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Abstract—Policy-based management is a flexible approach
for the management of networks as policies make context-
sensitive and automated decisions. For their effective de-
velopment it is desired to specify policies at a high level
of abstraction initially and to refine them until they are
represented in a machine-executable way. We present an
approach that uses models to specify event-condition-action
(ECA) policies at different abstraction layers and that uses
model transformations to refine them in an automated way. A
relational algebra is used to formally validate the models and
define the semantics of the refinement process. One benefit of
the approach is the automated policy refinement at runtime.
Changes at the high-level models are automatically reflected
in their low-level implementation through refinement. This
allows to manage a system at a high level of abstraction.
The approach is applied to the network management domain
and demonstrated with policies for physical cell identification
(PCI) in a mobile network. It can also be applied to other
domains and supports a flexible number of abstraction
layers.

Keywords-policy-based management; model-driven engi-
neering; network management

I. INTRODUCTION

Policies represent a promising technique for realizing
autonomic capabilities within managed objects as they
allow for a high level of automation and abstraction.
Policy-based management has gained attention in research
and industry as a management paradigm allowing ad-
ministrators to adapt the behavior of a system without
changing source code or considering technical details. A
system can continuously be adjusted to externally imposed
constraints by changing the determining policies [1]. A
well-known application domain is network management,
where policies are widely used for automating network
management processes. The usage of policy-based systems
for the management of mobile networks was recently
considered in [2]-[7].

The event-condition-action (ECA) model is a common
way to specify policies. ECA policies represent reaction
rules that specify the reactive behavior of a system. An
ECA policy correlates a set of events, a set of conditions,
and a set of actions to specify the reaction to a certain
situation. The conditions are evaluated on the occurrence
of an event and determine whether the policy is appli-
cable or not in that particular situation. The actions are
only executed if the conditions are met. Multiple policy
frameworks share this model like for example Ponder?2 [8].
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Policy-based management is a layered approach where
policies exist at different levels of abstraction. The number
of levels depends on the system to manage. For simple
systems it might be sufficient to have one or two levels
only, one with a business view and another one with a
technical view. For large systems in a complex domain
it is reasonable to introduce additional levels between the
business and the technical one in order to represent the
domain and the policies at intermediate levels of abstrac-
tion. A flexible number of abstraction levels is defined as
the Policy Continuum [2]. Put down to the bottom line,
policies are specified at each level in a domain-specific
terminology and refined from a business level down to a
technical level.

The different focus of the abstraction levels causes a
semantic gap as business policies are decoupled from
their technical implementation. The process of providing a
lower-level representation of a higher-level policy is called
policy refinement. During refinement the semantic gap
between the different abstraction levels must be overcome,
which is a non-trivial task. Refinement gets policies closer
to a machine-executable representation from which exe-
cutable code can be generated automatically as proposed
in [9]. Due to the semantic gap domain experts usually
perform policy refinement manually by passing policies
from one level down to the next one and re-writing
them with the means of the lower level. We present an
approach for the automated refinement of ECA policies. It
is based on different models at different abstraction layers
in order separale domain and policy aspects [rom each
other. Policies are specified at the highest layer initially
and iteratively refined to the lower layers until they are
represented in a machine-executable way. Automated re-
finement at runtime allows to control the system behavior
by changing the high-level models.

This paper is structured as follows. The refinement of
high-level policies is described in Section II. Section III
provides an example from a case study. Related work
is discussed in Section IV. The paper concludes with a
summary and future work in Section V.

