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Abstract—Policy-based Network Management with Event-
Condition-Action (ECA) rules is a widespread approach to face
the increasing complexity in Network Management that requires
a high-level of automation. However, the inability to handle uncer-
tainty and the lack of autonomous decisions making functionality
along operational objectives are limiting the applicability of ECA
rules. In this paper, we present a new Rational Policy System
which combines an ECA policy system with a Utility Function-
based conflict resolution. In this way, it can handle the uncertainty
in the environment and, at the same time, performs autonomous
decision making guided by operational objectives.

I. MOTIVATION

Network Management (NM) is the continuous configura-
tion of Network Elements (NEs) so that the overall network
behavior and performance meets the objectives of the operator.
Probes monitor and analyze the network performance data
and notify the Network Management System (NMS) about
detected problems via events. Triggered by the events, the
NMS performs a decision making process in order to select
and execute an action to handle the incident. In Policy-based
Network Management (PBNM), this reasoning is guided by
an operator policy. In the future, the complexity of decision
making as well as the level of automation will increase, e.g.,
driven by heterogeneous deployments, high dynamics, and
large scales. This leads to a number of challenges that NMSs
will have to face [1]: among others, the system is supposed
to make more complex decisions automatically. Specifically,
the system should act autonomously towards achieving high-
level operational objectives, e.g., maximizing network capacity
with minimal operational expenses. Furthermore, the NMS
needs to be able to handle uncertainty because it is not always
possible to determine the current network status with certainty.
This can be due to the environment, e.g., radio propagation
in mobile networks, or the estimation of the network status
because real-time data analysis in huge networks is impossible
or impracticable. Besides that, the effects of an action are
often also uncertain, e.g., an action can be ineffective in some
operational context.

Traditionally, PBNM represents the policy as a set of rules
which trigger actions, e.g., Event-Condition-Action (ECA)
policy rules [2]. These action rules define which action sat-
isfies the objectives of the operator the most in a specific
operational situation. Hence, the reasoning how the operator’s
objectives can be achieved is performed by the policy devel-
opers at design-time based on their technical knowledge of
the system [3]. The interweaving of objectives and technical
knowledge makes the maintenance of the rules costly, e.g.,
if the objectives change, the policy designers have to check
all rules for necessary adaptations. Furthermore, ECA-based

policy systems are not well suited to handle uncertainty since
they are designed for deterministic reasoning.

Researchers have developed Utility Function (UF)-based
policy systems [3] which enable a higher level of automation
by performing the reasoning, which actions achieve the opera-
tional objectives, autonomously. They are based on two models
that make up the policy: a detailed semantic specification of the
actions, e.g., logical preconditions and effects, and an explicit
model of the objectives, e.g., functions which map an action
and an operational network state to an abstract preference
measure referred to as Utility'. Unfortunately, the definition of
the policy, especially modeling the action effects in a complex
environment, is a huge burden.

This paper presents the Rational Policy System (RPS),
a new policy system that combines ECA rules with UFs.
Thereby, it allows a simple policy definition and facilitates
autonomous reasoning for actions given some operational
objectives. Abstractly, the RPS is an ECA policy system
with a UF-based conflict resolution. In that way, it can face
the challenges of modern NM, i.e., the need for handling
uncertainty and performing objective-based reasoning. The
approach presented in this paper is a generalization of the
approach in [4] and extends it with stochastic actions.

II. CONCEPT

The concept of RPS is to extend an ECA-based policy
system with a UF-based run-time conflict resolution that
sclects the most rational action to be performed. That means
that the decision for an action is based on a policy comprising
a technical system model encoded as ECA rules and operator’s
objectives encoded as UFs. Traditionally, an ECA policy
system is supposed to strictly obey the policy rules in order
to satisty the operator’s objectives. Hence, the rules mix up
technical knowledge and operational objectives. In the RPS,
ECA policy rules solely encode which actions might be an
appropriate response to an event in some operational context
from a technical point of view, i.e., they encode the technical
knowledge about the network. The operational objectives are
then considered during the selection of one of the applicable
actions, i.e., conflict resolution.

