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Abstract—An efficiency improvement advisor agent acts as
a consultation service for a self-organizing multi-agent system
that improves operational efficiency. It identifies recurrent
tasks in past problems that allow the creation of so-called
exception rules for individual agents to limit future inefficient
behavior. There exists the danger that introduced rules could
possibly infringe on the flexibility and therefore reliability
of the system. In this paper, we present a dependable risk-
aware efficiency improvement advisor that uses Monte Carlo
simulation techniques in strategic analysis assessing the long-
term potential and risks of prospective rules. Our experimental
evaluation, for the domain of dynamic pickup and delivery
problems, shows that the result is a minimal, yet effective, set
of risk-averse exception rules. These rules can be provided
to individual agents to reliably achieve an overall long-term
improvement in efficiency while maintaining flexibility.

Keywords-risk management; control; dependability; self-
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I. INTRODUCTION

Operational efficiency in self-organizing emergent sys-
tems [25] is usually a secondary concern. System archi-
tects are primarily concerned with developing distributed
systems exhibiting the desirable properties of scalability,
flexibility, adaptability, and dependability. This focus is
justified since many application areas represent dynamic
problems that require these attributes. Furthermore, for some
situations, achieving optimal operational efficiency is simply
not possible without perfect prediction of future events.
Despite this, the deployment of self-organizing emergent
systems, requiring significant fiscal or resource investment,
necessitates the consideration of operational efficiency (e.g.
agents required, solution costs, ...). Introducing operational
efficiency generally requires a trade-off between maintaining
the purity of the primarily local self-organizing system
properties and introducing modifications that address the
unavoidably global concern of efficiency.

In [26], we described a concept that improves the opera-
tional efficiency of self-organizing emergent systems while
almost completely preserving their earlier described benefi-
cial properties. This concept is called an efficiency improve-
ment advisor (EIA). The EIA agent acts as a consultant,
analyzing collected agent histories offline from the base
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system’s operation and only communicating with the agents
when they are otherwise unoccupied and/or in range, for
example after returning to a central depot at the end of the
day. The EIA uses data mining techniques to independently
identify previously completed recurring tasks in the collected
history of the system’s execution. A nearly optimal solution
is determined for this subset of recurring tasks using con-
ventional optimization techniques. From this solution the
EIA derives advice in the form of minimalistic exception
rules focused on limiting future inefficiencies related to
these recurring tasks. In this manner, a slight trade-off is
admittedly made between the base system’s flexibility in
return for a substantial improvement to efficiency.

The initial form of exception rules (i.e. the type of advice),
presented in [26], were termed ignore rules, which suggest
to an agent that it should ignore a particular task. Ignore
rules act as a minor influence on agent behavior, as demon-
strated in [13], where they showed low potential for exterior
abuse (i.e. reduced performance due to inflexibility). On the
other hand, [16] calls attention to unaddressed operational
inefficiencies in self-organizing systems where ignore rules
were ineffective. To address this, in [27], the concept of pro-
active rules, that suggest to an agent to start working on the
first step of an expected forthcoming recurring task after
the occurrence of a trigger, was introduced. Results demon-
strated that these pro-active rules successfully improved
efficiency when ignore rules were ineffective, but were
easier to exploit as they represent a more invasive influence
on flexibility. The results in [27], using the automated testing
method introduced in [13], exposed the danger that the
good-intentioned but short-sighted application of rules by
the original EIA can negatively impact the dependability of
the system.

In this paper, we introduce the concept of a dependable
risk-aware efficiency improvement advisor (RA-EIA) capa-
ble of applying strategic analysis when assessing prospective
advice (i.e. exception rules). The goal of this analysis is
to determine if, in the long-term, prospective rules are
risk-averse with respect to the system’s history and future
expectations. Risk-averse rules provide gains by limiting
inefficiencies related to completing the recurring tasks. At



the same time, risk-averse rules avoid the potential of long-
term losses resulting from introduced inflexibilities that are
exploited by the dynamic nature of non-recurring tasks.

Through long-term risk assessment, a single consultation
increases the period of time for which the advised system
can dependably operate. By screening the multitude of
prospective rules for those that are the least risky, yet still
effective, the RA-EIA minimizes the quantity of advice
and is capable of better maintaining the base system’s
flexibility. The RA-EIA provides a limited-in-quantity, yet
comprehensive, set of long-term beneficial risk-averse rules
so that the underlying system is capable of extended periods
of reliable independent online operation.

Similar to previous work in [26], [13], and [27], we use
pickup and delivery problems (PDP) [23] as the application
domain for the experimental evaluation of this concept.
Our results show that the RA-EIA, by taking advantage of
the time available through independent offline execution,
is able to provide minimal risk-averse advice achieving
improved performance compared to the original EIA. The
results confirm that, although it is not possible to avoid
all inefficiencics due to the unpredictable and dynamic
nature of the problem, in general risks can be minimized
such that the overall gains are significantly positive. The
complete RA-EIA assisted system represents a solution that
gains the improved efficiency provided by the EIA concept
while dependably ensuring minimal long-term impact to the
flexibility of the base self-organizing emergent system.