II. POLICY REFINEMENT

We use different models at different abstraction layers in
order to specify policies as described in [10] and illustrated
in Figure 1. The domain model allows domain experts to
specify concepts of a domain or system. The policy model



allows policy experts to specify policies that are used to
manage the system. The linking model allows policy and
domain experts to specify links between the domain and
policy model in order to use the domain-specific concepts
within the policies. For each of them a metamodel exists
that defines the abstract syntax of the model. Two layers
¢ and 7 are shown exemplarily in Figure 1 with layer ¢
providing a higher level and layer j providing a lower level
of abstraction. Actually, the approach supports a flexible
number of layers. The lowest layer finally represents the
models such that executable policy code can be generated
from them.
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Figure 1. Policy refinement

Instead of refining high-level business policies manu-
ally, the refinement process is automated by specifying
the refinement once within the domain and then applying
this knowledge to the policies in that domain whereever
and whenever necessary. For this purpose, domain experts
specify in the mapping model how a higher-level repre-
sentation of the domain model is refined into a lower-
level one. This happens by establishing mappings between
the domain-specific entities from a higher to a lower
layer. Then, policy refinement rules are generated from
the mapping model in an automated way. Finally, refined
policies are generated in an automated way by applying
the refinement rules to the linking and policy model. This
happens in a top-down way across all layers, starting
with the policies at the highest layer until policies are
represented at the lowest layer with a technical point-
of-view. We developed a relational algebra to formally
define the models and the semantics of the refinement
process. The algebra is used to validate whether model
instances conform to the respective metamodel and to
prove that refined models are again valid instances of the
metamodels.

A. Mapping Model

Any relevant information about the domain refinement
is covered by the mapping model. Refinement of the do-
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main means mapping its representation from a higher layer
to a more detailled representation at lower layers in order
to successively extend domain knowledge. The possible
structural changes through refinement are expressed by
a set of mapping patterns. These patterns define how
the lower-level representation of entities is derived from
their higher-level representation. The available mapping
patterns are called identity, replacement, merge, split,
erasure, and appearance and are illustrated in Figure 2.

o The identity pattern leaves a higher-level entity un-
changed at the lower level, so e at the higher layer ¢
has exactly the same representation at the lower layer
7.

o The replacement pattern maps a higher-level entity
to a lower-level one. The entity e; at layer ¢ is
represented by the entity e, at layer j.

o The merge pattern maps multiple higher-level entities
to one lower-level entity. The entities e;, to e;, at
layer ¢ are represented by the entity eo at layer j.

« The split pattern maps a higher-level entity to one out
of some lower-level entities. The entity e; at layer ¢
is represented by one out of the entities es, to e,
at layer j. This pattern represents a choice between
different mapping options.

« It may be the case that a higher-level entity is no
more relevant at a lower level. For this purpose the
erasure pattern maps an entity e; at layer ¢ to no
entity at layer j, which means that entity does not
have a lower-level representation.

« The other way round it may be the case that an entity
ey at layer j does not have a representation at layer
¢ and does not depend on other entities. This case is
represented by the appearance pattern.

Identity Replacement Merge

undef
Split Erasure Appearance
Figure 2. Mapping patterns

A concrete refinement of the domain from a higher to a
lower layer is established by instantiating the refinement
patterns with the entities of the domain model. An in-
stantiated pattern is simply called mapping. The mapping
model specifies the mappings to refine the domain model
from a higher layer to a lower layer and represents the
basis for the refinement of policies in that domain.



B. Generation of Refinement Rules

The next step is the generation of refinement rules
from the mapping model. This step is performed once at
design time after the set of mappings has been specified
or modified. Due to the different semantics of events,
conditions, and actions, the impact of a mapping on a
policy depends from whether the entities of that mapping
appear in the event, conditon, or action part of the policy.
Therefore, a mapping results in different refinement rules
for the refinement of the event, condition, and action parts.
Refinement rules generated from the appearance pattern
are very useful as they automatically integrate information
into the policies at a lower layer that was not specified
at a higher layer. An example are additional parameters
that appear in a refined operation. The appearance pat-
tern allows to pass paricular values to these parameters
depending on the context of the higher-level operation.

