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We investigate stochastic resonance in the nonlinear, one-dimensional Fisher-Eigen model (FEM), which
represents an archetypal model for biological evolution based on a global coupling scheme. In doing so we
consider different periodically driven fitness functions which govern the evolution of a biological phenotype
population. For the case of a simple harmonic fitness function we are able to derive the exact analytic solution
for the asymptotic probability density. A distinct feature of this solution is a phase lag between the driving
signal and the linear response of the system. Furthermore, for more complex systems a general perturbation
theory (linear response approximation) is put forward. Using the latter approach, we investigate stochastic
resonance in terms of the spectral amplification measure for a quadratic, a quartic single-peaked, and for a
bistable fitness function. Our analytical results are also compared with those of detailed numerical simulations.
Our findings vindicate that stochastic resonance does occur in these nonlinear, globally coupled biological
systems.
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I. INTRODUCTION

Noise-induced order phenomena continue to attract ever
growing interest among the practitioners of statistical and
biological physics, and also among experimental researchers
who put these diverse concepts to use. In particular, the fact
that an optimally chosen dose of noise can boost the re-
sponse and enhance the ability of information and particle
transduction in nonlinear systems is known under the labels
of stochastic resonance [1–4] and Brownian motors [5–8].
These concepts start to play an increasingly important role in
biological systems [1,3,5,7] where noise can assist the func-
tional behavior in a beneficial manner. In this spirit, we study
within this work the generalized one-dimensional Fisher-
Eigen model (FEM), representing a standard model of bio-
logical evolution with an intrinsic global selection coupling
[9–13]. In the Fisher-Eigen model a species (e.g., some bio-
logical population) is described by a time-dependent, nor-
malized probability density psx , tdù0 which is defined on a
set G. In the biological context, G is interpreted as the phe-
notype space. Furthermore, it is assumed that there exists a
fitness function Fsx , td probing each phenotype xPG at time
t. The evolutionary equation of this model is the nonlinear
Fisher-Eigen equation (FEE)

] p
] t

= fF − F̄stdgp + D¹2p , s1d

where F̄std denotes the time-dependent, average fitness func-
tion

F̄std = E
G

dxFsx,tdpsx,td s2d

of the population, and D.0 is a mutation or diffusion pa-
rameter. Apparently, the FEE (1) is a nonlocal and nonlinear

partial differential equation (PDE): in contrast to the usual
Fokker-Planck equation it does not have the form of a con-
tinuity equation but instead involves explicitly the “poten-
tial”

Usx,td = − Fsx,td

rather than its “force” ¹Fsx , td. Note also that the Fisher-
Eigen equation distinctly differs from nonlinear effective
Fokker-Planck equations with self-consistent nonlinear drift
and diffusion coefficients [14–20]. The conservation (nor-
malization) of the overall population follows from Eq. (1) by
an integration over x using appropriate boundary conditions.

The effect of the selective first term on the right-hand side
(rhs) of Eq. (1) is clear: it causes an increase of the local
population, if the local fitness value Fsx , td is bigger than the
ensemble average F̄std and to a decrease, otherwise. Nonlo-
cality or global coupling means that the change of the local
population in the phenotype interval fx ,x+dxg between time
t and t+dt is also influenced by those parts of the overall
population, which are located far away from x. In this sense,
models with nonlocal selection are based on the assumption
that the corresponding system includes long-range informa-
tion transfer mechanisms, which is of course typical of bio-
logical systems.

Besides selection, the second fundamental feature of bio-
logical evolution is mutation. In the FEE mutation processes
are realized by diffusion in the phenotype space G. Of
course, in real biological systems G is a high-dimensional
space. However, for the aim of our studies it is appropriate to
confine the discussion to one dimension; more exactly, we
set G=R throughout this paper.

Our main objective is the investigation of the Fisher-
Eigen model for fitness functions of the type

Fsx,td = F0sxd + x S sinsvtd, S . 0,x P R . s3d

This goal is closely related in spirit to the problems of sto-*Electronic address: dunkel@physik.hu-berlin.de
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chastic synchronization [21,22] and stochastic resonance
[1–3,23]. In particular, we shall be interested in two funda-
mental situations: (i) The time-independent part F0sxd of the
fitness function possesses only a single maximum, as it is the
case for a harmonic fitness, i.e.,

F0sxd = −
a
2
x2, a . 0; s4d

and (ii) we also consider examples of the type

F0sxd =
a
2
x2 −

b
4
x4, a,b . 0,x P R s5d

possessing two equivalent states of maximal fitness at x±
= ±Îa /b.

In the biological context, the meaning of a bistable fitness
function of the type (ii) can be illustrated as follows. Con-
sider a biological species that is characterized by a certain
phenotypical feature. Then each value xPG decodes a pos-
sible realization of this feature. Now assume that there coex-
ist two optimal states x− and x+, corresponding to two
equivalent maxima F0sx±d. That is, those members of the
species who are described by x=x± have the highest survival
probability. If changes in the environment occur on time
scales much larger than the reproduction time of a generation
of individuals, then the fitness function can be taken as ap-
proximately time independent, Fsx , td=F0sxd.

On the other hand, realistic biological systems are often
subject to periodic or at least quasiperiodic environmental
changes (e.g., seasons or glacial epochs), which should also
be reflected by the fitness function. A simple way to include
such effects is realized in Eq. (3), where the time-
independent fitness function F0sxd is superimposed by a
time-periodic signal. If, as in the above examples (4) and (5),
the function F0sxd is even, F0s−xd=F0sxd, then this symme-
try is broken in the related time-dependent fitness function
(3). In particular, for the bistable example (5) this means that,
depending on the external periodic signal, now either states
x<x− or states x<x+ correspond to maximal fitness values.