II. RELATED WORK

In regard to related work, we are primarily concerned
with the distribution of system control and how to achieve
reliable operational efficiency. There exists a spectrum when
considering the distribution of control. At one end ex-
ists centrally controlled systems that continuously observe
system state and guide individual behavior, such as [10].
With central control, operational efficiency is the easiest to
attain, especially given a static problem, as there can be
complete knowledge of the system. However, central control
is not always feasible. For example, when the problem is
dynamic, and messaging has to be kept to a minimum,
distributed control represents a well-suited alternative [3].
At the distributed end of the spectrum, each component
acts with limited local knowledge, and operational efficiency
cannot be guaranteed to emerge from system behavior.

The unpredictability found in many distributed systems
prevents them from being widely adopted in industry [21].
When attempting to achieve coherency in a distributed sys-
tem, inherent difficulties exist in accommodating the effect
of local decisions on global operational efficiency [2]. The
more dynamic the problem, and the higher the requirement is
for short system response times, the more desirable a flexible
distributed self-organizing solution becomes.
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Control theory represents the most developed centralized
approach to achieving operational efficiency in which nu-
merous approaches attempt to learn from past behavior to
predict the future. For example, Model Predictive Control
(MPC) [4] attempts to use a stochastic linear model created
from the system’s history to derive a control action. Limited
lookahead control (LLC), based on a fixed stochastic model,
is used in [1] to optimize the forecast behavior of the system.
Contrary to our purposes, these stochastic models are static,
and the controller completely controls the system removing
all flexibility. Additionally, linear models for self-organizing
emergent systems are generally not available. In general, the
majority of traditional control theory approaches represent
a lightly coupled and functional relationship between the
controller and the base system leaving little flexibility.

There are a number of top-down self-managing ap-
proaches in which control theory methods are applied to
manage system behavior. The observer/controller (O/C) from
Organic Computing [22] requires observation and control of
the underlying system at all times. Similarly, the multi-agent
system management-by-exception approach [24] involves a
high-level agent taking total control over other agents. In
Autonomic Computing [14], an autonomic manager acts as
a central control, monitoring sensors and adjusting effectors.
Autonomic Communication’s autonomic control loop [7]
is essentially an abstraction of autonomic managers. The
Autonomic Computing paradigm does allow for planning
and the Autonomic Communication method for risk anal-
ysis in the control loop, but neither makes the important
distinction that the underlying system remains completely
independent during online execution.

There also exist completely bottom-up self-organized dis-
tributed approaches to managing system behavior. Some-
times these systems are known as Decentralized Autonomic
Computing (DAC) systems. The ant colony path optimiza-
tion technique [8] may be used to find good solutions for
PDP but it is not designed to actively solve a dynamic
PDP problem as it is announced over a period of time. Nu-
merous design patterns have been created based on natural
paradigms to design self-organizing emergent systems. The
base system used in the experimental evaluation of this paper
is one example of such a system and is described in [15].
In completely distributed systems, the ability to centrally
enforce operational efficiency is generally sacrificed for
more scalable and flexible distribution of control.

Hybrid solutions, such as the EIA concept, exist to com-
bine the beneficial properties of self-organizing distributed
systems with those of self-adapting centralized systems.
The distributed hybrid approach presented in [28] includes
both top-down exogenous self-management through self-
healing central control as well as a bottom-up endogenous
sclf-management through self-adaptation of organizations.
Hybrid multi-agent systems for PDP are generally based on
predefined stochastic models [17] which either completely



control the system or do not incorporate learning from the
past, such as [19]. The EIA method of exception rules,
and even more-so the risk-aware RA-EIA, is intentionally
designed to learn from the past to predict the future and
avoid central control as it infringes on flexibility.

The complexity of systems and availability of monitored
data have motivated the application of machine learning and
other statistical techniques to system design. In [6], statisti-
cal approaches are applied to characterize performance prob-
lems in middle-ware-based systems. Monte Carlo methods
and simulation are used in many fields such as well drilling
[5], project scheduling [18], and finance [9] to assess risk.
Monte Carlo simulation is a process that uses the random
variables associated with components of a problem to gen-
erate probable future problem instances. The performance
of the system, over probable future instances, is sampled
to form a statistical distribution, the properties of which
are used to assess the system. Monte Carlo simulation is
commonly used to quantify risk where there is the possibility
of long-term costly consequences to decisions.

The RA-EIA combines statistical Monte Carlo methods
with the EIA’s limited machine learning to prepare for the
future. This is an examination of the variability of risk
associated with the ruleset. The exploration of the extent of
the severity of risk associated with rules is currently being
explored, but is not included in this paper. The RA-EIA
operates offline from the base system and thus is unable
to influence the system during active operation. However,
unlike online approaches, the RA-EIA is able to utilize the
computational intensive method of Monte Carlo simulation.
This allows more global assessment of risk during the
consideration of the collected histories. The rules provided
after consultation advise the system so that it can reliably
achieve independent long-term operational efficiency. More-
over, because the EIA control loop is decoupled with regard
to execution time, scalability remains largely independent
and the majority of flexibility is maintained.