Refinement rules describe a model-to-model (M2M)
transformation in a formal and language-independent way.
A refinement rule is the smallest unit of transformation and
transforms links between the domain and policy model
from a higher layer into a lower layer. It represents a
declarative rewrite rule whose left hand side (LHS) repre-
sents the input and right hand side (RHS) represents the
output of the transformation. The transformation extends
the linking model with the refined links. The refined links
refer to refined policies, which do not yet exist in the
policy model, thus the extension of the linking model also
implies an extension of the policy model. The extension
of the policy model needs not be specified explicitly as
it follows implicitly from the formal specification of the
models.

C. Generation of Refined Policies

Finally, refined policies are generated in an automated
way by applying the refinement rules to the linking and
policy model. This step is performed at design time and
runtime whenever a policy is added, modified, or deleted.
The execution semantics of the refinement process in an
operational point-of-view is illustrated by Algorithm 1.

« procedure REFINEMODEL()
In the beginning all layers of the linking and policy
model are deleted except for the highest layer. The
algorithm then iterates over the layers and in each
iteration refines the policies of the current layer into
policies at the subsequent lower layer as intermediate
result. It starts with the highest layer and stops after
the second lowest layer has been refined, resulting in
the policies at the lowest layer.

« procedure REFINELAYER (layer)
To refine a layer into the subsequent lower one, the
algorithm filters the rules and links of the current
layer and iterates over all pairs of them. The sequence
of iteration is arbitrary within a layer as any sequence
leads to the same result. This allows for a high
parallelization of the algorithm. If a match is found
for a rule and a link, the refined link is generated and
added to the subsequent lower layer.
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Algorithm 1 Generation of refined policies
procedure REFINEMODEL
for layer < minLayer + 1 to mazLayer do
DELETELAYER(layer)
end for
for layer < minLayer to maxLayer —1 do
REFINELAYER (layer)
end for
end procedure

procedure REFINELAYER(layer)
for rule « RULES(layer), link < LINKS(layer) do
if MATCH(rule, link) then
refinedLink < REFINELINK (rule, link)
ADD(layer + 1,refinedLink)
end if
end for
end procedure

procedure REFINELINK(rule, link)
refinedLinks < APPLY (rule,link)
if S1ZE(refinedLinks) =1 then
refinedLink < FIRST(refinedLinks)
else
refinedLink < DECIDE(refinedLinks)
end if
return refinedLink
end procedure

o procedure REFINELINK (rule, link)

To refine a link with a refinement rule, the algorithm
applies the rule to the link according to the LHS of
the rule and generates the refined link according to
the RHS of the rule. Refinement rules generated from
split mappings are non-deterministic and imply mul-
tiple possibilities for the refined link. They demand a
decision for one out of these possibilities. This feature
takes account of cases where a definite refinement is
not possible initially and allows to delay the decision
until the refinement is performed.

D. Code Generation

After refinement to the lowest layer the policies are rep-
resented in a machine-executable way. The domain model
then represents the concepts of the underlying system
components and the linking and policy model represents
policies to control those components. Executable code in
a policy language can now be generated from the models.
This applies to any language that is able to express ECA
policies as defined by the policy metamodel.

For this purpose, model transformations generate the
policy code in a fully automated way. This first involves
a model-to-model transformation, which transforms the
linking and policy model into an intermediate model-based
representation of the target language. Then, a model-to-
text transformation generates executable policy code in the
target language. Code generation is realized as proof of
concept for Ponder2. Details of the model transformations
are presented in [9].



III. CASE STUDY

Operation, administration, and maintenance (OAM) of
a mobile network is a complex task due to the distributed
architecture of the underlying cellular network. Com-
plexity arises from a high number of network elements
(NEs) to be deployed and managed and from interdepen-
dencies between their configurations. Management tasks
typically require high expertise and are performed by
human operators, who use their operational experience
to find optimized configurations. This requires a lot of
human interaction and manual control is time-consuming,
expensive, and error-prone.

A. Physical Cell ID Assignment

The Physical Cell ID (PCI) is a fundamental parameter
within Long Term Evolution (LTE) radio networks. It is
used as a regionally unique identifier on the physical layer
and plays an essential role for enabling radio communica-
tion and handover handling. The automated configuration
of PClIs is one of the key use cases in Next Generation
Mobile Networks (NGMNSs) [11].