For the case (i) of a quadratic fitness function an exact
analytic solution of the FEE can be found by using an ap-
propriate ansatz. By virtue of this exact solution one is, in
principle, able to compare with results found for driven
Fokker-Planck models, characterized by a local coupling
[1,23,24]. The harmonic case corresponding to Eq. (4) will
be extensively discussed in Sec. II.

In principle, one can formulate the generic solution of the
FEE (1) in terms of a series expansion. This will be shown in
Sec. III. For more complicated examples, such as Eq. (5), it
becomes impossible to find closed solutions. Hence approxi-
mative linear response techniques must be applied. The cor-
responding methods are developed in Sec. IV A. In Sec.
IV B 1 it is shown that these techniques yield the exact so-
lution for the harmonic case (4). Subsequently, in Secs.
IV B 2 and V the perturbation theory is also applied to a
single-peaked and a double-peaked quartic fitness function.
In these examples stochastic resonance effects can be ob-
served, which in contrast are distinctly absent for harmonic
fitness functions. In general, we always test the analytical

linear response results by comparing with numerical results
based on numerically integrated solutions of the FEE (1). A
summary of the main results will be given in Sec. VI.

Before starting out, we still want to mention that evolu-
tion processes described by the Fisher-Eigen equation (1) can
also serve as role models for evolutionary algorithms of nu-
merical optimization. In this latter context the Fisher-Eigen
model is, for obvious reasons, also referred to as “Darwin
strategy.” A detailed discussion of this aspect including ap-
plications to optimization problems (e.g., optimization of
road networks) can be found in Refs. [25–28].

II. THE CASE OF A QUADRATIC FITNESS FUNCTION

Note that, for the sake of simplicity, we shall assume
throughout this paper that all variables are already given in
scaled, dimensionless form. Our objective is to identify
whether stochastic resonance does, in principle, also emerge
in nonlinear, globally coupled ensembles of the type of the
Fisher-Eigen models.

A. Solution via an ansatz

In this part we consider the quadratic fitness function (4)

F0sxd = −
a
2
x2, a . 0,

which depicts a single peak at x=0. Including a time-
periodic perturbation F0sxd is generalized to read

Fsx,td = −
a
2
x2 + xS sinsvtd . s6d

The time-independent problem with S=0 was studied earlier
in Refs. [29,30]. Here we concentrate on the more interesting
case SÞ0. In order to solve the corresponding FEE (1) with
the quadratic “potential” Usx , td=−Fsx , td, we attempt the
Gaussian ansatz

psx,td =
1

Zstd
exphBfF0sxd + A x sinsvt + fdgj , s7d

where A, B, and f denote free parameters, which must be
determined by inserting this ansatz into the FEE (1). By in-
tegration the time-dependent normalization constant Zstd is
found as

Zstd =Î2p

aB
expFA2B

2a
sin2svt + fdG . s8d

Thus, we can rewrite Eq. (7) as

psx,td =Îa B
2p

expH− B
2a

fa x − A sinsvt + fdg2J , s9d

simply representing a Gaussian with an oscillating mean
value. Note that due to the special shape of ansatz (9) we
confine ourselves to time-periodic solutions, which are auto-
matically asymptotically stable. By inserting Eq. (9) into the
FEE and subsequently ordering the resulting equation with
respect to powers of x, one is led to the equation
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g0 + g1 x + g2 x2 ; 0, s10d

with coefficients

g0 = as2aD B2 − 1d − A B sinsvt + fdf2A Bv cossvt + fd

− 2S sinsvtd + As1 + 2aD B2dsinsvt + fdg , s11ad

g1 = 2aBfA B v cossvt + fd − S sinsvtd

+ 2aD A B2sinsvt + fdg , s11bd

g2 = a2 B s1 − 2 a D B2d . s11cd

In order to obey Eq. (10) each of the gi must identically
vanish. From the third condition g2;0 one readily obtains

B± = ±
1

Î2 a D
, s12d

where only B=B+ yields a physically relevant solution, since
psx , td is required to be normalized. Thus, one finds from
g0,1;0 with B=B+ the necessary condition

A =
S sinsvtd

Bv cossvt + fd + S sinsvt + fd
. s13d

Since A is supposed to be constant we have

0=!
d
dt
A =

SvfB v cossfd + sinsfdg
fBv cossvt + fd + S sinsvt + fdg2

, s14d

which provides the required condition for the phase f.
Hence, we find

f = − arctansBvd = − arctanS v

Î2aDD . s15d

Inserting this result into Eq. (13) yields

A =
S

Î1 + B2v2 =
S

Î1 + v2/s2aDd
. s16d

By virtue of Eqs. (12), (15), and (16) we hereby have deter-
mined all parameters A ,f , and B=B+ in the ansatz (9). It is
now straightforward to calculate characteristic statistical
quantities for this solution. For example, the mean value is
obtained as

x̄std =
A
a
sinsvt + fd , s17d

and the variance becomes a constant,

s2std: = x2std − x̄std2 =
1
aB

=Î2D
a

. s18d

Performing the integration according to Eq. (2), the en-
semble average of the fitness function Fsx , td is obtained as

F̄std = −
1
2B

+
S2

4as1 + B2v2d
+

S2

4as1 + B2v2d

3s1 − 2Î1 + B2v2dcosf2svt + fdg . s19d

Note that in contrast to the simple phase shift for x̄std, the
average F̄std oscillates with a frequency twice as large. Also
note in this context that F̄std contains merely terms of order
S0 and S2. In Fig. 1 we have plotted psx , td together with a
comparison between x̄std, F̄std, and the periodic perturbation.