III. BASIC DEFINITIONS

A multi-agent system (MAS) is a set of agents A =
{Ag1,Aqga, ..., Ag,} that arc acting in a shared environ-
ment FEnv. The class of problems we are interested in
solving consists of a selection of tasks from a set 7' that
are announced in Env during a time interval T%me. This
announcement is generally not simultaneous, resulting in a
dynamic task fulfillment problem.

We will call this sequence of announced tasks a run
instance, which may be defined as a sequence of task-
time pairs 7i ((tay,t1), (taz,t2), ..., (tam,ty)) with
ta; € T,t; € Time, and t; < t;41. Typically, a problem
consists of a sequence of run instances. A sequence of
run instances of length k is then (riy, ria, ..., 7i). Within
this sequence, nearly similar tasks may occur in multiple
individual run instances.
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A solution sol for a run instance compiled from the emer-
gent responses of a self-organizing multi-agent system A is
then sol = (asi,ass,...,asy) where as; = (lal, Ag., L))
with ta; € {ta,...tam},ta; # taj for all i # j,
Ag; € Aty < i, t; € Time. A tuple (ta}, Ag,t})
means task ta) was started by agent Ag] at time ¢]. In this
paper, fulfilling at task requires at least two actions to be
taken by agent Ag,. We identify the first (or preparation)
action of a task ta by prep(ta).

In order to address the efficiency of a multi-agent system
A, when solving a run instance, it is necessary to associate
with each solution sol a quality measure qual(sol). The
nearer the solution of A to the optimal quality, the more
efficient A is. Quality measures are naturally dependent on
both the multi-agent system A and the application area.
Additionally, multiple quality measures often exist for a
chosen system and application arca. For dynamic problems,
where the complete problem is not apparent at one time, it is
generally not possible for A to produce the optimal solution
unless the static variant of the problem is trivial.

IV. EFFICIENCY IMPROVEMENT ADVISOR

The EIA is an additional consultation agent Aggy4 that is
added to A. Note that the original system is not dependent
on the EIA during online operation. Outside of limited
communication with agents, when they return to a central
depot, the actions of the Agg;a occur offline from system
execution. Several requirements that must be met to use the
EIA are described below.

1) The agents in A require both the opportunity and ca-

pability to transmit their local histories to the Agg;a.
The problem must contain recurring tasks, allowing
the Agpra a limited opportunity to "predict”" the
future.
Since the derivation of advice takes place offline,
possibly over a period of several run instances, the
set of recurring tasks must remain stable long enough
that advice remains valid when communicated.

4) The agents in A are modifiable by exception rules.

The actions of the EIA are depicted in the functional
architecture of an EIA, Figure 1, and described below:

1) receive(Ag;, H;): collects the local history H; of agent
Ag; when it is non-disruptive to communicate.
transform(H, ..., H,) = GHist: creates the global
history GHist from the collected local histories of
A. Essentially, GHist consists of a sequence of run
instances (riy,Ti2,...,7i5) A has solved so far and
A’s emergent solution sol,,4 for each run instance.
extract(G Hist) = ri"®“, NR: data mines from this
history a common set of recurring tasks r¢"¢¢ and dis-
joint set N R containing the remaining non-recurring
tasks.
optimize(ri"*“) = sol;of: computes the optimal so-
lution solgp7 to the sequence of recurring tasks. This

2)

3)

2)

4)
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Figure 1. Efficiency Improvement Advisor

optimal solution to the recurring sct of tasks solgyf is
compared with A’s emergent solution to the recurring

set of tasks solgfrfg. If % < qualipresholds
then no rules need to be derived and the work of
Aggra is complete.
derive(solyo7, solre ri"¢, N R) rules: creates
for each agent Ag; a set R; of exception rules, if
applicable, where R; can also be empty.

send(Ag;, R;): communicates the set I?; of exception
rules to the agent Ag;, the next time communication

with Ag; is non-disruptive.

5)

6)

These actions are abstractions and obviously the concrete
realizations of them will be application dependent. The
details of the EIA are discussed in [26] along with an
implementation for PDP. The remaining discussion will
primarily be focused on the important aspects of each action.

The actions receive, send, and transform operate as
previously described. The global history is important to the
operation of the EIA and will be even more important for
the risk-aware RA-EIA. The global history represents the
only reliable source of global context that the Agpra has
on which to base long-term risk-aware rule decisions. It is
important to note that the Aggy 4 is only ever aware of tasks
that have been previously observed by agents. Unobserved,
resultantly uncompleted tasks, will not be captured in the
global history and furthermore not appear in the sequence
of run instances produced by transform.

Determining recurring tasks can be completed in many
ways. An important requirement in many applications is that
"recurring” is considered within a fuzzy definition. That is,
variations of a task between run instances of a sequence
should be allowed, within a certain similarity measure of a
general abstraction. This is possible through an application
dependent similarity measure sém and having a threshold
value minocc for how often the abstract task has to occur
to be recurring. Using a limited period k& allows for the
recurring tasks to change. In [26], as in this paper, the
extract action determines the recurring set of tasks by data
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mining the last k run instances with a clustering algorithm,
precisely, Sequential Leader Clustering [12]. The clustering
algorithm also provides, for each task, an identifier that can
be used by exception rules.

