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Abstract. We investigate the role of external electromagnetic fields on the con-
duction properties of bridged molecular wires. In particular, it is analyzed quanti-
tatively how resonant excitations of electrons enhance the dc current and, simulta-
neously, lower the noise level of the current. The results from an exact numerical
treatment are in good agreement with those obtained within an approximation
scheme applicable at resonances.

Thirty years ago, Aviram and Ratner proposed in a seminal work [1] to build
elements of electronic circuits—in their case a rectifier—with single molecules.
In the present days their vision starts to become reality and the experimental
and theoretical study of such systems enjoys a vivid activity [2–4]. Recent
experimental progress has enabled reproducible measurements [5, 6] of weak
tunneling currents through molecules which are coupled by chemisorbed thiol
groups to the gold surface of external leads.

Typical energy scales in molecules are in the optical and the infrared
regime, where basically all of the today’s lasers operate. Hence, lasers rep-
resent a natural possibility to control atoms or molecules and also currents
through them. It is for example possible to induce by the laser field an oscil-
lating current in the molecule which under certain asymmetry conditions is
rectified by the molecule. This results in a directed electron transport even
in the absence of any applied voltage [7, 8]. Another theoretically predicted
effect is the current suppression by the laser field [9, 10] which offers the
possibility to control both the average current and the current noise.

Since the considered frequencies lie below typical plasma frequencies of
metals, the laser light will be reflected at the metal surface, i.e., it does not
penetrate the leads. Consequently, we assume that the leads’ bulk properties
are essentially unaffected by the laser field—in particular each lead remains
close to equilibrium. Thus, it is sufficient to consider the influence of the
driving solely in the molecule Hamiltonian. In addition, the energy of in-
frared light quanta is by far smaller than the work function of a common
metal, which is of the order of 5 eV. This prevents the generation of a photo
current, which otherwise would dominate the effects discussed below. For
a quantitative description of an experiment, it might be necessary to take
into account also the influence of the laser on the leads.

Most theoretical descriptions of the molecular conductivity in static sit-
uations are based on a scattering approach [11–13], or assume that the un-
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Fig. 1. Bridged molecular wire consisting of N = 8 sites of which the first and the
last site are coupled to leads with chemical potentials µL and µR − eV

derlying transport mechanism is an electron transfer reaction from the donor
to the acceptor site and that the conductivity can be derived from the cor-
responding reaction rates [3].

Atoms and molecules in strong oscillating fields have been widely studied
within a Floquet formalism [14,15]. This suggests utilizing the tools that have
been acquired in that area, thus, developing a transport formalism that com-
bines Floquet theory for a driven molecule with the many-particle description
of transport through a system that is coupled to ideal leads [8, 10, 16].

As an idealized model for the wire and the leads, we employ the so-called
bridged molecule setup sketched in Fig. 1. This model has also been used to,
e.g., investigate inelastic effects due to electron-vibrational coupling [17–20]
and heat conduction [21]. A central issue in these works has been the length-
dependence of the conduction thereby elucidating the underlying transport
mechanisms [3]. Here, we address the influence of laser excitations on the
length-dependence of the dc current and the low-frequency noise.

1 The Wire-Lead Model

wire-leads model of Fig. 1. It is convenient to separate the contributions
from the molecule in the laser field, the ideal leads, and the molecule-leads
coupling,

H(t) = Hmolecule(t) + Hleads + Hmolecule−leads. (1)

The irradiated molecule is modeled within a tight-binding description taking
into account N molecular orbitals |n〉, which are relevant for the transport.
Disregarding the electron-electron interaction, the most general form of the
Hamiltonian reads

Hmolecule(t) =
∑

n,n′

Hnn′(t) c†ncn′ , (2)
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where the fermionic operators cn and c†n destroy and create, respectively, an
electron in the molecular orbital |n〉. The sums extend over all tight-binding
orbitals. The T -periodic time-dependence of the single-particle Hamiltonian
Hnn′(t) = Hnn′(t + T ), reflects the influence of the laser field with frequency
Ω = 2π/T . As discussed above, we assume that the leads remain close to equi-
librium and hence can be described by grand-canonical ensembles of electrons
at temperature T and electro-chemical potential µ�, � = L, R. Thus, the lead
Hamiltonian reads

Hleads =
∑

�q

εq c†�qc�q, (3)

where c�q destroys an electron in state q in lead �. All expectation values of

lead operators can be traced back to 〈c†�qc�′q′〉 = δqq′δ��′f(εq − µ�), where

f(ε) = (1 + eε/kBT )−1 denotes the Fermi function. The model is completed
by the molecule-leads tunneling Hamiltonian

Hmolecule−leads =
∑

q

VLq c†Lq c1 +
∑

q

VRq c†Rq cN + h.c. , (4)

that connects the left (right) lead to the donor |1〉 (acceptor |N〉). Since we
are not interested here in the effects that arise from the microscopic details
of the molecule-lead coupling, we restrict our analysis in the following to
energy-independent couplings, i.e., Γ� = 2π

∑
q |V�q|2 δ(ε − εq) = const.