In an LTE network only 504 different PCIs are available
and the PCI range is fragmented to handle different
cell types, assignment at country or license borders, and
temporary assignment. As there are usually a lot more
than 504 cells, PCIs must be reused within the network
[12]. Furthermore, there are constraints on the assignment
of PCIs to neighboring cells, i.e. cells with a common
coverage area:

« Collision-free: Any two neighboring cells must be

assigned different PClIs.

« Confusion-free: Any neighbors of a cell must be

assigned different PCls.

Variations of radio propagation properties and changes
of the network topology require frequent PCI reconfigu-
rations. As the reconfiguration of a PCI may require a
restart of the respective eNodeB and thus cause a service
interruption, it is important to provide an assignment that
proactively reduces the number of reconfigurations. An
operator can have different strategies to assign PCIs in the
network. In order to carefully deal with PCIs as a limited
resource, the maxReuse strategy can be applied. This
strategy uses as few different PCIs as possible and assigns
the same PCIs repeatedly. In contrast, other assignment
strategies assign PCIs in a way that any two cells with the
same PCI have a maximal distance from each other.

B. Policy Refinement

In order to cope with the described requirements and
to optimize the PCI assignment under the objectives of
the operator, we developed an approach to apply the
appropriate assignment strategy in an automated way. The
decision for a strategy depends from the context, i.e.
the reason for the assignment and the current network
configuration. The decision logic is modeled and enforced
with a set of ECA policies. There is one policy for
each strategy and these policies are represented at two
abstraction layers. The higher layer represents policies
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with a management point-of-view hiding technical details
from the operator. The lower layer represents policies with
a technical point-of-view and in a machine-executable way
for the underlying management system.

For this purpose, a domain model is specified that
covers the relevant concepts for PCI assignment. This
happens at the higher layer initially. At the same layer
the policies are specified as a policy model and they
are linked to the domain model with a linking model.
Figure 3 shows an ECA policy that is triggered whenever a
generic PCIRequest occurs. The policy sets the assignment
strategy to maxReuse if the target cell is located in a sparse
area or only a partial PCI range is available. In both
cases it makes sense to assign as few different PCIs as
possible as reconfigurations are unlikely or only few PCIs
arc available at all. A simplified graphical notation with
UML models and textual annotations is used as concrete
syntax in the figure.

In order to enable a technical view, a refined domain
model is specified at the lower layer. A mapping model is
specified to map the domain model from the higher to the
lower layer and the respective refinement rules are gener-
ated from the mapping model. (1) shows a split mapping
in the relational algebra that is used to refine the high-
level concept PCIRequest into one out of the four low-
level concepts NewCell, NewNeighbor, ChangedCellSize,
or PCIConflict. The respective refinement rule is shown
in (2). When a policy is refined that links its event with
PCIRequest, the operator is offered the four possibilities
for the refined event link and asked for a decision.

PC1TRequest % (NewCell, NewNeighbor,

(H
PCIConflict, ChangedCellSize)
Vevy.(evy, PCIRequest) € ELy
= Jevs.(evy, NewCell) € ELs
Vv (eva, NewNeighbor) € ELq 2)

Vv (evy, PCIConflict) € ELy
Vv (evy, ChangedCellSize) € ELy

The refined policies are now generated in an automated
way. For this purpose, the refinement rules are applied
to the high-level linking and policy model and generate
the low-level linking and policy model. Figure 4 shows
the refined ECA policy. In case of refinement rule (2)
the operator decided to refine the concept PCIRequest
within the event into the concept NewCell. Consequently,
the refinement algorithm links the refined event with the
refined concept. Due to other refinement rules, the refined
condition and action are linked to the respective refined
operations. Also, some management terms are refined into
technical ones. A sparse area is refined into a location
with less than five neighbors, a partial PCI range into
one with less than 252 PCls, and the maxReuse strategy
into a safety margin of 2. The safety margin ensures that
the PCI of a cell is not assigned at neighboring cells of
a certain degree and a safety margin of 2 is the minimal
setting to avoid PCI collisions and confusions [13].
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Figure 4. Low-level model (excerpt)