The action optimize should generally have little influence
on the derivation of reliable risk-aware advice. Nevertheless,
the accuracy of the determination of the optimal solution
to the recurring set of tasks must be considered. Unfor-
tunately, the determination of the optimum for even the
static variant of many interesting (computationally hard)
problems is infeasible, as was the case in [26]. Therefore,
algorithms that approximate the solution, such as genetic
algorithms, simulated annealing, or tabu search are required.
A cache of solutions, obtained for run instances, can be
maintained for a single execution of the system, but between
separate executions the determined optimums can and will
be different. This, at times, can make the deterministic
repetition of a specific EIA experimental result challenging.

For this paper, we are concerned primarily with the
derive action. This action encompasses the determination
of exception rules for individual agents. We will discuss the
original EIA’s variant of this action in the following Section
IV-A and its weaknesses in Section IV-B.

A. EIA Exception Rule Derivation

The original derive action works as follows. The
EIA contains a set of rule derivators, each associated
with a rule variant. A rule derivator rd creates rules,
rd(solyst, soliss,, x) = rules, by comparing the optimal
solution solypf with the computed emergent solution sol¢i%,
for the recurring tasks. A rule derivator returns rules that
attempt to address a single deviation between the emergent
and optimal solution, that is a single location j with either
ta?’m5 # tai™ or Ag}” b4 Ag§™7. The variable x tells the
rule derivator to returns rules for the z*" (first, second, third,
...) of these locations. This allows a rule derivator to search
for rules to address a later deviation even if no rules could
be found to fix the previous deviation. If there exists no z*"
location, then an empty set is returned.

The EIA’s rule derivators are ordered by priority. The
derive action queries each derivator for the first difference in
order of their priority. The EIA tries to improve the emergent
solution using the rules from the first derivator. If there is no
change in the emergent solution, then it removes them and
trics the next derivator. So far there have been two types of
rules, and corresponding rule derivators, developed.

The first is an ignore exception rule, described in [26],
that instructs the agent not to perform a particular abstract
task (defined within variability allowed by sim), for at least
a period of time. The hope is that, due to such a detraction,
another agent will perform this particular task. This results
in a more efficient emergent solution, at least for the set
of recurring tasks. More precisely, an ignore rule is created

for an agent from the emergent solution Ag;™? instructing



it to ignore a task ta;m’g it originally completed, hopefully

making the optimal agent perform it.

In contrast pro-active exception rules, described in [27],
influence an agent to begin work on a particular abstract
task (defined within variability allowed by sim), before this
task usually appears. The purpose of this variant is two-
fold. First, the agent will be able to complete preparation
for the specified task before it appears, resulting in quicker
satisfaction of the task’s requirements. Second, an agent
occupied with a pro-active rule will not be distracted by
other tasks, hopefully leaving them for more suitable agents.
Pro-active rules are also designed to create a more efficient
emergent solution, at least for the set of recurring tasks.
More precisely, a pro-active rule is created for the optimal
agent Ag;.’p ¢ instructing it to perform the preparation for an
optimal task prep(ta;” ") on the occurrence of a trigger.

There are two general categories for triggering pro-active
rules: task-triggered pro-active rules that are triggered by
the occurrence of the task the specific agent should have
completed before the indicated task in the optimal solution,
and time-triggered pro-active rules that are triggered by a
specific execution time. A timeout is included, for the rule
being active, to avoid having the agent being blocked if a
task never appears.

B. EIA Weaknesses

There are some important weaknesses to the original ETA
concept that cannot be ignored, especially when considering
the reliability of the system.

The EIA is rather short-sighted, creating rules one at a
time and using the measured response of the system to judge
if the rule was actually a good idea or not. If a rule is not
successful, then it is deleted and a new rule is attempted.
Altogether, this means the EIA takes a long time to change
the system’s behavior and is reliant on interaction after each
run instance to do so. This, although less intrusive than
central control methods, still infringes on the independence
of the underlying system and has the possibility that a badly
advised rule will cause decreased performance until it can
be deleted on the next interaction.

The EIA will continue to advise rules as long as there
remains a difference between the underlying system’s emer-
gent solution and the optimal solution to the recurring set of
tasks. The EIA works under the naive assumption that the
rules it generates will, at least eventually, have a positive
impact on improving the system’s performance. When there
is the guarantee that all the tasks are recurring and will
remain the same this assumption is generally true, as the
EIA’s advice simply forces the underlying system solution
to be strictly the optimal response. Unfortunately, in the
majority of application areas, the recurring tasks will change
over time and there will be some non-trivial amount of
non-recurring tasks that rules will impact. Resultantly, the
EIA can eventually produce a large set of rules. Many of

these may be largely ineffective and represent an irrefutably
dangerous infringement on the base system’s flexibility.

Overall, if the derivation of exception rules is inadequate,
short-sighted, and/or restrictive, then the risk exists that
the overall performance of the system will be decreased.
Experimental results in [27] demonstrated both the high po-
tential and corresponding risk that exception rules represent.
Therefore, it is desirable that (1) the risks associated with
rules are assessed before communication to agents, (2) the
frequency of interaction is decreased, and (3) a minimal
comprehensive set of rules is provided. It is undesirable,
in fact contrary to the EIA’s purpose, that efficiency and
flexibility are negatively impacted.