2 Floquet Transport Theory

For the retarded Green function of the wire electrons, one finds after elimi-
nating the leads the equation of motion [10]

[
H(t) − iΣ − ih̄

d
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photons if k > 0 (k < 0) and T
(k)
RL(ε) accordingly. G

(k)
1N (ε) denotes the relevant

matrix elements of the Fourier transform of the retarded Green function

G(k)(ε) =

∫ T

0

dt
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with f̄L/R = 1− fL/R and εk = ε+ kh̄Ω. In order to characterize the relative
noise level, we employ the so-called Fano factor F = S̄/e|Ī| [23]. Expres-
sions (6) and (11) contain as special cases prior findings: In the absence of
any driving, the Floquet eigenvalues εα − ih̄γα reduce to the complex-valued

eigenenergies; this implies G
(k)
nn′ = 0 for all k �= 0, yielding the transmission

probability for an electron with energy E of T (E) = ΓLΓR|G(0)
N1(E)|2. Thus,

the current and the noise in the static limit become

I0 =
e
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∆ serves as the energy unit; in a realistic wire molecule, ∆ is of the order
0.1 eV. Thus, our chosen wire-lead hopping rate Γ = 0.1∆ yields eΓ/h̄ =
2.56 × 10−5 Ampère and Ω ≈ 10∆/h̄ corresponds to a laser frequency in the
near infrared. For a typical distance of 5Å between two neighboring sites,
a driving amplitude A = ∆ is equivalent to an electrical field strength of
2 × 106 V/cm.

Let us first discuss the static problem in the absence of the field, i.e.
for A = 0. In the present case where the coupling between two neighboring
sites is much weaker than the bridge energy, ∆ � EB , one finds two types
of eigenstates: One group of states is located on the bridge. It consists of
N −2 levels with energies in the range [EB −2∆, EB +2∆]. In the absence of
the driving field, these bridge states mediate the super-exchange between the
donor and the acceptor. The two remaining states form a doublet whose states
are approximately given by (|1〉 ± |N〉)/

√
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and 〈ψB |Hmolecule|N〉 accordingly, while the resonance condition defines the
energy of the bridge level as

〈ψB|Hmolecule|ψB〉 = h̄Ω (17)

(recall that we have assumed ED = EA = 0).
We apply an approximation in the spirit of the one described in [26]

and derive a static effective Hamiltonian that describes the time-dependent

system. We start by transforming with the unitary operator

S(t) = exp
{
− i

N−1∑

n=2

|n〉〈n|Ωt − i
A
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the rate of electron from the donor to |ψB〉 is given by w times the probability
(1 − p) to find the central site empty. Consequently, the occupation of the
resonant bridge level evolves according to ṗ = w(1 − p) − wp. This equation
has the stationary solution p = 1/2 and, thus, for resonant excitations, the
dc contribution of the time-dependent current is given by

Īres = e w p = e
2A2∆2
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Fig. 2. Exact numerical solution within the Floquet formalism. (a) Average current
Ī as a function of the the driving frequency Ω for various wire length N . The scaled
amplitude is A = 0.1∆; the applied voltage µR −µL = 5∆/e. The other parameters
read Γ = 0.1∆, EB = 1∆, and kBT = 0. (b) Average current for various driving
amplitudes A and coupling strengths Γ for a wire of length N = 8. (c) Fano factor
F = S̄/eĪ for the wire length N = 8 and the wire-lead coupling Γ = 0.1∆

have been investigated. This has revealed that resonant excitations from the
levels that connect the molecule to the external leads to bridge levels yield
peaks in the current as a function of the driving frequency. In a regime with
weak driving and weak electron-lead coupling, ∆ � Γ, A, the peak heights
scale with the coupling strength, the driving amplitude, and the wire length.
The laser irradiation induces a large current enhancement of several orders
of magnitude and also can reduce the current noise level. The observation of
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these resonances could serve as an experimental starting point for the more
challenging attempt of measuring quantum ratchet effects [7, 8] or current
switching by laser fields [9, 10].
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