We remark that the time-periodic asymptotic solution de-
rived above is of the same Gaussian type as the solution of
the Fokker-Planck system for the periodically driven har-
monic oscillator. However, due to the different type of evo-
lution equation, explicit differences consist for the phase
shift f, the response amplitude A, and the variance s2, as a
comparison with the results of Refs. [24,32] shows.

B. Numerical methods

Unfortunately, for more complicated periodically driven
fitness functions Fsx , td it is generally impossible to find ex-
act solutions by the procedure outlined in Sec. II A. Conse-
quently, we present in Sec. IV A a perturbation theory ap-
proach which yields an approximative asymptotic solution of

FIG. 1. (a) Plot of the analytic solution psx , td for the periodi-
cally perturbed quadratic fitness function Fsx , td=−0.5x2+x sinstd.
The parameters of the solution are B=0.71, f=−0.62, and A
=0.82. (b) Mean value x̄std (solid line), driving signal S sinsvtd
(dotted line), and ensemble fitness F̄std (dashed-dotted line) for
same parameter values as in (a). One can readily observe that the
phase shift f, i.e., the mean value x̄std follows the perturbation
signal with some retardation.
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the FEE (1). An alternative way to investigate more compli-
cated cases consists in numerically integrating the PDE (1).
In Secs. IV B and V we shall use the results of numerical
simulations in order to test the predictions of the perturbation
theory.

The exact details of the numerical algorithm used in all
our simulations are explicitly described in the Appendix of
Ref. [31]. Due to this fact, we confine ourselves here to a
brief discussion of the most important aspects: The numeri-
cal integration scheme is based on a linear approximation of
the partial derivatives, supplemented by a simple method that
preserves non-negativity and normalization of the probability
density. The algorithm was tested by comparing the numeri-
cal results (i) with (exact) analytical solutions of Eq. (1) that
can be found for the special case of a nondriven sS=0d qua-
dratic fitness function with Gaussian initial conditions (see
Ref. [30] for an extensive discussion of these solutions); (ii)
with the exact asymptotic solution derived in Sec. II A for
the periodically driven sS.0d quadratic fitness function.

In all these tests the agreement between numerically and
analytically calculated curves was very good; i.e., there was
virtually no difference between the numerical and analytical
results [e.g., compare Figs. 1(b) and 2(b)].

III. GENERAL SOLUTION OF THE FISHER-EIGEN
EQUATION

Before perturbation theory is considered in Sec. IV, we
shall discuss the generic solution of the FEE (1). It was al-
ready pointed out in the introduction that the Fisher-Eigen
equation (1) is a nonlinear PDE. Interestingly enough, how-
ever, it can be transformed into a linear PDE, if one uses the
ansatz [11,31]

psx,td = %sx,tdexpF− E
0

t
dsF̄ssdG , s20d

satisfying at initial time t=0

psx,0d = %sx,0d . s21d

In contrast to psx , td, the non-negative function %sx , td is not
normalized. More precisely, one finds from Eq. (20) by
means of an integration that

Z̃std: = E
G
dx%sx,td = expFE

0

t
dsF̄ssdG , s22d

and, thus, the general result

F̄std =
d
dt
lnE

G
dx%sx,td =

d
dt
lnZ̃std . s23d

Inserting the ansatz (20) into the FEE (1) yields

] %

] t
= D¹2% + Fsx,td% . s24d

This equation deserves to be commented on: In the above
approach, we started out from the FEE (1) and obtained Eq.
(26) by applying the ansatz (20). Of course, one could in-
stead also start from the rather general evolutionary equation
(24), governing the dynamics of some non-negative, non-
normalized density %sx , td. Then it is straightforward to show
that the related normalized density psx , td, defined by

psx,td =
%sx,td

E
G

dx%sx,td
, s25d

is governed by the Fisher-Eigen equation (1).
We now continue with the analysis of Eq. (24): In order to

obtain a more familiar standard form we introduce two “po-
tentials” by writing

Usx,td: = − Fsx,td, U0sxd: = − F0sxd . s26d

These definitions allow us to recast Eq. (24) as

−
] %

] t
= f− D¹2 + Usx,tdg% . s27d

The rhs of Eq. (27) has a Schrödinger-equation-like structure
[33,34], though, compared with quantum mechanics a funda-
mental difference is given by the fact that the left-hand side
is real valued. With regard to the subsequent discussion it is

FIG. 2. (a) Plot of the numerical solution psx , td of the PDE (1)
for the periodically perturbed quadratic fitness function Fsx , td=
−0.5x2+x sinstd and an initial distribution psx ,0d=dsxd. All param-
eters are the same as used in Fig. 1. (b) Driving signal S sinsvtd
(dotted line), numerical calculated mean value x̄std (solid line), and
ensemble fitness F̄std (dashed-dotted line) for the same parameter
values as in (a). One can readily see how after a short relaxation
time the system approaches the exact asymptotic solution plotted in
Fig. 1. The details of the numerical algorithm can be found in the
Appendix of Ref. [31].
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convenient to introduce a time-dependent and time-periodic
[23] operator

Ĥstd: = − D¹2 + Usx,td = − D¹2 + U0sxd − xS sin vt ,
s28d

obeying

Ĥstd = Ĥst + Td s29d

with T=2p /v. Formally, the structure of the operator Ĥstd is
very similar to that of a quantum-mechanical Hamilton op-
erator (with parameters "=1 and 2m=1/D), which implies
that a solution of Eq. (27) can be expressed in terms of
eigenfunctions of Ĥ. This will be discussed in the following
two sections.