V. RISK-AWARE EFFICIENCY IMPROVEMENT ADVISOR

A risk-aware efficiency improvement advisor (RA-EIA),
is an enhancement of the existing EIA concept. The orig-
inal EIA concept is already capable of collecting local
histories to form a global history from which it is able
to determine and communicate exception rules designed to
improve the system’s response to recurring tasks. However,
this derivation is undertaken in a naive and short-termed
manner. The RA-EIA replaces the derive action of the
original EIA concept with its own derivega_p;4 action
which uses Monte Carlo simulation to assess the overall
long-term impact of a minimum set of effective rules before
communication.

To accomplish this there are two requirements:

1) The RA-EIA must be capable of determining some
form of statistical distribution of the expectation of
future events, which enables the use of Monte Carlo
simulation.

2) It must be possible to simulate, or at least predict, the
performance of the system when encountering one of
these future problem instances.

The actions that form the derivegra_pgra action are de-
scribed below:

o generate(ri", NR) = ri9°": creates a run instance
ri9¢™ that is likely to occur in the future using the
recurring run instance r¢"°¢ and the set of non-recurring
tasks NV R extracted from the global history.

o assess(ri"®“, NR, rules) = T: uses Monte Carlo simu-
lation and determines a sample mean 7 for the statistical
distribution of the simulated future performance for
the given ruleset rules compared to the base systems
default performance.

o derivepapra(solynf, solie  ri"¢, NR) = rules:

creates for each agent Ag; a set R; of exception rules,

where R; can also be empty.

These actions are abstractions and obviously the concrete
realizations of them will be application dependent.

The generate action creates a possible future run instance.
Its size is chosen from the distribution of recent sizes seen



in the last £ run instances of the global history. The new
run instance r¢9°" begins as the existing set of recurring
tasks ri"¢¢, and additional task-lime pairs are added {rom
the set of non-recurring task-time pairs N R. These pairs
are chosen so that they are not duplicates of those already
in the generated run instance.

The assess action performs Monte Carlo simulation using
the generate action to create possible future run instances.
These run instances are generated until a statistically ac-
ceptable amount n,., has been created such that the sample
mean T is acceptable or a maximum 7,4, is reached. After
a minimum count n,,;, i passed, this acceptable sample
size is determined using the equation

2 2
Zn ' 0g
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where 2, is the z-score associate with the chosen confidence
level o (95% for this paper), og is an estimated sample
variance (range(S)/4 for this paper), and ¢ is the absolute
error that we desired to estimate the mean within (1% for
this paper). Details for the statistical methods are available
at [20].

To form a sample, each generated run instance is simu-
lated and evaluated for a measurement:

qual(SOlgrc;?g,rules) B qual(SOZS'ZZLdefau”)
o 2
qual(sold i)

This measurement compares the quality of the system’s
solution with the ruleset qual(sol," . ) to the qual-
ity of the solution of the system without any rules
qual(sold " . ra.,)- This measurement is normalized by
the optimal qual(sol3;;'). If a measurement is negative, then
the ruleset improved the system’s solution compared to the
default base system. If the final sample mean Z is negative,
then we know that the ruleset rules, on average, represents
an improvement compared to the base system (with a certain
confidence within a given absolute error).

The RA-EIA contains a set of rule derivators, each
associated with a rule variant. The derivegr4_pgra action
consists of a loop that continues until, either the derivators
no longer provide unique prospective rules, or the time given
for deriving rules expires. The loop begins with an empty
set of accumulated rules rules,cc, a set of rules currently
advised ruleseyist, and with the rule derivators considering
the first difference (x = 1) between the existing emergent
solution and the optimal solution to the recurring set of tasks.

For each set of prospective rules rules;, returned by a
derivator rd;, a sample mean 7; is assessed. This mean is as-
sessed using the assess action for the ruleset rulesezist ace,i
which consists of the currently advised, the accumulated,
and the prospective rules. Additionally the sample mean T g
is assessed for only the accumulated set of rules using the
assess action for the ruleset rulescyist,ace consisting of the
currently advised and the accumulated rules.
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If one of the prospective rulesets produces a negative
sample mean, then the prospective rules rules,,;, associated
with the most negative sample mean 7,,;,, arc examined.
If one of the rule derivators created prospective rules that
improve on the accumulated set of rules (i.e. Trmin < Tace)»
then the associated rules rules,,;, are added to the accumu-
lated set rulesq... The emergent solution of the system to
the last run instance encountered solgt. is simulated again,
and the rule derivators are reset to look at the first difference
x = 1. Otherwise, none of the prospective rulesets provided
a further improvement, so the rule derivators are incremented
to look at the next difference z = = + 1.

The RA-EIA assesses the long-term overall risk (i.e.
the statistical distribution of performance) of prospective
rulesets. The ultimate result of the deriver 4_ g4 action is a
quality set of accumulated rules that has been determined to
provide on average the greatest performance increase relative
to the default base system. Quality rules are well targeted
rules that increase performance potential with limited risk
of performance loss.

