2011 Fifth IEEE International Conference on Theoretical Aspects of Software Engineering

Formal Specification of Domain-Specific ECA Policy Models

Raphael Romeikat
University of Augsburg
Institute of Computer Science
Augsburg, Germany
romeikat@ds-lab.org

Abstract—Policy-based management allows to adapt systems
to changed requirements in a flexible and automated way.
Policy development usually starts with the specification of
high-level policies, which are then refined into a low-level
representation. We use models to specify event-condition-
action (ECA) policies at different levels of abstraction and
consequently separate domain and policy aspects from each
other. Domain-specific concepts are used within policies in
their event, condition, and action parts. We present a formal
specification of the models by means of a relational algebra.
The algebra is used to validate the models at each level. Finally,
executable policy code is generated from the low-level models.

Keywords-policy-based management; model-driven engineer-
ing; formal specification

I. INTRODUCTION

The idea behind policy-based management is to control
and manage a complex system on a high level of automation
and abstraction. Policies make context-sensitive decisions
in an autonomous way and they allow to modify system
behavior according to externally imposed constraints [1].
Network management is a well-known application domain
where policies are widely used for performing configuration
processes [2]-[7]. The event-condition-action (ECA) model
is a common way to specify policies. An ECA policy
describes the reactive behavior of a system to a certain
situation and for this purpose correlates a set of events,
a set of conditions, and a set of actions. The conditions
are evaluated on the occurrence of an event and determine
whether the policy is applicable or not in that particular
situation. The actions are only executed if the conditions
are met. Multiple policy frameworks share this model as for
example Ponder2 [8].

Policy-based management is a layered approach where
policies exist at different levels of abstraction. Strassner
defines a flexible number of abstraction layers as the Policy
Continuum [2]. The idea is to define and manage policies
at each level in a domain-specific terminology, and to refine
them from a business level down to a technical level. A
model-based approach for the specification of policies at
different levels of abstraction that supports the refinement
process was presented in [9]. Refinement starts with high-
level policy models and iteratively re-writes them with the

209

Bernhard Bauer
University of Augsburg
Institute of Computer Science
Augsburg, Germany
bauer@ds-lab.org

means of the lower levels. To support this we present a
formal approach for the specification of those models. The
models are validated at each level of abstraction based on
their formal representation. Furthermore, the formal specilfi-
cation will help to automate the refinement process and to
describe the semantics of an automated policy refinement.

This paper is structured as follows. Section II describes
how policy models are formally specified at different levels
of abstraction before executable code is generated. Related
work is discussed in section III. The paper concludes with
a summary and [uture work in section IV.

II. FORMAL SPECIFICATION

We use different models at different abstraction layers in
order to specify policies as illustrated in figure 1 [9]. The
domain model allows domain experts to specify concepts of
a domain or system. The policy model allows policy experts
to specify policies that are used to manage the system. The
linking model allows policy and domain experts to link
the policy model to the domain model in order to use the
domain-specific concepts within the policies. These models
are actually parts of one large model. For each of them a
metamodel exists that defines the structure of the model.
Two layers ¢ and j are shown exemplarily in figure 1 with
layer ¢ providing a higher level and layer j providing a
lower level of abstraction. Actually, the approach supports
a flexible number of abstraction layers. The lowest layer
represents the models such that executable policy code can
be generated from them as described in [10].

We developed a relational algebra to formally specify the
domain, policy, and linking metamodels, i.e. the abstract
syntax of the models. The algebra is used to validate whether
model instances conform to the respective metamodel. For
this purpose, a concrete syntax should provide a transforma-
tion into the relational algebra. Excerpts of the algebra are
presented in this paper.

A. Domain Modeling

Any relevant information about the domain is covered by
the domain model. The domain model covers the domain-
specific concepts across all layers and specifies which
concepts are available. Its purpose is to specify domain

Domain Linking Policy
Metamodel Metamodel Metamodel
Domain Linking Policy
Model, Model, Model,
- R -
Layer i
N N N
Domain Linking Policy
Model Model Model,
Layer j

A4

=l

System T
Components []]

System

Figure 1. Overview

knowledge independently from any policies, which will later
control a system in that domain. Thus it represents the basis
for building policies, which will then use domain-specific
concepts in their event, condition, and action parts. The
domain model offers a particular view at any layer, which
only contains the part of the domain model that is relevant
at the respective layer. The domain model is an instance
of the domain metamodel, which allows to specify domain
models in a way that is more expressive than just a domain-
specific vocabulary and close to the structure of an ontology.
It represents the abstract syntax of the domain, i.e. it defines
the structure of the domain model.