A. The case of no driving: S=0

Before we deal with the general case S.0, it might be
useful to briefly consider the unperturbed problem S=0 first.
Since an extensive discussion of this special case with regard
to the Kramers transition problem can be found in Ref. [31],
see also in Refs. [33,35], we shall merely present a summary
of the main results.

Assuming a discrete, nondegenerate spectrum of eigen-
values, as it is the case for the examples considered below,
the formal solution of the FEE (1) with S=0 is given by

psx,td = expF− E
0

t
dsF0ssdGo

n=0

`

cnwnsxde−lnt, s30d

where wn is a L2sGd-normalized eigenfunction of the time-
independent operator

Ĥ0 = − D¹2 + U0sxd s31d

and ln is the corresponding eigenvalue, i.e.,

dmn = E
G

dxwm
* sxdwnsxd, Ĥ0 wn = ln fn . s32d

We have denoted by L2sGd the space of square-integrable
functions on G (where in our case G=R). In view of Eq. (21)
the coefficients

cn = E
G

dxwn
*sxdpsx,0d s33d

are determined by the initial condition. In order to identify
the exponential prefactor in Eq. (30), one integrates Eq. (30)
over x and makes use of the fact that psx , td is normalized.
This procedure yields

expFE
0

t
dsF0ssdG = E

G
dx%sx,td = o

n=0

`

cnlne−lnt , s34d

where we have defined the constants

ln = E
G

dxwnsxd . s35d

Note that ln=0 holds for n=odd, if the potential is symmet-
ric, i.e. U0sxd=U0s−xd. From Eq. (34) it follows that

F0std =
d
dt
lnE

G
dx%sx,td = −

on=0
` cnlnlne−lnt

om=0
` cm lm e−lmt

s36d

and

psx,td =
on=0

` cnwnsxde−lnt

om=0
` cm lm e−lmt

. s37d

In conclusion, for the unperturbed case S=0 the solution of
the FEE (1) can completely be given in terms of character-
istic quantities of the eigenvalue problem (24).

Let us take a closer look at the stationary situation. As-
suming a time-independent solution pssxd of the FEE (1), we
find from Eq. (36) that the stationary value F̄0

s of F̄0std is
determined by the lowest eigenvalue

F̄0
s = − l0. s38d

Moreover, due to Eq. (37), the stationary solution pssxd is
proportional to w0sxd, i.e.,

pssxd =
w0sxd
l0

. s39d

B. The case with nonzero driving: S.0

Generally, there exist many different methods to solve
explicitly time-dependent problems of the type (27). To name
only a few we mention here the Floquet formalism [36] and
the Kramers-Henneberger oscillating frame representation
[37,38], with the latter method widely applied in the theory
of (rapidly) driven quantum problems [23].

In contrast, for our discussion we choose a more conven-
tional, perturbative approach, which is based on the ansatz

%sx,td = o
n=0

`

wnsxdcnstd , s40d

where the time-dependent coefficients are determined by

cnstd = E
G

dxwn
*sxd%sx,td . s41d

Because for all examples considered in this work the com-
plete set of orthonormal eigenfunctions hwnj of Ĥ0 are known
to be real, we can drop from here on the asterisk in spatial
scalar products such as Eq. (41). Inserting the ansatz (40)
into the evolutionary equation (27) yields
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o
n=0

` Fln − Sx sinsvtd +
d
dtGwnsxdcnstd = 0. s42d

In order to obtain an ordinary differential equation (ODE) for
each function cnstd we multiply Eq. (42) by wk and integrate
the resulting equation over x. This procedure yields

ċkstd + lkckstd + S sinsvtdo
n=0

`

Mkncnstd = 0, s43d

where the matrix coefficients Mkn are given by

Mkn = − E
G
dxwksxdxwnsxd =Mnk . s44d

Due to the symmetry properties of the wn’s in examples with
symmetric fitness function, F0sxd=F0s−xd, we find that Mkn
=0 holds whenever n+k=even.

It is now convenient to introduce in the following a matrix
notation

cstd: = fcnstdg, wsxd: = fwnsxdg ,

M: = fMkng, L: = fLkng = flkdkng , s45d

where n ,k=0,1 ,2 , . . .. In this notation cstd and wsxd can be
viewed as (infinite-dimensional) column vectors, whereas M
and L represent matrices. These conventions allow us to
rewrite the ansatz (40) in the form of a column vector scalar
product

kwsxd,cstdl: = o
n=0

`

wnsxdcnstd = %sx,td , s46d

and, moreover, the ODE (43) as

ċstd = − fL + S sinsvtdMgcstd , s47d

where, for example,

Mcstd: = Fo
i=0

`

MnicistdG s48d

yields again a column vector. The well-known formal solu-
tion of Eq. (49) is given by

cstd = ĴexpH− E
0

t
dsfL + S sinsvsdMgJcs0d , s49d

where Ĵ denotes the time-ordering operator. Introducing the
abbreviation

Astd = − fL + S sinsvtdMg , s50d

Eq. (49) is, by definition, equivalent to

cstd = F1 + o
i=1

` E
0

t
dt1E

0

t1
¯ E

0

ti−1
dti

3Ast1dAst2d ¯ AstidGcs0d , s51d

where 1 denotes the unity matrix. The diagonal matrix L
does not commute with M and, therefore, also the matrices
Astid do generally not commute. More precisely, the matrix
elements of the commutator

fM,Lg: =ML − LM s52d

can be evaluated to read

fM,Lgij = o
n=0

`

sM inlndnj − lidinMnjd = sl j − lidM ij .

s53d

However, it is straightforward to determine cs0d= fcns0dg in
Eq. (51) from the initial conditions, since at time t=0 we
have by virtue of Eq. (21)

%sx,0d = o
n=0

`

wnsxdcns0d = psx,0d . s54d

In view of the orthogonality of the set hwnj we find

cns0d = E
G

dxwnsxdpsx,0d . s55d

In particular, the choice of special initial conditions can sim-
plify further calculations, e.g., for psx ,0d,w0sxd we have
cnÞ0s0d=0.