Prospective rules are created to address a single inef-
ficiency at a time, and only the most effective rules are
accumulated, thus limiting the quantity of communicated
rules. The larger the quantity of rules that exist, the higher
the likelihood that dynamic changes in the problem will
result in one of the rules producing performance loss. Rather
than providing a large set of rules that may provide complete
coverage for the recurring set of tasks, but no flexibility
for change, a minimal in quantity, yet targeted, set of rules
is advised. This allows the system to retain flexibility and
increases long-term reliability with respect to the dynamic
nature of the problem.

Together the deriver 4 g4, assess, and generate actions
replace the original derive action. These actions perform a
possibly significant amount of computation. However, this
computation is done offline from the underlying system’s
execution, and the advice it provides from a single con-
sultation is designed to be sufficient for a long period of
time. The desire is that the RA-EIA acts as a consultation
service for the underlying system, which only needs to be
periodically queried for a reliable improvement in overall
performance.

VI. INSTANTIATION FOR PDP

This section describes the instantiation of the risk-aware
efficiency improvement advisor (RA-EIA) for an application
domain. We will first introduce the application domain
of pickup and delivery problems (PDP) as an instance of
dynamic task fulfillment. The underlying advised system
solves the PDP problem online using digital infochemical
coordination (DIC) [15] as its basic decentralized coor-
dination model. Next, we describe the same instantiation
for the original efficiency improvement advisor (EIA) with
ignore rules from [26] and pro-active rules described in [27].



Finally, we address the additions required for a risk-aware
efficiency improvement advisor for this application domain.

A. Pickup and Delivery Problems

The general problem class of pickup and delivery prob-
lems (PDP) [23] is well known. Formally, a task ta of
a dynamic PDP consists of a pickup location lp;ckyp, a
delivery location lgejyery, and the needed (ransportation
capacity ncap. Each agent has a corresponding limit of
transportation capacity capg, which dictates the quantity
of tasks that can be undertaken at a time.

The majority of real-world PDP problems are in prac-
tice dynamic problems [11]. There are agents tasked with
moving goods from a pickup location to a delivery location.
Often, there is a certain subset of these tasks that occur
regularly allowing the opportunity for an EIA to improve
the operation of the system. Ignore exception rules advise
individual agents to ignore a task identifier, while pro-active
exception rules advise individual agents to begin the action
of moving to a pickup location in expectation of a task’s
appearance.

The measure of system operational efficiency (i.e. qual)
can be chosen from a number of possibilities. For this paper,
qual is defined as the sum of the total distance traveled by
all agents in the system during the given run instance. This
definition of qual is the same as in [13] and [27], which
allows us to use the testing approach they developed for the
experimental evaluations.

B. Using EIA for DIC for PDP

The underlying self-organizing system uses digital info-
chemical coordination (DIC) implemented within a simula-
tion tool. Decentralized coordination is achieved for agents
in A using digital infochemicals that are propagated through
Env. An agent Ag; accesses all the infochemicals at its
current location and bases its decisions purely on this local
view of the environment. An agent Ag; determines an action
by choosing the highest utility computed for task synomones
it perceives. The utility is influenced by the intensity of an
infochemical as well as by the agent’s current status (i.e.
current undertaken tasks and advised rules). When an Ag;
sclects a task it follows the infochemical gradient to find it.

Adding an EIA advisor to this base system is not very
difficult. By collecting each agent’s local history of info-
chemicals using receive, the EIA can compile the global
history (the past 20 run instances) using transform, and
extract the recurring set of tasks using extract. This ex-
traction uses a similarity measure sim where tasks occurring
at the same location and time are similar, with a threshold
value minocc = 70%, and the limited period k = 20. The
optimize action uses an or-tree-based search to make sure
that the genetic operators only create solutions that fulfill
the hard constraints of the PDP (this is the same method
used in [13] and [27]).
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The original instantiation of derive for PDP makes use
of the fact that the utility evaluation performed by an agent
is very similar to a rule-based system. Each infochemical
comes with a “rule” describing its contribution to the utility
of the task it was created for. For ignore rules, ignoring
a particular task can be achieved by setting its utility to
0. This also automatically achieves that the agent will go
after the next-best task. For this paper, we only consider
task-triggered pro-active rules. Such a rule is triggered by
a determined previous recurring task ta;r;g and directs an
agent to the pickup location for a target task ta;qq that the
EIA wants it to perform. The rule derivator priorities for the
EIA’s derive action first consider the ignore rule derivator
and then the pro-active rule derivator.

C. Using RA-EIA for PDP

The deriver 4_ g7 4 action uses the same two rule deriva-
tors, one for ignore rules and one for pro-active rules. To
determine the performance of the system in the assess action,
the RA-EIA translates the internal representation of a run in-
stance into a configuration and simulates the performance of
the system. For the assess action, performance is simulated
without any rules and with the rules under consideration. The
simulation of the new recurring emergent solution sol{;7. is
done with the accumulated set of rules rulesgqc.