The RPS reacts to events that are raised by monitoring
and analysis probes in order to notify the NMS about some
detected and diagnosed issue, c.g., a defect of an NE or a load
imbalance. The events are annotated with a Probability that
refers to the likelihood that the issue that is indicated by the

!Policies using UFs with binary codomain are often referred to as goal
policies. A detailed discussion of different policy types can be found in [3].
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event is actually present, e.g., the probability that an NE is bro-
ken. The probes may utilize sophisticated diagnostic methods
like event correlation or Bayesian reasoning which allow the
estimation of root cause probabilities from symptoms. Notice
that it is assumed that the RPS can decide for an action to
handle an event without any additional root cause analysis.

The applicable actions, proposed by the ECA rules for a
set of events, are very likely to be in conflict in the RPS.
This is due to a number of reasons: first, classical policy
conflict reasons like modality, e.g., turn-on and turn-off of
the same NE, or application-specific constraints, e.g., energy-
saving mode for an NE which should also take over the load of
another NE [5]. Second, the ECA policy rules solely encode
technical knowledge, i.e., no design-time conflict resolution
based on the operational objectives has been performed. Hence,
it is likely that several rules will fire for an event and propose
actions. Third, since the probes can represent the uncertainty
in their analysis, they do not have to consider fixed certainty
threshold that are usually set to a high value to avoid false
events. Instead, the probes will raise numerous events and the
RPS will decide dynamically which of these are handled.

The conflict resolution in the RPS is based on decision
theory. It resolves a conflict by executing the most rational
action, i.c., the action that fulfills the operational objectives the
most in the uncertain situation. The operational objectives are
“persistent, abstract, user-oriented objectives for how a system
should behave” [6], i.e., they are describing what the system
should achieve in a declarative way. Decision theory, which
has been studied, e.g., in Artificial Intelligence (Al), provides
a consistent framework for making a rational decision for one
of several options [7]. In essence, it defines a measure for the
degree of rationality of an action, here referred to as Value.

In NM, the Value of an action depends on four factors:

1) The action Cost refers to a measure of the operator’s
preference for an action.

2)  The action Effectiveness refers to the probability that
the action will produce the indented effects, i.e., it
handles an event by treating the indicated problem.
This is necessary since we consider stochastic actions.

3)  The event Utility refers to a measure of the operator’s
preference that an event is handled.

4)  The event Probability.

Although the Cost and Utility are simple measures, i.e.,
usually real numbers, they can also represent complex prefer-
ence systems with multiple dimensions. So besides a monetary
value, the Cost can also express qualitative aspects like the
action’s impact on network performance. In parallel, the Utility
can represent the severity of the incident indicated by an event,
e.g., the decrease of network performance from the optimum.
This can be achieved by defining the Cost and Utility to be a
weighted sum of the individual degrees to which the objectives
in each dimension have been fulfilled.

III. SYSTEM DESIGN

This section outlines the design of an implementation
of the presented RPS concept. The system is assumed to
react at regular points in time to an event set, i.e., a set
of events and their associated Probabilities that have been
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Figure 1.  The Rational Policy System with Action Proposal, Conflict
Detection, and Action Selection.

raised by the monitoring and analysis probes between two
runs. Additionally, the system can access operational context
information which contains configuration data about the net-
work, e.g., the current date and time, the network topology or
the network configuration. In essence, the context provides all
information that is necessary to evaluate the conditions of the
technical ECA rules. Notice that the RPS assumes certainty
in the context information, since network configuration data is
usually known with certitude.

No specific spatial scope of the event set or the context
is assumed. For instance, if the RPS manages a network
centrally then the event set would contain events from the
whole network and the context would provide information
about the whole network. In contrast in a distributed system,
the events and the context would be from a single NE.

The reasoning of the RPS at run-time is performed in three
steps as shown in Figure 1:

1)  The Action Proposal (AP) evaluates the stochastic
ECA rules in order to determine applicable actions
for the events in the event set.

2) The Conflict Detection (CD) analyzes the set of
applicable actions for conflicts.

