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Abstract. Policy-based Management with rules is a wide-spread ap-
proach for operations automation. However, the continuous pressure for
decreasing operational costs and increasing reliability of the systems lead
to new challenges. Unfortunately, current Policy-based Management Sys-
tems lack the ability to act proactively along operational objectives in
an autonomous manner in order to face these challenges. In this paper,
we present a Policy-based Management System based on a Fuzzy Logic
System that attempts to avoid problematic system states before they oc-
cur and that is guided by operator objectives expressed as utilities. Our
approach can be seen as an extension of current rule-based Policy-based
Management Systems, thus, requiring a reduced implementation effort.

1 Introduction

Policy-based Management (PBM) is the continuous process of configuring the
resources of a system such that the overall system performance satisfies the ob-
jectives of the operator. This process is controlled by a policy which encodes the
technical knowledge and the preferences of the operator, usually as a set of rules
like Event-Condition-Action (ECA) rules [3], [16]. This type of rule is triggered
by an event which leads to the evaluation of the condition and, depending on
the outcome, proposal of an action. The event is raised if the performance of the
system is unacceptable which is usually determined through sharp constraints
on Key Performance Indicators (KPIs). However, for an event there are usually
several possible ways to react, i.c., several actions can be taken. In order to avoid
these policy conflicts, human experts need to extend the rule conditions so that
the PBM system selects the best of the possible actions in a specific situation
based on the operator objectives and their technical experience [7]. As a result,
the complexity of the policy is increased because the technical knowledge and
operational objectives are mixed up.

In the future, the level of automation of PBM is required to be extended,
driven by the increasing need for cost-efficient and reliable operations, as well as
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the increasing complexity which prevents the understanding of the whole system
by the operator. This leads to new challenges that a Policy-based Management
System (PBMS) has to face. For instance, PBMSs are supposed to make more
complex decisions automatically. This requires policies which directly express
the operational objectives separately from the technical knowledge. This way,
a PBMS is enabled to autonomously act towards achieving the objectives [10].
Furthermore, PBMSs must act proactively in order to avoid problems instead of
reacting to problems that are already present. Hence, the sharp distinction be-
tween acceptable and unacceptable system states is not applicable anymore, and
needs to be substituted with a fuzzy system state characterization that allows
the system to react to gradually decreasing system performance. In summary,
PBMSs need to proactively control the system guided by operational objectives.

In this paper, we present an approach for proactive PBM in order to face
future challenges for PBM. Thereby, given the requirements for proactive PBM
(Sec. 2), we outline the expected system behavior (Sec. 3), and then present
the design of our solution (Sec. 4). The main idea behind the concept is to
separate technical knowledge, expressed in fuzzy rules, from operator objectives,
encoded in utilities, and utilize a fuzzy logic system in order to compute which
actions satisfy the objectives the most. The approach can be seen as an extension
of current rule-based PBMSs, thus, requiring a reduced initial implementation

effort. The advantages of our system can be shown by comparing it with classical
PBMSs (Sec. 5).

2 Problems of Classical PBM

It is assumed that the systems which are managed by a PBMS are composed
of several system resources which are running autonomously controlled by some
parameters. Driven by external or internal events, the operational state of the
system, which is determined by the values of a set of KPIs and the presence
of alarms that are produced by the system resources, can change. Thereby, the
system can also transition into problematic operational states, e.g., if many users
connect to a network at the same time, this can lead to an overload. In order to
handle these undesired states, a PBMS, depicted in Fig. 1, continuously monitors
the system using probes that identify unacceptable states, i.e., problems, and
raise events that indicate the nature of the detected problems. Thereby, the
distinction between acceptable and unacceptable states is sharp, usually defined
through constraints, e.g., a KPI k representing a ratio could have a constraint
requiring that k& > 2%.