VII. EXPERIMENTAL EVALUATION

To compare and contrast the new risk-aware RA-EIA
concept with the original EIA concept, we report the results
of several experiments. The first set of experiments uses
the exploratory testing method introduced in [13] and the
fitness functions from [27]. This exploratory testing method
will be described in the following Section VII-A. This test-
ing approach produces fitness function biased run instance
examples, examined in Section VII-B, by which the two
advisor variants may be differentiated. The second set of
experiments, in Section VII-C, is based on randomly created
run instances that provide an unbiased average performance
comparison.

A. Automated Testing of Self-Adaptive Systems

The task of exploring the possibilities associated with a
particular self-organizing emergent system is challenging.
Naturally, it is common to design such a system with
the assistance of tests created by developers interacting
with field experts. The difficulty is that such systems are
purposefully designed to be flexible and therefore capable
of solving any problem within their defined application,
including those not anticipated by the designers. Relying on
a system architect to anticipate and formulate a set of tests,
which can be trusted to fully explore both the risks and
potential of a self-organizing system, is asking a lot. [13]
presented an automated exploratory testing method based
on machine learning to discover such tests.



The general idea is evolutionary learning of event se-
quences that fulfill a user specified fitness function. This
fitness function quantifies the quality of behavior found
in the self-organizing emergent system. An initial set of
randomly created run instances (25 in our experimental
evaluation) are evolved over a number of generations (100
in our experiments). A run instance is evaluated by trans-
lating the genetic algorithm’s internal representation into a
configuration for the simulation tool, simulating the self-
organizing emergent system’s response and applying the
fitness function. In general, the fitness function compares
the quality of the emergent (actual) system’s solution be-
fore qual(soll/,) and after qual(sol]! ) the advisor has
adapted the system. This value is then normalized against
the quality of the optimal solution qual(sol,p:) to the run
instance. The manner in which this is done is specific to
each fitness function.

Evolutionary operators are applied to create subsequent
generations from the previous. The operators consist of:
single-point-mutation which changes either the task or time
of a single task-time pair in a parent run instance and
crossover choosing task-time pairs randomly from two par-
ent run instances to form a child. These parents are selected
using tournament selection, which is biased towards more
fit run instances.

In the first experimental set, we produced run instances
to compare and contrast the potential and risks of the RA-
EIA and EIA concept. Described below are the different
fitness functions (first seen in [27]) required for each type
of run instance desired. Note, all components of the fitness
functions (theo, pract, adapt) are limited to positive values
with negative values simply treated as 0.

Advisor’s Potential Fitness Function fit,,

5 theo + 500 - adapt™
opt

3)
where theo = qual(sollsf,) — qual(soloy) indicates how
much theoretical improvement is possible, adapt™
qual(solgﬁr{g) — qual(solg}!,) indicates how much improve-
ment the advisor achieved, and opt qual(s0lype) nor-
malizes the result by the optimal. By maximizing this
fitness measure we get individuals that show the potential
improvement offered by each advisor variant.

Advisor’s Risk Fitness Function fit,;sk

5-theo + 10 - pract 4 500 - adapt™
opt

@

where theo and opt are as above, pract = qual (sol‘;?{fg) —
qual(s0l,p) indicates how much improvement remained af-
ter adaptation, and adapt™ = qual(sol2]!)) — qual(sol%],)
indicates how much of a negative impact the advisor had.
By maximizing this fitness measure, we get individuals that

show the risks that exist with each advisor variant.
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B. Evaluating Potential and Risks

The experimental results in this section represent the
comparison of run instance examples produced by a biased
exploratory search. These run instances are designed (o
reveal the potential and risks of the tested system. The
environment for the agents was a 10 x 10 grid with the
depot in the middle. These experiments are based on 2 agents
encountering problems consisting of 4 recurring tasks. The
advised system is capable of higher complexitics then this
but the genetic algorithm exploratory search method must
simulate the advised system’s execution once for each
individual. Consequently, to perform multiple exploratory
test runs the complexity of the search space was limited.
However, the produced results are sufficient to expose the
differences and similarities between the two advisors.

We produced 5 experimental runs for each advisor with
each fitness function. The results reported in Table I compare
the potential and Table II the risks of the advised system. The
top 5 rows are produced by searching for results for the EIA
and then simulated after for the RA-EIA. The bottom 5 are
produced from the reverse application of this process. The
three columns Baseline, EIA, RA-EIA report the distance
traveled without advice, with EIA advice, and with RA-EIA
advice. Additionally, the number of rules created by each of
the EIA and RA-EIA is reported.

Table I reveals that there exists run instances where each
advisor has high potential for a large improvement in per-
formance. It also shows that, for each advisor, the opposing
variant is relatively as capable at improving performance.
This is expected since the same tools (exception rules) are
shared between the two variants. In the examples produced,
both advisors in fact change the system’s emergent solution
into the optimal through exception rule advice. The rule
columns show that the EIA generally requires more rules
to achieve the same result as the RA-EIA.

The EIA, by providing a more restrictive set of rules,
is able to gain a slightly better increase in performance
through unintentionally preventing partial agent responses
to tasks they do not complete. These partial responses are
emergent behaviors that are not anticipated in the qual
measure. The original EIA concept is able to prevent more
unanticipated behavior through a stricter set of rules at the
cost of flexibility. The results in the random experimental set
in Section VII-C will demonstrate that this slight advantage
disappears when non-recurring tasks are a factor. On the
other hand, the RA-EIA provides a limited set of effective
rules that improve the system performance to relatively the
same level.