In terms of the scalar product (46), we can summarize the
formal solutions for psx , td and F̄std by

psx,td =
kwsxd,cstdl

Z̃std
, Z̃std = kl,cstdl s56d

and

F̄std =
d
dt
lnZ̃std , s57d

where we used, for convenience, l= flng with ln defined by
Eq. (35). By means of Eq. (47) one can also rewrite Eq. (57)
as

F̄std =
kl,Astdcstdl

kl,cstdl
. s58d

We are thus able to formally write down the exact solutions
for psx , td and F̄std. Even though the above outlined formal
theory in addition possesses merit for numerical studies,
these results are of limited use in practice in order to describe
specific quantitative results. A natural obstacle is, for ex-
ample, that one usually does not have knowledge of the exact
eigenfunctions wn of the unperturbed problem and, as well,
of related quantities such as the matrix elements Mkn and the

DUNKEL et al. PHYSICAL REVIEW E 69, 056118 (2004)

056118-6



set of eigenvalues lk. In the following we shall therefore
pursue an approximation scheme which will enable us to
estimate the relevant asymptotic behavior of the system dy-
namics to leading order in the driving strength (linear re-
sponse approximation).

IV. PERTURBATION THEORY

The first aim of this part is to derive a perturbation expan-
sion that yields approximate solutions for the asymptotic
density pasx , td and the asymptotic mean value x̄astd. This
will be done in Sec. IV A. Subsequently, in Sec. IV B, these
results are applied to the single-peaked quadratic and the
single-peaked quartic fitness function, respectively.

During the following discussion, we restrict ourselves
to situations for which the time-independent part F0sxd of
the fitness function Fsx , td satisfies the symmetry property
F0s−xd=F0sxd. Moreover, we demand as before that the
spectrum of the related operator Ĥ0 is discrete and nondegen-
erate.

A. Small S expansion

We attempt to expand the problem with respect to powers
of the signal strength S. To this end we assume that we can
write the solution of the perturbed problem in the form

%sx,td = o
i=0

`

Si%isx,td . s59d

Inserting this ansatz into Eq. (27) yields

− o
i=1

`

Si
]

] t
%i = o

i=0

`

Sif− D¹2 + U0sxd − xS sinsvtdg%i .

s60d

Considering the contributions of order Si separately, we ob-
tain the following hierarchy of equations:

]

] t
%0 = fD¹2 − U0sxdg%0, s61d

]

] t
%i = fD¹2 − U0sxdg%i + x sinsvtd%i−1 s62d

for i=1,2 , . . .. Apparently, %0sx , td is simply the solution of
the unperturbed problem and, therefore, asymptotically (su-
perscript a)

%0
asx,td = exps− l0tdw0sxd , s63d

and, thus,

pasx,td =
w0sxd
l0

+ OsSd = pssxd + OsSd . s64d

Next, we consider the dynamics of %1
asx , td. A plausible an-

satz reads

%1
asx,td = o

i=0

`

a1istde−l0twisxd . s65d

In view of the orthonormality of the wi we find the following
ODE for the time-dependent coefficients

ȧ1istd = − gia1istd − sinsvtdM i0, s66d

where

gi: = li − l0. s67d

In particular, we observe that ȧ10std;0 holds for a symmet-
ric fitness function. The asymptotic solution of Eq. (66) for
i=1,2 , . . . can be written as

a1istd =M i0F v

gi
2 + v2cossvtd −

gi

gi
2 + v2sinsvtdG . s68d

Consequently, due to Ms2jd0=0 for symmetric problems, only
terms with odd numbered i’s contribute in Eq. (65), yielding

pasx,td =
1
l0
Hw0sxd + So

i=1

`

M i0F v

gi
2 + v2cossvtd

−
gi

gi
2 + v2sinsvtdGwisxdJ + OsS2d . s69d

Thus, we find for the linear response [1,33,39,40] of the re-
lated asymptotic mean value the result

x̄astd = So
i=1

`
miM i0

l0
F v

gi
2 + v2cossvtd −

gi

gi
2 + v2sinsvtdG

+ OsS2d , s70d

where

mi: = E
G

dxxwisxd . s71d

Put differently, given the eigenvalue differences gi=li−l0
and the eigenfunctions wisxd of the unperturbed problem, we
can describe the linear response of the asymptotic system
dynamics. Moreover, if the eigenvalue differences gi are
strongly increasing for i=1,2 , . . ., then it should even be suf-
ficient to merely consider the l1 contribution in Eq. (70), i.e.,

x̄1
astd < S

m1M10

l0
F v

g1
2 + v2cossvtd −

g1

g1
2 + v2sinsvtdG = :x̄1

astd .

s72d

This can still be simplified to

x̄1
astd = −

m1

l0

SM10
Îg1

2 + v2
sinsvt − fd , s73d

where the phase shift is given by
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f = arctanS v

g1
D . s74d

The related amplitude function

x10: =
1
S
max

t
x̄1
astd = −

m1

l0

M10
Îg1

2 + v2
s75d

will be referred to as partial response amplitude in the
following. This very quantity will be invoked below to
characterize the spectral amplification for stochastic reso-
nance [1,41]. In particular, we shall compare analytical esti-
mates for x10 with numerical results for the total response
amplitude

xtot: =
1
S
max

t
x̄astd , s76d

defined as the ratio between the amplitude of x̄astd and the
driving amplitude S. In contrast to x10, for quartic fitness
functions the total amplitude xtot can only be determined by
means of computer simulations, since the exact solution x̄astd
remains unknown.