The decision making component evaluates the policy and proposes actions in
reaction to the events, thereby considering the operational context of the system.
The latter can be any information about the system, e.g., the current time or
Configuration Management (CM) data like the system topology. An action that
is proposed can be, e.g., the setting of new configuration parameter values of a
system resource or the call of some special system function that determines new
parameters and configures a system resource accordingly.
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Fig. 1. The PBM process

Usually, the PBMS will propose several actions at the same time because, on
the one hand, there can be several rules triggered by one event and, on the other
hand, several events can be raised in parallel. A common challenge is that the
actions might be in conflict [13], [3], i.e., they are somehow mutually exclusive.
Policy designers try to detect these conflicts using sophisticated methods and
resolve them by adapting the rule. Thereby, they often add further conditions to
the rules which determine in which situations one action is preferred over another
one based on the operational objectives. As a consequence, the policy mixes up
both the technical knowledge about which action is a reasonable reaction for
an event in a specific situation, and the operator objectives which describe the
operator’s preferences for the actions in specific situations. However, since it is
not possible to detect and resolve all policy conflicts at design-time [13], there
is still the need for an on-line conflict resolution. Unfortunately, current systems
do not allow to encode complex operational objectives for this.

Figure 2 depicts an example from mobile networks management where a
PBMS can distinguish between four operational states given two KPIs, the
Dropped Call Rate (DCR) and the Call Setup Success Rate (CSSR). The DCR
indicates unacceptable reliability problems if the DCR is high, whereas the CSSR
indicates unacceptable availability problems if the CSSR is low. The two lines
show the thresholds that are defined for the KPIs separating the acceptable from
the unacceptable states. Specifically, Zone 1 is acceptable with respect to both
KPIs, Zone 2 is unacceptable regarding DCR but acceptable regarding CSSR,
Zone 3 is acceptable regarding DCR but unacceptable regarding CSSR, and
Zone 4 is unacceptable for both KPIs. In a classical PBMS, a probe would raise
an event as soon as an unacceptable state regarding a KPI is reached. Conse-
quently, in Zone 4 two events indicating the DCR problem and CSSR problem
would be triggered. Hence, the PBMS is required to perform some conflict res-
olution if the respective actions are in conflict.

The sharp thresholds in classical PBM do not allow to proactively react to
possibly upcoming events. One solution to this is to lower the thresholds and,
so, reduce the number of acceptable system states. In Fig. 2, this would mean
to shrink Zone 1 to the dashed rectangle. However, then the system cannot
distinguish between an event indicating a system state in Zone 1, i.e., a proactive
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Fig. 2. Operational states for the KPIs DCR and CSSR

but not severe problem, and an event indicating a system state in Zone 2, i.e., a
severe problem. As a result, the PBMS might select non-optimal actions.

If the level of automation in PBM needs to increase in the future, a classical
PBMS as outlined in this section has two shortcomings:

— The sharp differentiation between acceptable and unacceptable operational
states solely allows a reactive behavior, i.e., the problem must occur before
the system can take countermeasures. However, it is desirable that the system
avoids problematic state by proactively performing some action.

— The mingling of technical knowledge and operational objectives makes the
maintenance of the policy costly. Both have different life cycles, i.e., the
technical knowledge usually changes less frequently than the operational
goals, thus, with every single change, the whole policy needs to be revised.

3 A Concept for Proactive PBM

In order to solve the issues with classical PBMSs, we model a utility-based rule
system as a specification for a fuzzy logic system.

A utility-based rule system allows the separation of technical knowledge and
operator objectives by expressing the former as rules, e.g., ECA rules, and the
latter as utilities [7]. Upon a raised event, the rules are evaluated and applicable
actions proposed, i.e., actions that treat the event from a purely technical point
of view. Since these actions might be in conflict, a conflict resolution utilizes the
utilities in order to calculate the value of each action based on the events an action
handles, the utility of the events’ treatment, and the severity of the events. Finally,
an action is selected for execution based on its value, i.e., usually the action with
the highest value. This can be seen as a kind of rational behavior [15].

A fuzzy logic system is a rule system that can perform logical inference with
fuzzy sets, i.e., it can fuzzify input values into fuzzy sets, apply fuzzy rules
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on these sets, and defuzzify the resulting sets into sharp output values [12].
The general idea is to replace boolean predicates used in classical rule systems
with continuous memberships in the domain [0, 1] representing the degree to
which a predicate is true. Fuzzy logic systems provide a scientific and well-known
foundation for decision making in uncertain or inaccurate domains. There are
several implementations of fuzzy logic system available, e.g., jFuzzyLogic [5], and
also a standard syntax, called Fuzzy Control Language [9], that is used in this
paper.