3)  The Action Selection (AS) resolves each conflict by
selecting the most rational action, i.e., the one with
the highest Value, to be executed.

A. Action Proposal

The AP determines the set of applicable actions for the
events in the event set in the given context. Thereby, it does
not consider the uncertainty in the event set, i.e., it neglects
the event Probabilities. The reasoning is based on a set of
stochastic ECA policy rules which have the form:

ON event IF condition THEN action WITH effectiveness

In this policy, event refers to an event which triggers the
policy rule, condition is a logical expression over the context,
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and action is the action which should be triggered if the
event is raised and the condition is true. Besides these classic
components of ECA rules, stochastic ECA rules also have
an effectiveness: it refers to the probability that the action
resolves the problem indicated by event under the condition,
i.e., P(action is effective|event, condition). For instance, the
following ECA policy states that if the software of an NE
crashed and the software is outdated then a software update
resolves the problem with probability of 0.7:

ON software crash
IF installed software version < current software version
THEN update software WITH 0.7

Besides determining the applicable actions, AP creates two
mappings: the action-event mapping encodes the events treated
by an applicable action and the action-effectiveness mapping
encodes the Effectiveness of an applicable action for an event.

B. Conflict Detection

The CD is responsible for analyzing the applicable actions
for potential conflicts (cf. Section II). Policy conflict detection
is a complex task and an active research community developed
numerous approaches [5], [8], [9]. The RPS is not dependent
on a specific policy conflict detection approach. However, the
CD is required to produce a set of conflict sets, i.c., sets
containing actions that are in conflict with each other, from
the set of applicable actions.

C. Action Selection

For each conflict set, the AS decides which action is the
most rational one to be executed given the operational context.
As depicted in Figure I, the AS relies on the operator’s
objectives that are encoded as a Cost and a Utility function.

The Cost function defines a Cost for all possible actions
given a specific context. Thereby, the lower the Cost of an
action in a context, the more preferred it is. In this way, it is
possible to define, e.g., that a maintenance restart of an NE
is more preferred at night than during the day. Consequently,
the Utility function determines a Utility for all events in a
specific operational context. However, in contrast to the Costs,
the handling of an event is more preferred if its Utility is high.

The AS is a process that iterates over all conflict sets. In
the first step, the Values of all actions in a conflict set are
computed. Thereby, a greedy approach is taken, i.e., only the
immediate Utilities that an action produces are considered.
Although it is not necessarily globally optimal, it provides
good results with a reasonable computational complexity. The
Value V' of an action is the difference of the expected Utility
of the action Ueyp, and the action’s Cost C:

V = Uggp — C )]

The expected Utility of an action is the sum of the expected
Utilities of each possible action outcome, i.e., the possibly
present problems that the event set indicates and that the action
can handle. Furthermore, the expected Utility of a possible
action outcome is the sum of the Utilities of the treated events
weighted with the probability of that outcome. Since we as-
sume that the issues of multiple events can be actually present,
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it would be necessary to consider each possible combination
of treated events as an outcome. However, by assuming that
the combined Utility of an outcome is the sum of the Utilities
of the actually treated issues, the calculation of the expected
Utility can be simplified: the expected Utility of an action is
the sum of the expected Ultilities for each single event that the
action treats. That is, the expected Utility Uy, of an action
is the sum of the Utilities U of the treated events £ weighted
with the event Probability P and the action Effectiveness Peg:

Uesp = Y Pe Pe - Ue )
eckE

In the second step, the AS selects the most rational action
from the conflict set to be executed. According to decision
theory, the most rational action is the one with the highest
Value. Thereby, if no action would be performed then the Value
of of this decision is 0 since this imaginary action has no Cost
and produces no Ultility because it treats no event. Hence, the
AS picks the action with the highest positive Value or no action
if all actions have a negative Value. After the execution of these
steps for all conflict sets, the AS returns the set of rational
actions which should be executed in the network.