Definitions (1) to (17) represent an excerpt from the
formal specification and illustrate how the domain model
and its entities are defined. Let X be a non-empty finite set
called alphabet.

Valy =%" (1)
Valy =R 2)
Valp := {true, false} 3)
Val :=ValrvValy v Valp “4)
Idr, N (5)
Idco,fdpr,fdop,fdpa,ldﬂgeEValT (6)
Concept(Layer, Name) € Idpq x Idc, @)
Co:={co|3la.(la,co) € Concept} € Idco ¥
Property(Concept, Name) € Co x Idp, 9)
(co1,pr) € Property A (cos,pr) € Property (10)
= 01 = O3
Pr:= {pr|3co.(co,pr) € Property} < Idp, (11)
Operation(Layer, Name) ¢ IdLq x Idoy (12)
Op = {op|Fla.(la,op) € Operation} < Idop (13)

210

Parameter(Operation, Name) € Op x Idp, (14)

(op1,pa) € Parameter A (op2,pa) € Parameter (15)
= 0p1 = 0p2

Pa := {pa|Jop.(op,pa) € Parameter} c Idp, (16)

DomainModel := (Concept, Hierarchy, Property, (17

Operation, Parameter, Relationship)

B. Policy Modeling

Any information about the policies is covered by the
policy model. The policy model offers a particular view
at any layer, which only contains the part of the policy
model that is relevant at the respective layer. The policy
model is an instance of the policy metamodel, which contains
the essential aspects required to specify ECA policies. It
represents the abstract syntax of policies, i.c. it defines the
structure of the policy model.

Definitions (18) to (39) represent an excerpt from the
formal specification and illustrate how the policy model and
its entities are defined.

Idpo,IdEv,IdCd,IdACEValT (18)

Typecq = {eq, gt, ge, lt,le, neq, and, or, op} (19)

Policy(Layer, Name, Active) € Idpe x Idpo x Valp (20)

(la1,po,acy) € Policy A (laz, po,acz) € Policy o)
= aci = acs

Po :={po|3la,ac.(la,po,ac) € Policy} < Idp, (22)

FEvent(Policy, Name) ¢ Po x Idg, (23)

po € Po = Jev.(po,ev) € Event (24)

Ev := {ev|3po.(po,ev) € Event} € Idg, (25)

Condition(Policy, Name, T'ype, RefCond) 26)
c Pou{undef} x Idcq x Typecq x P(Idca)

(po, cdy, tyr,rcr) € Condition
A (po, cda, tyz, rce) € Condition (27)
=cdi =cda ANtyr =ty2 AT =71C2

(po,cd, ty,re) € Condition Aty € {eq, gt, ge,lt,le, op} (28)
=|re|=0

(po, cd, ty,rc) € Condition Aty € {neq} (29)
=|rc|=1

(po, cd, ty,rc) € Condition Aty € {and, or} (30)
= |rc|=2

(po1,cdi,tyr,rer) € Condition A cds € rey a1
= Jpoa, ty2, 1Ca.(po2, cda, tya, ree) € Condition

Cd :={cd|3po, ty,re.(po, cd, ty, rc) € Condition} € Ideq (32)

Be := {cd|3po, ty, re.(po, cd, ty, re) € Condition 33)
A typeO fCondilion(cd) € {eq, gL, ge,lt,le}} € Idca

Oe := {cd|3po, ty,rc.(po, cd, ty, rc) € Condition (34)

A typeO fCondition(cd) € {op}} € Idcq

Action(Policy, Name, No) € Pox Idac x N (35)

po € Po = Jac,no.(po,ac,no) € Action (36)

(po,ac1,no) € Action A (po,aca, no) € Action 37)
= acyp = acz

Ac = {ac|3Ipo,no.(po,ac,no) € Action} < Ida. (38)

PolicyModel := (Policy, Event, Condition, Action) (39)

C. Domain-Specific Policy Modeling

Any information about how domain-specific information
is used within the policies is covered by the linking model.
It specifies how the domain and the policy model are linked
to each other. For this purpose, it allows to create links from
the entities in the policy model to the entities in the domain
model at the respective layers. The linking model offers a
particular view at any layer, which only contains the links
that are relevant at the respective layer. The linking model is
an instance of the linking metamodel, which provides means
to create links from the policy model to the domain model.
It represents the abstract syntax of the links, i.e. it defines
the structure of the linking model.