Finally, the refined models are automatically trans-
formed into the executable Ponder2 code shown in List-
ing 1. The respective model transformations are described
in [9]. The resulting code is directly used in the underlying
management system [14].

policy := root/factory/ecapolicy create.
policy event: root/event/NewCell;
condition: [ :NewCell.cell.location | root
/op getNumberOfNeighbors:NewCell.cell
.location < 5 | root/op
getNumberOfAvailablePCIs < 252 ];
action: [ root/op setSafetyMargin:2 1].
root/policy at:"PCIPolicy2" put:policy.
policy active: true.

Listing 1. Generated Ponder2 code (excerpt)

IV. RELATED WORK

A refinement approach that focuses on policies in
the autonomic networking domain is presented in [4].
Policies represent configuration settings and are used for
automated network and resource configuration. A fixed
terminology is used to specify policies at five levels of
a Policy Continuum and each level offers a sub-set of
that terminology. Policies are automatically refined into
configuration commands on a per-device basis. Formal
semantics is not provided.
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In [15] high-level goal policies are refined into low-
level policy actions to achieve them. Goals are represented
at different levels of abstraction. The approach realizes a
semi-automated refinement. High-level goals are first de-
composed into logically equivalent sub-goals in a manual
process supported by decomposition patterns. A reasoning
mechanism then automatically infers system operations
from the decomposed goals. The approach formalized in
Event Calculus.

The authors of [16] use two abstraction levels and auto-
matically refine high-level requirements on the behavior of
a system into low-level constraint policies. The approach
is based on simulation and classification techniques that
relate measured data to high-level requirements and can be
applied to any system that generates measurable data. The
refinement determines for which combinations of system
attribute values the requirements are fulfilled. Formal
semantics is not provided.

In [17] high-level policies are automatically refined into
low-level ones in order to better detect conflicts between
the high-level ones. The refinement algorithm analyzes
constraints about policy subjects, actions, and targets from
an information model to assess more precisely under
which circumstances the actions must or must not be
invoked. These circumstances are added to the policy as
condition clauses. No formal semantics is provided.



V. CONCLUSION

The way policy development is performed today is con-
trary to the paradigms of modern software development as
business policies are decoupled from their implementation,
which imposes additional effort. As a solution to this issue
an approach for the automated refinement of ECA policies
was presented in this paper and applied to policies for PCI
assignment in a mobile network.

The usage of models allows to specify policies at a
high level of abstraction initially and avoids the direct
implementation of policies at a technical level. Models do
not only serve specification or documentation purposes,
but are essential artifacts of the policy development pro-
cess. Their refinement into a machine-executable repre-
sentation allows to control the system behavior at runtime
by changing the high-level models. Policies are refined
in an automated way with refinement rules generated
from mapping patterns. The degree of automation highly
depends on an effective specification of the domain and the
mappings. The approach also respects manual interaction,
which can often not be avoided completely. However,
manual steps as reduced as far as possible and whenever
a refinement step cannot be performed automatically the
possible solutions are proposed.

Tool support is subject to future work. A prototype of
a graphical policy editor that supports code generation
has already been developed [18]. The editor represents
a policy model in a graphical way as a diagram and
offers functionality to create and change policy models.
Executable code for Ponder2 can be generated from the
policy model in a fully automated way. In future, the editor
will be extended to support multiple abstraction layers and
trigger the refinement process after a policy was created or
changed. Policies should be represented from their high-
level models to their low-level implementation in one sin-
gle tool. The case study showed that a graphical concrete
syntax for the models is inappropriate as diagrams take
a lot of space in complex scenarios. An effective textual
concrete syntax is also subject to future work.
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