The basic idea of combining a utility-based rule system and a fuzzy logic
system is to

— fuzzify the outputs of the monitoring probes into fuzzy event levels, i.e.,
each system state has a fuzzy membership to the set of unacceptable states
regarding each event in the interval [0, 1],

— model the technical knowledge as fuzzy rules and weight them with the
utilities, i.e., the preferences of the operator,

— utilize a fuzzy logic system to compute the value of each action, i.e., the
degree to which an action satisfies the operator’s preferences [7], and

— defuzzify the result such that conflicts between actions are resolved by se-
lecting the actions according to their value.

In order to outline the expected system behavior, consider Fig. 2 again. The
sharp constraints distinguishing acceptable and unacceptable states are substi-
tuted by fuzzy event levels, i.e., fuzzy memberships to the unacceptable zone
indicated by the events. Therefore, the Zone 1 is divided into two sub-zones:

— A zone indicating a perfect system state, i.e., a state where the system is
perfectly working and no problem is supposed to arise soon. In this zone,
depicted as the dashed rectangle, all fuzzy event levels are 0.

— A jeopardy zone [1], i.e., states where the system performance is still accept-
able but there is the danger of running into a faulty state. Therefore, the
system should react in order to avoid the unacceptable state. In this zone,
indicated by the gradient, at least one fuzzy event level is greater than 0.

Given the fuzzy event levels, the system selects the best action with respect to
the level of the events and the utility the action has to the operator, i.e., how
important the treatment of the problem is according to the operator goals.

4 Design of the Fuzzy PBMS with Utilities

The reasoning process of the fuzzy PBMS with utilities, depicted in Fig. 3, is
performed in three steps which are spread over the monitoring and analysis as
well as the decision making phase of the PBM process depicted in Fig. 1:

Fuzzification is performed by the monitoring probes in the monitoring and
analysis phase. Thereby, sharp thresholds for the decision to raise an event
are replaced by fuzzy membership functions defined by the system operator
in the event specification. As a result, the probes are raising fuzzy events,
i.e., events containing a fuzzy event level representing the membership.
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Fuzzy inference is performed as first step of the decision making phase. Based
on fuzzy events and fuzzy context information, the fuzzy rules are evaluated.
The rules, which are provided by the system administrator, define possible
actions in reaction to some event in a specific operational context. As a
result, this process provides the value of all actions based on the system
objectives which are provided as utilities by the operator.

Defuzzification is the second step of the decision making phase. The proposed
actions are analyzed for conflicts that are defined in the conflict specification
given by the administrator. The detected conflicts are resolved by selecting
actions for execution based on the value.
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Fig. 3. The reasoning process of the fuzzy PBMS with utilities

4.1 Fuzzification

The fuzzification extends the monitoring probes with the ability to annotate the
events with an event level in order to turn them into fuzzy events. This level has
the semantics of the degree to which the operator wants to handle the event in
order to avoid a possible negative system state in the future. The event levels
are computed by membership functions, e.g., sigmoid or linear functions, which
determine the membership degree of a system state to the fuzzy set raised for an
event. The membership functions form the event specification provided by the
operator. They are determined through an analysis of the system behavior, e.g.,
whether the system state changes rapidly, and the trade-off between the benefits
of reacting proactively and the efforts of executing potentially more actions.
The thresholds used by classical monitoring probes define two classes of system
states: the acceptable state and the unacceptable state. In fuzzy monitoring
probes, the membership functions define three classes of system states as shown
in Fig. 4: the acceptable state, the unacceptable state, and the jeopardy state
in between. In the concrete example, the PBMS should not react if the DCR is
below 1%, because the system works perfectly fine. This is indicated by an event
level of 0 and, so, the event would not be raised at all. Between a DCR of 1%
and 2% the event level linearly increases from 0 to 1. Hence, in this jeopardy
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Fig. 4. The three classes of system states determined by fuzzy monitoring probes

state the handling of the problem becomes more and more urgent. Finally, at a
DCR of 2% and above, the system is in an unacceptable state. Hence, the event
level is 1 in this range. Note that a classical threshold would be a DCR of 2%.

4.2 Fuzzy Inference

The fuzzy inference is the core of the system and determines the value of the
actions as shown in Fig. 3. Besides the fuzzy events, it has four inputs:

— A fuzzy context that provides contextual information about the system.

— An action specification defining the actions the system can take.

— A set of operator objectives including their utilities.

— A set of fuzzy rules that define the possible reactions to a fuzzy event in a
specific context from a technical point of view.

Fuzzy Context. The operational context of the system contains information
about, e.g., the system topology, system configuration, current system status,
and current time and date. In principle, the context needs to provide all the
information that is necessary for evaluating the conditions of the fuzzy rules.

The context is fuzzified by using membership functions just like the events.
For instance, instead of representing the time with a concrete hour and minute,
it is possible to define fuzzy sets like daytime and nighttime. Note that the
membership functions can also define crisp sets.

Objectives. Utility theory [15] provides a framework to represent and reason
with complex objectives by using a single measure called utility. In other words,
the utility represents the degree to which an operational state satisfies the ob-
jectives, so, allowing to compare different states in order to make decisions. The
elicitation of utilities is a non-trivial process and an active field of research [6].
In the presented approach, each fuzzy rule has an assigned objective and each
of these objectives is mapped to a utility, i.e., a real value. The semantics of a
rule is that if the action of the rule is executed in response to the event under the
operational context determined by the rule, then it fulfills the assigned objective
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and produces the respective utility. Technically, the objectives and utilities are
a set, of variables and their respective real values in the fuzzy logic system.
Although this approach allows a fine-granular rule-objective mapping, it is not
recommended to assign different objectives to every rule due to the costly utility
elicitation. An example for a reasonable objective assignment is the definition
along the events that can be raised. That means that there is an objective for
every event and the utility represents the importance of the event resolution.

Action Specification. The action specification defines the values of the output
variable of the fuzzy logic system, i.e., the representation of the possible actions.
Specifically, it defines the output variable action as well as a crisp singleton set,
i.e., a single value, for each action on that variable. Although singletons are not
common in fuzzy logic systems, it is a reasonable modeling approach since the
single values represent discrete actions on the continuous variable action. For
instance, consider the two actions Mobility Robustness Optimization (MRO)
and Mobility Load Balancing (MLB) that are treating a reliability problem and
an availability problem respectively. For each, a singleton set is created on the
variable action, e.g., MRO is linked to a singleton set with the value 1 and MLB is
linked to a singleton set with value 2. Note that, depending on the defuzzification
method, the values of the actions can represent preferences (cf. Sec. 4.3).

Fuzzy Rules. The fuzzy rules express the expected behavior of the PBMS
from a technical point of view. Hence, these rules should be designed based on
the technical knowledge of the rule designers without considering the operational
goals. Specifically, these rules can contain policy conflicts. We consider Mamdani-
style [12] fuzzy rules with the following general structure:

IF event IS raised AND condition THEN action IS singleton WITH objective

The form of the rules is aligned with the ECA rule pattern. It has three parts:

IF part or antecedent consists of two components which are connected by a
conjunction. First, the evaluation of a single event level, i.e., the membership
of event to the set raised. Second, a condition part which can be any fuzzy
logic formula over the operational context.

THEN part or consequent proposes a single action by setting the value of the
output variable action to a singleton set representing the proposed action.

WITH part weights the rule with the utility of the assigned objective.

Note that this genecral rule structure also allows to model complex technical
knowledge as well as operator objectives (cf. [7]). For instance, by extending
the WITH part to be the product of the objective’s utility and an effectiveness,
one can represent a confidence in the action, i.e., the likeliness that the action
will treat the event correctly and generate the utility. Furthermore, imagine
that actions have fixed costs: this can be modeled by creating rules which have
an empty antecedent, i.e., they are always triggered, and a cost instead of an
objective which is some negative number.
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System operators working with PBMS are used to ECA rules and so, they
might be unfamiliar with fuzzy rules. Furthermore, the structure of the fuzzy
rules is inconvenient since it is driven by the technical capabilities of a fuzzy
logic system. However, a simple transformation is able to translate ECA rules
into fuzzy rules. Thereby, it is necessary to group the ECA rules into policy
groups [16] which model the objectives the rules are fulfilling.