B. Application to single-peaked fitness functions

We shall now apply the results of the preceding section to
two simple examples, representing single-peaked fitness
functions. From these applications it will become clear that
the partial response amplitude x10 from Eq. (75) can be used
to predict the appearance of stochastic resonance in the FEM.

Before we start discussing the first example, the following
remark is in order: Since we intend to calculate x10, we must
know the quantities m1, l0, M10, and g1, which follow from
the first two eigenfunctions and eigenvalues of the unper-
turbed operator Ĥ0. Unfortunately, for arbitrary fitness func-
tions the eigenvalue problem for Ĥ0 cannot be solved exactly
and one has to use, for example, standard variational meth-
ods [42,43]. For fitness functions F0sxd possessing a single
maximum or for corresponding potentials U0sxd=−F0sxd ex-
hibiting a single minimum, respectively, it is appropriate to
use the orthogonal, normalized test functions

w0sxd = S2a

p
D1/4exps− ax2d ,

w1sxd = 2S2a3

p
D1/4x exps− ax2d s77d

as approximations of the first two eigenfunctions, where a is
the variational parameter. These test functions yield

l0 = S2p

a
D1/4, m1 = S2p

a3 D1/4, M10 = −
1

2Îa
, g1 = 4Da .

s78d

These results are valid whenever test functions of the form
(77) are applied. In particular this implies that in the case of
a quadratic fitness function or potential these become exact.

1. Quadratic fitness function

Let us first consider the quadratic fitness function F0sxd
=−ax2 /2 as discussed in Sec. II. In this case, we can make
use of the well-known results for the eigenvalues and dipole
moments of the quantum harmonic oscillator [37], yielding

ln = Î2aDSn + 1
2D s79d

and

Mkn = − S D
2aD

1/4
sdksn−1dÎn + dksn+1dÎn + 1d . s80d

Thus, we have

a =Î a
8D

, gn = nÎ2aD, m1

l0
= S8Da D1/4,

M10 = − S D
2aD

1/4
. s81d

Since according to Eq. (82) also M i0=0 for i.1 holds, the
linear response result (70) for the harmonic potential coin-
cides with the exact result (17) given in Sec. II. In particular,
for the quadratic fitness function the partial response ampli-
tude x10 precisely equals the total response amplitude xtot.
We also remark that for a quadratic fitness function there
exists no optimal diffusion strength D; put differently, the
related partial response amplitude x10=xtot exhibits a mono-
tonically increasing behavior towards saturation, see Fig.
3(a). Consequently, stochastic resonance cannot occur for
this particular example.

2. Quartic fitness function

We now consider the fitness function

F0sxd = − g
x4

4
, g . 0. s82d

For Eq. (82) the optimization parameter a is explicitly deter-
mined as

a =
1
2S 3g4DD

1/3
, s83d

yielding for the linear response amplitude the result

x10 = S4D3g D
1/3 1

Îs6D2gd2/3 + v2 . s84d

Thus, in contrast to the case with a quadratic fitness function,
there exists now an optimal value

Dc =Îv3

6g
, s85d

for which the partial amplitude x10 assumes a maximum.
This can be interpreted as the appearance of stochastic reso-
nance in the Fisher-Eigen model. In Fig. 3 we depict the
spectral amplification measure [41,44] x10 for different val-
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ues of v. However, in order to (numerically) prove whether
the FEM indeed does exhibit the stochastic resonance behav-
ior with quartic fitness function we performed numerical cal-
culations. This is so, because infinitely many contributions
stemming from higher-order eigenfunctions of the, in this
case, nonvanishing matrix elements M30 ,M50 , . . . towards the
full amplitude xtot have been neglected.

Nevertheless, this preliminary result does indicate that the
nonlinearity of the fitness function plays a decisive role for
the possible occurrence of the stochastic resonance phenom-
enon: The results of the numerical simulations, shown in Fig.
4, indeed confirm that stochastic resonance does occur. One
should, however, also note that the numerically found values
xtot are quantitatively not well fitted by the linear response
result x10. According to our opinion this deviation is due to
the following two reasons: On the one hand, as already
pointed out above, the total amplitude xtot also contains con-
tributions of higher matrix elements M30 ,M50 , . . . that are
neglected in x10. On the other hand, the quality of the ap-
proximation x10 is also limited by the quality of the applied
test functions. In other words, better estimates of the true
eigenfunctions are likely to result in a better agreement be-
tween xtot and x10.

V. DOUBLE-PEAKED FITNESS FUNCTION

A. Introductory remarks

In the remainder of this work we now concentrate on the
archetypal driven model of a bistable fitness function, i. e.,

Fsx,td =
a
2
x2 −

b
4
x4 + xS sin vt, a,b,S . 0,x P R .

s86d

(As before we shall assume that all quantities are given in
scaled, dimensionless form.) In the context of stochastic
resonance (SR) and stochastic synchronization, this problem
has been extensively studied for Fokker-Planck and quantum
processes during the past two decades [1–3,21,23,45]. The
phenomenon of SR originated from its possible role in the
explanation for the periodically recurrent climatic changes
[1,46,47]. Here we deal with the question whether a similar,
noise-induced phenomenon may occur in biological systems
described by the Fisher-Eigen evolution equation in Eq. (1).