The relational algebra defines the structure of the linking
model and additionally imposes some restrictions on its
contents. One example is the usage of contextual information
within a policy. Contextual information is usually passed to
a policy via its events. The event properties contain infor-
mation to be used within the policy and can be referenced
in the policy condition and action. It is important that only
properties are used within a policy that are visible for that
policy. A property is visible for a policy if its concept is
used as event of that policy. This restriction is covered by
(40) to (42) in the relational algebra.

arg € argumentsO fCondition(cd) =
(arg ¢ Properties v Vpo € policiesO fCondition(cd). (40)
arg € visible Properties(po))
arg € argumentsO f Aclion(ac) =
(arg ¢ Properties v Vpo € policiesO f Action(ac). 41)
arg € visible Properties(po))

visible Properties : Idp, - P(Idpr)

U

coevisibleConcepts

po propertiesO fConcept(co)

with visibleConcepts = (42)

conceptO fEvent(ev)
eveeventsO f Policy(po)

D. Example

In a mobile network the signal quality of wireless con-
nections between an antenna and cell phones is subject to
frequent fluctuations due to position changes of cell phones
and changing weather conditions. One possibility to react
to fluctuating signal quality is adjusting the transmission

211

power (TXP) at the antenna. In this example policies are
used to manage the behavior of the communication system
in an autonomous way. Policies e.g. adjust the transmission
power of the antenna in order to ensure good signal quality
and avoid unnecessary power consumption at the same time.
Figure 2 shows an example model and uses a graphical
notation as concrete syntax for the model. An ECA pol-
icy lowQuality is triggered whenever the respective event
indicates a change in the signal quality. The policy checks
the details in its condition and if the signal quality falls
below a critical value, increases the transmission power of
the antenna with its action. An excerpt from the formal
representation of the model is shown by (43) to (52).

Concept := {(1, cell Phone), (1, signalQuality) } (43)
Property := {(cell Phone, cpImet),

(signalQuality, sqCell Phonelmet), (44)

(signalQuality, sqOldV alue),

(signalQuality, sqNewV alue)}
Operation := {(1,increase Power)} (45)
Policy := {(1, lowQuality, true) } (46)
Event := {(lowQuality, lqEvent) } (47)
Condition := {(lowQuality, lqCondition, lt,)} (48)
Action = {(lowQuality,lqgAction, 1)} (49)
EL := {(lgEvent, signal Quality) } (50)
BEL := {(lqCondition, sgNewV alue, 50) } (51)
AL := {(lqAction, (increase Power,2))} (52)

III. RELATED WORK

Other approaches for the modeling of policies include
GPML [11], the CIM Policy Model [12], and DEN-ng [3].
All of them use UML as concrete syntax to specify ECA
policies in a language-independent way. Likewise, our ap-
proach includes a UML-based graphical notation as concrete
syntax for the models, but additionally allows any concrete
syntax in accordance with the abstract syntax of the models.
Similar to our approach, GPML allows to adapt policies
to different domains by defining a particular vocabulary,
whereas the CIM Policy Model and DEN-ng are specifically
targeted to the network management domain. DEN-ng is also
based on the Policy Continuum and considers policies at
different levels of abstraction, whereas GPML and the CIM
Policy Model do not support different abstraction levels.
GPML uses model transformations to map policies via an
interchange format to existing policy languages, whereas the
CIM Policy Model and DEN-ng do not address code gener-
ation. Our approach allows to generate code for any policy
language that is able to express ECA policies as defined by
the policy metamodel. None of the other approaches provide
a formal specification of the models.

Domain model
cellPhone : Concept signalQuality : Concep
Imei: P ellpt Imei: P
sqOldValue : Property

Linking model Policy model
lowQuality : Poli
active = true
_ Literal : second
IqEvent : Event
value = 50
: first .
lgCondition : LtExp
.0 ionInvoki lqAction : Acti

Figure 2. Model example

IV. CONCLUSION

A formal and model-based approach to the specification
of ECA policies was presented in this paper. The usage
of models allows to specify policies at a high level of
abstraction initially, supports the refinement to lower levels,
and thus avoids the direct implementation of policies at a
technical level. A relational algebra precisely defines the
abstract syntax of the models and allows for their validation.