Inference. A fuzzy logic system evaluates each fuzzy rule and calculates the
output membership of the proposed action, i.e., the expected utility. Thereby,
the fuzzy logic semantics is aligned with the ECA paradigm, i.e., AND, OR, and
NOT are interpreted as usual as minimum, maximum, and complement [12]. The
expected utility of a rule r, which proposes an action, is calculated as

Uexp(r) = Wacet (r)U(r) (1)

with, Wyt () being the rule activation, i.e., the combined fuzzy membership of
the antecedent, and U(r) being the utility of the objective of the rule.

After that, the expected utilities of the fuzzy rules must be combined in
order to compute the value of each action. This combination is defined by the
accumulation method in a fuzzy logic system. A common approach is to sum up
the utilities that an action produces, however, this requires mutual preferential
independence [15] between the objectives, i.e., the utility of an objective for an
action is independent of the expected utilities of the other objectives for that
action. This assumption is implied by the structure of the objectives and fuzzy
rules, specifically the direct rule—objective assignment. However, the expected
utilities cannot be simply summed up since several rules can propose the same
action with the same objective. Hence, the accumulation needs to distinguish
between rules assigned to the same objective and rules assigned to different
objectives as outlined by the following example.

Consider the fuzzy rules r1, and ry; that are both assigned to objective o1,
and rule ro which is assigned to objective os. All three rules are triggered by
the event e and propose the action a. In this setting, the expected utilities for
o1 from r1, and 715 should count once since, even though the action has been
proposed twice, it can satisfy o7 only once. However, the expected utilities for
01 and o2 are summed up since the action satisfies both objectives in parallel.

Formally, the value V' of a action a is defined as:

Vie)= Y max({Uexp(r)lr € p}) (2)

peR(a)/~

whereby R(a)/ ~ is the partition of the set of all rules proposing a with respect to
equal objectives. Hence, the value of an action is determined by, first, calculating
the maximum of the expected utilities for each set of rules that have the same
objective and, second, summing up these maxima.

Technically, the accumulation can be implemented by grouping the fuzzy rules
assigned to the same objective into one Fuzzy Control Language rule group.
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Within a rule group, the expected utilities of the rules are accumulated by se-
lecting the highest one, whereas the combined expected utilities of different rule
groups are summed up as shown in Fig. 5. This functionality is not standard-
ized and, so, this usually requires an adaptation of the fuzzy logic system. Note
that this adaptation can be avoided if it can be ensured that no two rules that
propose the same action for the same objective are ever triggered together.

4.3 Defuzzification

All actions that have a value greater than 0 are seen as proposed for execution.
However, not all can be executed in parallel because there might be conflicts
between them which are modeled in the conflict specification shown in Fig. 3.
Hence, the defuzzification selects the best actions that can be executed based
on their values. The actual output of the defuzzification are real numbers which
represent values of the variable action. They can be translated into the actions
by using the action specification for the fuzzy inference.

In simple cases, all actions are in conflict, i.e., only one action can be selected
at a time. Then, the best action is the one with the highest value since it satisfies
the most severe and important objectives. It can be selected from the fuzzy
variable action using a standard defuzzify method which selects the singleton set
with the highest membership degree. Thereby, the operator can prioritize actions
in the action specification if there are ties. For instance, if ties are broken by
selecting the action with the smallest value of the variable action, the operator
should assign smaller variable values to the actions that are more preferred.

More sophisticated defuzzification methods can also determine a set of best
actions if the conflicts are more complex. Suppose that the conflict specification
is a set of pairs of actions that cannot be executed together. So, the defuzzifi-
cation needs to find a combination of actions the maximizes the overall value
produced by the selected actions. This assignment problem can be formulated
as a constraint optimization problem which can be solved with a constraint
optimizer.
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5 Case Study

In the following case study, we show the application of the fuzzy PBMS with
utilities in mobile networks management and evaluate its performance using a
demonstrator system based on jFuzzyLogic [5].