With regard to biological evolution, the bistable model
fitness function (86) describes the following situation.

First, let us consider the nondriven case, i.e., S=0. Then
the fitness function (86) assumes the time-independent shape

F0sxd =
a
2
x2 −

b
4
x4. s87d

Thus, for some biological species described by F0 there exist
two states of maximal fitness at x= ±xm, corresponding to
two different phenotypes, where

xm =Îa
b
. s88d

In the equilibrium situation most members of the species will
possess a phenotype close to either +xm or −xm. Deviations
from the optimal phenotypes ±xm are due to mutations. Fur-
thermore, since F0 is symmetric, the corresponding time-

FIG. 3. Partial response amplitudes x10 for (a) the single-peaked
quadratic fitness function F0sxd=−0.5x2, and for (b) the single-
peaked quartic fitness function F0sxd=−0.25x4 at different driving
frequencies v. For the quartic weighting factor g=1, see Eq. (82),
the maxima of x10 in (b) are located at the values Dc=Îv3 /6. Thus,
linear perturbation theory predicts that stochastic resonance is ab-
sent in the case of the harmonic fitness function, but likely to occur
for the quartic fitness function.

FIG. 4. Comparison between numerically calculated values of
the total amplitude xtot (filled squares and triangles) and analytical
curves x10 (solid and dotted lines) for the quartic fitness function
Fsx , td=−0.25gx4+Sx sinsvtd with parameters g=1 and S=0.1.
From inspection, the numerical results do confirm the stochastic
resonance effect predicted by the partial amplitude x10, which is a
result of first-order perturbation theory in S.
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independent equilibrium distribution pssxd, which is defined
as the solution of

0 = fF0sxd − F0
sgpsxd + D¹2psxd , s89d

is also symmetric, pssxd=pss−xd. As illustrated in Fig. 5, the
explicit shape of the stationary distribution pssxd essentially
depends on the size of the mutation (diffusion) parameter D.

Considering the influence of external driving, S.0, the
explicitly time-dependent part in Eq. (86) can be interpreted
as some weak external perturbation, which periodically im-
proves or decreases the fitness values of certain phenotypes.
Typical candidates for such effects could be periodic climate
changes in biological systems, or also market cycles in eco-
nomic systems, to name but a few. Regarding such phenom-
ena, one should expect that the driving period

T =
2p

v
, s90d

characterizing the time scale of the external perturbation, is
very large compared with the lifetime of members of the
species. Hence, in such cases both S and v will be very
“small” parameters, intuitively justifying the use of the per-
turbation theory outlined above.

In the following section we shall discuss results that have
been obtained by applying this perturbation theory to the
Fisher-Eigen equation (1) for the double-peaked fitness func-
tion (86). Beforehand, it is useful to introduce the scaled
quantities

x̃ =
x
xm

, t̃ = taxm
2 , D̃ =

D
axm

4 ,

S̃ =
S
axm

, ṽ =
v

axm
2 , p̃sx̃, t̃d = xm psx,td . s91d

This is equivalent to setting a=b=1. For the sake of conve-
nience we drop all tildes to obtain the following rescaled
version of the Fisher-Eigen equation (1):

] p
] t

= fF − F̄stdgp + D¹2p , s92d

where the rescaled fitness function takes the form

Fsx,td =
x2

2
−
x4

4
+ x S sinsvtd . s93d

B. Results of perturbation theory

In the following we shall determine estimates for the par-
tial response amplitude x10 in the two limiting cases of
strong and weak diffusion D. According to Sec. IV, for this
purpose we need to evaluate the quantities M10, l0, m1, and
g1 for the operator

Ĥ0 = − D¹2 +
x4

4
−
x2

2
. s94d

1. Strong diffusion limit

In the strong diffusion limit D→`, the influence of the
central well of the fitness function on the dynamics of the
system becomes negligible. This fact is also illustrated by
Fig. 5, where it can be deduced that for large values of D, the
stationary distribution of the unperturbed problem exhibits
only a single maximum at x=0. The explanation for this
result is that due to the strong diffusion or dominating mu-
tations, respectively, large parts of the population occupy
phenotype regions with low fitness values. Therefore, if we
neglect the central well of the fitness functions, which is
caused by the quadratic term in F0sxd, we are in the position
to apply the stochastic resonance results for the quartic fit-
ness function derived in Sec. IV B 2, cf. Fig. 4. In particular,
Eq. (85) implies that stochastic resonance effects may only
be observable if the driving frequency v is sufficiently large.

In terms of the eigenvalue spectrum of the related opera-
tor Ĥ0 with potential U0sxd=−F0sxd, the condition of “strong
diffusion” can be conceived as follows:

l0 @ U0s0d = 0, s95d

where x0=0 is the position of the local maximum of U0sxd.
On the other hand, if there exist sufficiently many eigenval-
ues l0,l1, ¯ ,ln, such that

ln , 0, s96d

then we shall speak of the “weak diffusion limit.” This con-
vention is in agreement with the notion of “deep” and “shal-
low” potentials in quantum mechanics.

