:
http://dodcio.defense.gov/dodaf20.aspx, accessed
15/03/2015.

von Knethen, A. and Grund, M. (2003). QuaTrace: a
tool environment for (semi-) automatic impact analy-
sis based on traces. In International Conference on
Software Maintenance, 2003. ICSM 2003. Proceed-
ings, pages 246–255.

Context-Sensitive Impact Analysis for Enterprise Architecture Management

55