5.1 Scenario

The scenario is a 3rd Generation Partnership Project (3GPP) Long Term Evo-
lution (LTE) network which is managed as a Self-Organizing Network (SON),
i.e., the network has self-configuration, self-optimization, and self-healing fea-
tures [8]. A SON is characterized by autonomous SON functions which contin-
uously monitor the network and trigger the execution of algorithms in order to
resolve detected problems. Thereby, the SON functions can influence each other,
e.g., via common configuration parameters (output of SON functions) or com-
monly influenced KPIs (as input to SON functions), which leads to conflicts.
These conflicts are detected and resolved by the SON coordination function.

The PBMS for the case study is a simplified SON coordination. The SON
functions can be seen as monitoring probes which trigger the execution of some
resolution action. Since the monitoring of the functions is quite radio specific, the
details of the fuzzification are not presented here. Instead, we concentrate on the
decision making component, i.e., the SON coordination, and consider the fuzzy
events as given. We assume that, in discrete time intervals, all raised fuzzy events
are passed to the SON coordination which determines suitable actions to resolve
the problems, analyzes their values with respect to the operator objectives, and
triggers the best action. Thereby, all actions are assumed to be mutually in
conflict in order to keep the case study simple.

5.2 System Model

Figure 6 depicts the technical knowledge that is encoded in the fuzzy rules for
the fuzzy logic system. There are five fuzzy events that can be raised and six
actions that can be triggered. The arrows between the events and actions outline
the rules of the system, i.e., for each event e and action a pair which is connected
by an arrow, there is a rule which proposes a if e is present. However, a rule
can also contain a context condition which is not depicted. For instance, the ar-
row between reliability problem and Remote Electrical Tilt (RET) optimization
represents the following fuzzy rule:

IF reliability_problem IS raised AND ret_available IS true
THEN action IS ret_optimization WITH objective_dcr

Note that the rule evaluates the context whether the RET feature is available.
The events in SON encode specific network problems and, so, we defined the
objectives with respect to the fuzzy events, i.e., there is an objective for each
event. The utilities of these objectives are normalized, i.e., each utility is in the
range [0, 1] and the sum of the utilities is 1.

The fuzzy PBMS with utilities is evaluated against two simpler PBMSs:
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Fig. 6. Events, actions, and fuzzy rules in the case study

Classical PBMS considers neither fuzzy event levels nor operator objectives.
Hence, the event fuzzification is actually a sharp threshold which is set to
the border between jeopardy state and good state. Furthermore, the utility
of all objectives is equal.

Fuzzy PBMS uses fuzzy events in order to take the severity of the events into
consideration. However, the utilities of all objectives are equal.

Fuzzy PBMS with utilities considers both fuzzy events and utilities.

Operators adopting the fuzzy PBMS with utilities will likely start with the
classical approach and introduce the fuzzy PBMS as an intermediate step. After
gaining some experience with the system, the operator will adapt the utilities to
meet the true objectives and, so, switch to the fuzzy PBMS with utilities.

5.3 Evaluation

The evaluation is performed by comparing the performance of the three PBMSs
regarding the average value of the actions they select. Several sets of operator
objectives, i.e., utilities, and problem situations, i.e., event levels and contexts,
are created randomly. Thereby, the probabilities for an event level of 0 or 1 is
0.25 each, whereas, the event levels in |0, 1| are uniformly probable. Finally, each
combination of operator objectives and problem situation is fed into the three
PBMSs and the values of the proposed actions with respect to the operator
objectives and the problem situation are recorded.

Figure 7 depicts the average value of the selected actions for 100 different ob-
jective sets, each evaluated with 1000 different problem situations. As expected,
the classical PBMS has the lowest average value since it utilizes the least in-
formation, i.e., it neglects the fuzzy event levels and utilities. As a result, this
system always picks the action which resolves most of the raised events. The
fuzzy PBMS performs better since it utilizes the event level information. Hence,
it neglects events with low levels, i.e., that are less important, and concentrates
on the events with high levels. In summary, this system picks the action with the
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highest sum of the levels of the resolved events. However, the best performance
is shown by the fuzzy PBMS with utilities because it knows the objectives of
the operators and, so, concentrates on the events with high levels that are also
valuable to the operator. Actually, the fuzzy PBMS with utilities always selects
the optimal action in this scenario where the actions are mutually conflicting.