2. Weak diffusion limit

For the opposite limit of weak diffusion D→0, corre-
sponding to deep potentials (that is, potentials with a high
barrier), there exist several methods to obtain the quantities
M10, l0, m1, and g1. As before in Sec. IV B 2, we put the
variational method to work, using the orthogonal functions

FIG. 5. Numerically calculated stationary solution pssxd of Eq.
(89) for the unperturbed system with S=0. Depending on the mu-
tation parameter D the stationary distribution can either possess one
central peak or two symmetric peaks.
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w0sxd =
N0

Î2 hexpf− asx − 1d2g + expf− asx + 1d2gj ,

s97ad

w1sxd =
N1

Î2 hexpf− asx − 1d2g − expf− asx + 1d2gj

s97bd

as approximations of the first two eigenfunctions, where a is
the variational parameter and

N0 = FÎ p

2a
s1 + e−2adG−1/2

, N1 = FÎ p

2a
s1 − e−2adG−1/2

s98d

are normalization constants. These test functions yield

l0 = S8p

a
D1/4 1

Î1 + e−2a
, m1 = S8p

a
D1/4 1

Î1 − e−2a
,

M10 = −
1

Î1 − e−4a
s99d

and the eigenvalue difference emerges as

g1 =
3 − 2a + 32a3D
8a sinhs2ad

. s100d

Hence, the partial response amplitude x10 can be written as

x10 =
1 + cothsad

2Îg1
2 + v2

. s101d

Unfortunately, for the operator (94) the optimization param-
eter a cannot be calculated analytically, because the Ritz
variational condition leads to a transcendental equation for a.
Using a harmonic approximation near the minima of U0sxd
yields

a =Î uU09sxmdu
8D

=Î 1
4D

, s102d

and, therefore,

g1 =
3sÎD + 1d

4 sinhs1/ÎDd
. s103d

In Fig. 6 we depict the comparison between the partial am-
plitude x10, based on this estimate of g1, and the numerically
calculated full amplitude xtot. As seen from Fig. 6(a), the
partial amplitude result does predict the existence of a sto-
chastic resonance regime, provided that the driving fre-
quency v is sufficiently large. The corresponding numerical
results for the total response amplitude xtot confirm this the-
oretical prediction. This becomes clear from Fig. 6(b), where
the lines with vø0.5 exhibit a monotonically decreasing
behavior. In contrast, the curves with v=0.7 and v=1.0
show a weak local maximum; i.e., stochastic resonance char-
acteristics are emerging for this set of parameters. In particu-

lar, these observations provide evidence that, in principle,
also in the weak diffusion limit the simple (two-
eigenfunction) linear response approximation can be used to
predict whether stochastic resonance for the bistable quartic
fitness function in fact occurs. The significant quantitative
deviation of the analytical estimates x10 in Fig. 6(a) from the
exact (numerically determined) values xtot in Fig. 6(b) is due
to the same reasons as discussed at the end of Sec. IV B 2. In
particular, the breakdown of the perturbation theory for D
→0 comes as no surprise, for it was recently shown [39,40]
that applicability of the linear response method is restricted
to the parameter region D /S@1.

VI. CONCLUSIONS

In this work, the phenomenon of stochastic resonance in
the FEM has been identified. In the FEM the evolutionary
dynamics of an ensemble is governed by a global coupling.
Therefore, the dynamical equation of this model has the form
of a nonlinear partial differential equation for the population
density and is composed of a homogeneous part and a diffu-

FIG. 6. Stochastic resonance in the weak diffusion limit for the
double-peaked fitness function Fsx , td=0.5x2−0.25x4+x S sinsvtd.
Diagrams (a) shows the analytical linear response estimates for the
partial amplitude x10, obtained by applying the Ritz method. Dia-
gram (b) depicts the corresponding numerically calculated total am-
plitude xtot for driving parameters S=0.1. According to diagram (a),
the analytical estimates for x10 indicate the possibility of stochastic
resonance provided the driving frequency is sufficiently large,
v.0.1. As shown in (b), the numerical results confirm the exis-
tence of a weak stochastic resonance effect in the case of external
high frequency driving, i.e., for vù0.7.
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sive part. The dynamics of the nonlinear Fisher-Eigen equa-
tion can equivalently be mapped onto a linear equation.
Thus, the occurrence in this type of nonlinear master equa-
tion is distinctly different from stochastic resonance in glo-
bally coupled Fokker-Planck mean-field-type situations [16]
and also distinct from the phenomenon of spatiotemporal
stochastic resonance in coupled nonlinear, dynamical, and
excitable systems [48–52]. It could be shown both analyti-
cally and numerically that in the presence of periodic driving
the FEM can feature stochastic resonance effects.

In particular, we have calculated the exact asymptotic so-
lution for the case of a simple quadratic fitness function with
sinusoidal driving. A main finding is that for this quadratic
fitness function stochastic resonance effects do not occur. In
contrast, for the more complicated case of a single-peaked,
quartic fitness function (Sec. IV B 2) stochastic resonance is
observable. Moreover, this phenomenon can be quantita-
tively understood within the framework of linear response
theory. For example, one is able to calculate a satisfactory
analytic estimate for the critical diffusion strength Dc, at
which the resonance occurs.

According to the results of Sec. V, linear response theory
can also be used in order to predict stochastic resonance
effects in the case of a double-peaked, quartic fitness func-
tion. Here, a weak stochastic resonance effect is observable
only if the frequency of the external signal is sufficiently
large. This result follows from the linear perturbation theory
with respect to the driving amplitude S, and has been cor-
roborated by numerical simulations of the Fisher-Eigen
equation. We therefore conclude that, although the quantita-
tive agreement is essentially limited by the quality of re-
quired eigenvalue approximations, linear response methods
in principle provide a useful tool to predict the appearance of
stochastic resonance in the FEM.
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