Table II demonstrates the importance of the risk-aware na-
ture of the RA-EIA. The run instance examples for the EIA
show that it is more than capable of negatively impacting the
base system’s existing performance even when all the tasks
are recurring. In contrast, the testing method was unable



Table 1
RESULTS FOR EXPLORATION OF ADVISOR POTENTIAL

Test Total Distance Traveled Rules
Advisor  Series | Baseline EIA RA-EIA | EIA RA-EIA
1 61.36 21.31 21.31 5 4
2 97.78 30.38 33.21 5
EIA 3 71.15 21.56 24.14 6 4
4 76.91 25.56 28.38 5 4
5 104.95 30.97 44.28 4 2
1 91.40 32.97 35.80 5 4
2 82.91 31.90 33.90 5 4
RA-EIA 3 83.98 28.97 30.97 4 3
4 65.84 24.38 24.38 5 5
5 59.36 17.07 19.90 4 3
Table 11
RESULTS FOR EXPLORATION OF ADVISOR RISK
Test Total Distance Traveled Rules
Advisor  Series | Baseline EIA RA-EIA | EIA RA-EIA
1 33.31 49.90 33.31 5 0
2 33.46 50.43 33.46 3 0
EIA 3 43.80 TATT 43.80 4 0
4 44.63 68.43 44.63 1 0
5 29.56 56.18 27.56 3 1
1 46.63 17.07 41.80 6 1
2 64.38 52.63 55.56 5 1
RA-EIA 3 71.74 71.74 71.74 0 0
4 48.28 46.63 48.28 5 0
5 57.70 27.31 55.46 4 1

to produce a single example, given the limitation of only
recurring tasks, in which the RA-EIA reduced the system’s
performance. Resultantly, the RA-EIA examples exhibit no
bias towards any specific behavior.

The original EIA is short-sighted and naive by providing
rules, without assessing their potential or risk, until it can
force the system’s emergent solution into the optimal. This
means it is capable of unintentionally decreasing the sys-
tem’s efficiency. The new risk-aware RA-EIA first assesses
the long-term risks of rules it provides, eventually advising
an effective, yet risk-averse, set of rules. By providing
fewer rules the RA-EIA is sometimes unable to prevent
unanticipated emergent behaviors but generally provides the
same improvement. The risk-aware RA-EIA retains more
flexibility than the EIA and, through strategic risk analysis,
manages the dangers of non-recurring tasks.

C. Evaluating Random Instances

The experiments in this section address the evaluation of
average performance for the two advisor variants. Similar
to [27], we now consider run sequences that consist of both
recurring and non-recurring tasks. Table III and IV report
the average, min and max efficiency improvement of 50
advised randomly created run sequences compared to the
base system. Each run sequence consists of 30 run instances.
The different columns represent different numbers of tasks
per run instance. A column title x Ry N means that we have
x recurring tasks and y non-recurring tasks in each run
instance of the run sequences for that column. As in the
previous section, there are 2 agents on a 10 x 10 grid with
a depot in the middle. The (+/—) allows a quick relative
comparison between the EIA and RA-EIA values. In Table
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IIT, the advisor can expect future non-recurring tasks since
they are contained in the global history. In Table IV, non-
recurring tasks are completely random so the advisor has no
chance to anticipate the future beyond the recurring tasks.

In both experimental series, the EIA and RA-EIA show
that they are quite capable of improving the average base
system performance. Additionally, the RA-EIA is consis-
tently the better of the two (apart from the 4RON series)
at improving the average overall performance of the base
system’s response. This gain is primarily due to the RA-
EIA’s ability to avoid rules that result in the loss of per-
formance while providing rules that increase performance
and its ability to advise a complete set of rules alter a
single consultation rather than incrementally deriving them.
In fact, the risk-aware RA-EIA avoids any overall decrease
in performance over a run sequence. While for the original
EIA concept, almost every experimental series produced an
example of a run sequence where the overall performance
was decreased compared to without advice.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented the concept of a depend-
able risk-aware efficiency improvement advisor for sell-
organizing emergent systems. Through offline Monte Carlo
simulation, the long-term potential and risks of prospective
rules are assessed. Our experimental cvaluation, for the
domain of dynamic pickup and delivery problems, showed
that the result is a minimal, yet effective, set of risk-averse
exception rules. These rules can be provided to individual
agents so that the underlying system is capable of extended
periods of reliable independent online operation.

The experiments reveal, if the recurring tasks remain
stable, then the risk-aware advisor is capable of providing
a reliable overall improvement in performance. Currently,
the possibility of utilizing the exploratory testing method
internally by the RA-EIA to assess the severity of the
extent of risk represented by a prospective ruleset is being
examined. Another area of interest is determining how to
manage advice in order to achieve graceful degradation
if/when the advisor is removed. Another direction of future
work, as suggested in [16], will be examining the application
of the different types of exception rules to other coordination
methods.
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