0,35
0,3
0,25
0,2
0,15
0,1
0,05
0

Classical PBMS Fuzzy PBMS Fuzzy, utility-based PBMS
Average Value 0,241 0,273 0,315

Fig. 7. Average value produced by the three PBMSs

Although the ranking of the PBMSs is not surprising, it is interesting that
the fuzzy PBMS performs 13% better than the classical system and the fuzzy
PBMS with utilities performs 15% better than the fuzzy system. This signifi-
cant performance increase between these two evolutionary steps indicates that
a gradual adoption of the fuzzy PBMS with utilities is a reasonable approach.

6 Related Work

Using a fuzzy logic system for systems management is not a new idea. For
instance, Kousaridas and Nguengang [11] utilize two fuzzy logic systems in se-
quence: the first estimates the network state given low-level technical measure-
ments and the second proposes actions to be performed based on the fuzzy
network state. The fuzzy membership degree is used to compute a confidence
in the decision. However, the approach neither separates the operator objectives
from the technical knowledge nor considers values.

Fuzzy logic systems have also been used for multi-criteria decision making [14],
[2], [17], i.e., the evaluation of preferences for specific decision options with re-
spect to some objectives. Thereby, the system is given a fuzzy satisfaction value
for each action regarding each objective. Based on these values, the system selects
the best action using the Max-Min selector, i.c., it determines the minimal sat-
isfaction value regarding an objective for each action and selects the action with
the highest minimal value. Boutalis and Schmidt [4] present a nice application
for a fuzzy discrete event system in the domain of mobile robots. However, the
pessimistic multi-criteria decision making approach is not applicable for PBM:
usually no action is satisfying all objectives at once and, thus, the minimal
satisfaction value for all actions would be 0. Hence, we adopt a more decision
theoretic approach [15] which can be seen as a Sum-Max selector. Nevertheless,
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by changing the accumulation methods (cf. Sec. 4.2) appropriately, one can also
use the pessimistic Max-Min selector with our approach.

In [7], we have presented a PBM approach that considers uncertainty in the
inputs and operational goals. The Rational Policy System extends an ECA rule
system with probabilistic events and a dynamic action conflict resolution that is
based on the value of the actions. Hence, the approach makes a clear distinction
between technical knowledge, represented in ECA rules, and operator objectives,
encoded in utilities. However, there are some differences between the Rational
Policy System and the presented approach. First, the reasoning of the Rational
Policy System is hard coded in program code and, so, less flexible to adapt than
the fuzzy logic problem formulation of our approach, e.g., if an operator decides
to use the Max-Min selector. Second, in contrast to the Rational Policy System
which solely allows for probabilistic events, the fuzzy logic approach allows both
fuzzy events and fuzzy context information. Third, the semantics of probabilistic
events used in the Rational Policy System is different from fuzzy events.

Another approach for PBM with utilities and uncertainty is presented by
Bartolini et al. [1]. In order to keep the efforts for system modeling low, they
introduce a jeopardy system state for each KPI, i.e., a special acceptable state
in which the system soon runs into an unacceptable state with some probability.
The system selects the best action based on the system state, a specification of
the probabilistic action effects, and the operator objectives. However, modeling
the system behavior as probabilistic action effects instead of rules is a complex
mental process for policy designers who are used to rule-based PBMSs.

7 Conclusion

In this paper, we presented a fuzzy PBMS with utilities which enables proactive
PBM. It determines the best action in response to fuzzy event with respect to
operator objectives. Thereby, technical knowledge, expressed in fuzzy rules, and
operator objectives, encoded in the utilities, are separated to facilitate differ-
ent life-cycles of both information models. The focus has been on providing an
extension of classical PBM which requires little modeling effort.

In the future, it seems very promising to add a learning component to the
system which can estimate the effectiveness of the rules by observing the system
behavior. Furthermore, the system needs to avoid the recurring execution of
actions if they fail to work. This can be done by keeping a history of the executed
actions and avoid them.
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