IV. PoLicy CREATION

In order to use the RPS, the two models of the policy have
to be created. In order to design the stochastic ECA policy
rules, the operators can use ordinary ECA policy rules that
might be already present in the NMS as a starting point. First,
these rules need to be revised. Especially the rules and con-
ditions that are the result of a reasoning about the operational
objectives need to be removed. Second, the Effectiveness needs
to be determined. This can be quite costly since operators are
not familiar with the specification of probabilities. However,
it is possible to start with an initial estimation, e.g., all rules
have an Effectiveness of 1, and later refine it.

The elicitation of the operator’s preferences in form of
Utility and Cost functions is not trivial [3]. Usually, they are, if
at all, vaguely communicated. Therefore, a practical approach
is to set the Utilities of the events initially to an equally high
value whereas the Costs for the actions are equally low. In
this way, the system reacts to an event set with the action that
is most likely to handle the events without any preferences.
Later, when the operator develops some experience with the
system’s operation, the Costs and Utilities can be adapted in
order to be closer to their true values.

V. CASE STUDY

In order to illustrate the RPS concept, this section presents
an application scenario that is inspired by [4]. It describes
a simplified failure recovery system for a 3rd Generation
Partnership Project (3GPP) Long Term Evolution (LTE) mobile
network. Figure 2 depicts the policy rules, Utilities, and Costs
of this scenario. The events are indicating problems, which
have been diagnosed by probes in the network and the policy
set describes which actions possibly mitigate or resolve a
problem. Furthermore, the Utilities refer to the severity of the
failures and the Costs represent the costs and impacts of the
actions on normal network operation. For instance, the policy
ON txp problem IF context(time=night) THEN restart ne
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Figure 2. The policy, the event sets, and Values for Case A and Case B of
the application scenario (following [4]).

WITH 0.5 states that the restart of an NE might help with an
Effectiveness of 0.5 if a txp problem, i.e., a problem with the
transmission power, has been diagnosed at night.

Especially in complex scenarios, the RPS can produce
subtle behavior, as can be seen in the two example cases,
Case A and Case B, in Figure 2. Case A shows a high
probability that a broken NE is present. Although this problem
can solely be recovered with a trouble ticket, the RPS decides
to try a restart of the NE first since the trouble ticket is much
less preferred than a restart. Case B depicts another situation
which is characterized by low probabilities for all root causes.
In this case, the RPS suggests to perform no action at all since
all actions have negative Values. However, at a later point in
time, e.g., at night, this might change.

VI. RELATED WORK

Introducing uncertainty into rule-based systems is not a
new idea: for instance, FuzzyCLIPS [10] allows to assign
certainty factors to both facts and rules. However, these ap-
proaches have no notion of Value.

Baliosian et al. [9] and Bahati and Bauer [11] presented
policy systems which resolve policy conflicts at run-time
based on the effectiveness of the applicable actions. This
effectiveness is related to the Effectiveness of the stochastic
actions in this paper, and even extends it with machine learn-
ing. However, their shortcoming is that they neither consider
uncertainty in the events nor complex operational objectives.

There are also approaches which introduce the considera-
tion of operational objectives into policy systems. For instance,
Aib and Boutaba [12] presented a system which relies on a
complex, mathematical queuing model in order to simulate the

effects of an action and calculate its Value. Unfortunately, such
a model is hard to develop for real networks. ACCENT [6],
however, is based on an model that explicitly expresses the
effects of the actions. This approach seems to be ecasier
to implement since the effects are known to the operators.
Nevertheless, both systems do not consider uncertainty in
either the events or the results of the actions.

VII. CONCLUSION

Traditional NM approaches are challenged by the increas-
ing pressure for automation. The presented RPS combines an
ECA policy system with a UF-based conflict resolution in
order to face these challenges. In this way, it can handle the
uncertainty in the environment and, at the same time, performs
autonomous decision making guided by operational objectives.

The elicitation of the UFs is a huge burden and, so, more
research is required on the modeling and verification of the
Costs and Utilities especially for complex, multidimensional
preference systems. Furthermore, it is promising to extend the
RPS with machine learning to estimates the Effectiveness of
the stochastic actions autonomously and extend the context to
include uncertain information as well.
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