Validation of the models is a prerequisite for their trans-
formation into executable code. A prototype of a graphical
policy editor that supports code generation for Ponder2 has
already been developed [13]. The editor represents a policy
model in a graphical way, so any policy can be visualized as
a diagram. It offers functionality to visualize, create, and edit
policy models in a comfortable way and is available under
the GPL. A case study showed that a purely graphical syntax
for the models might be confusing as diagrams take a lot
of space in complex scenarios. An effective textual syntax
is subject to future work. A representation of the models in
the relational algebra for purposes of validation should be
generated automatically.

In future, the refinement process should be automated with
mapping patterns that replace higher-layer concepts with
lower-layer ones and thus generate the refined model. The
mapping patterns should be specified in the relational alge-
bra to ensure the correctness of the refinement. The checking
of properties and detection of inconsistencies within the set
of policies by means of their formal specification are also
subject to future work.

REFERENCES

[1] N. Damianou, N. Dulay, E. Lupu, and M. Sloman, “The
Ponder Policy Specification Language,” in 2nd Workshop on
Policies for Distributed Systems and Networks (POLICY).
Springer LNCS, January 2001, pp. 18-38.

[2] J. Strassner, Policy-Based Network Management: Solutions
for the Next Generation. San Francisco, CA, USA: Morgan
Kaufmann Publishers, 2003.

[3] J. Strassner, “DEN-ng: Achieving Business-Driven Network
Management,” in 8th Network Operations and Management
Symposium (NOMS). 1EEE CS, April 2002, pp. 753-766.

212

[4] S. van der Meer, A. Davy, S. Davy, R. Carroll, B. Jennings,
and J. Strassner, “Autonomic Networking: Prototype Imple-
mentation of the Policy Continuum,” in Ist International
Workshop on Broadband Convergence Networks (BcN), April
2006, pp. 1-10.

[5] T. Bandh, H. Sanneck, L.-C. Schmelz, and G. Carle, “Au-

tomated Real-time Performance Management in Mobile Net-

works,” in 1st WoWMoM Workshop on Autonomic Wireless

AccesS (IWAS). 1EEE CS, June 2007, pp. 1-7.

[6] R. Romeikat, B. Bauer, T. Bandh, G. Carle, H. Sanneck,

and L.-C. Schmelz, “Policy-driven Workflows for Mobile

Network Management Automation,” in 6th International

Wireless Communications and Mobile Computing Conference

(IWCMC). ACM, June 2010, pp. 1111-1115.

[71 T. Bandh, R. Romeikat, and H. Sanneck, “Policy-based

Coordination and Management of SON Functions,” in /2th

International Symposium on Integrated Network Management

(IM). 1EEE ComSoc, May 2011, to be published.

[8] K. Twidle, E. Lupu, N. Dulay, and M. Sloman, “Ponder2 -

A Policy Environment for Autonomous Pervasive Systems,”

in 9th Workshop on Policies for Distributed Systems and

Networks (POLICY). 1EEE CS, June 2008, pp. 245-246.

[9]1 R. Romeikat, B. Bauer, and H. Sanneck, “Modeling of

Domain-Specific ECA Policies,” in 23rd International Con-

ference on Software Engineering and Knowledge Engineering

(SEKE), July 2011, to be published.

[10] R. Romeikat, M. Sinsel, and B. Bauer, “Transformation of

Graphical ECA Policies into Executable PonderTalk Code,”

in 3rd International Symposium on Rule Interchange and

Applications (RuleML). Springer LNCS, November 2009,

pp- 193-207.

[117 N. Kaviani, D. Gasevic, M. Milanovic, M. Hatala, and

B. Mohabbati, “Model-Driven Engineering of a General Pol-

icy Modeling Language,” in 9th Workshop on Policies for

Distributed Systems and Networks (POLICY). 1EEE CS,

June 2008, pp. 101-104.

[12] Distributed Management Task Force, “CIM Policy Model

White Paper,” DSP0108, June 2003.

[13] University of Augsburg, “PolicyModeler,”

/fpolicymodeler.sf.net, August 2009.

http:

