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1. Introduction

The functioning of network-organized statistical systems essentially depends on the
nature of interaction between their elements. It is especially due to the e:ect of
disease-causing contacts and topology of networks. This reason as well as the variety
of the displayed nonlinear behavior have made this problem the subject of several stud-
ies by means of fundamental methods of statistical physics. To analyze the epidemic
and disease dynamics complexity, it is necessary to understand the basic principles
and notions of its distribution in long-time memory social media. Here we consider
theoretical and practical aspects of the problem and present the quantitative evidence
con>rming the existence of stochastic long-range memory and robust chaos in a real
time series of respiratory infections of human upper respiratory track. We also discuss
the implications of discrete non-Markov stochastic processes in real social complex
systems from the point of view of the recent theory.
In the last few years it has been well recognized that the study of epidemic and

disease dynamics in social networks is a relevant theoretical issue dealing with the
spread of viruses and diseases of various nature [1–8]. It is connected with the phase
transitions in models of agent spreading in nonsteady systems. In particular, it con-
cerns the development of the models describing the epidemic spread, the forest >res,
the growth of populations, the activity of catalyzers, the formation of stars and galax-
ies. The given problem might be of interest for all those interested in physical prob-
lems, related to the critical phenomenon in the universality class of Reggeon >eld
theory, contact processes, ordinary and directed percolation and scale-free properties in
many real systems such as internet, World Wide Web, food webs, protein and neural
networks.
This study is of signi>cant interest for modern biomedicine, ecology and economy

[9–26]. The epidemic means that a large number of people in a certain country simulta-
neously develop a disease at a certain period of time. In case of “pandemic” people in
several countries develop the same disease at the same period of time. The >rst cases
of respiratory infections with fatal outcome in the USA and Europe were described
at the beginning of the 20th century when about 20 million people died of “Spanish
fever” within the period of 10 months. The pandemic of “Asian” and “Hongkong”
grippe with smaller quantity of fatal outcomes [9–12] were observed in the middle of
the 20th century. The period of pandemic processes is about 30–40 years. As a rule,
epidemics break out in the autumn or in the winter in Northern hemisphere and in the
spring or in the summer in Southern hemisphere. The duration of epidemics is about
1–3 months. Seasonality is one of the typical demonstrations of the phase develop-
ment of epidemic processes. Respiratory infections a:ect people of any age. However
children aged 1–14 develop the disease four times more often than adults. Each epi-
demic process of respiratory infections is accompanied by increasing death rate. The
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parameters of grippe death rate in the world is 0.01–0.2%. The greatest number of
deaths caused by grippe is connected with serious complications after the infection.
Children (up to 2 years old) and elderly people (over 65 years old) are more liable to
this infection and die more often.
Various authors have discovered that the number of people developing the disease

depends to a great extent on ecological and economic conditions. The most common
diseases the population of the earth su:ers from are infections of respiratory organs
among which grippe and acute infections of the upper respiratory track are the main
components. The low standard of living as well as the pollution of the environment
have had their negative inNuence on people’s health. This is the main reason for
the worsening epidemic situation in the world. Respiratory infections cause signi>-
cant economic damage. Expenses caused by epidemics a:ect successful development
of economy due to the expenses needed for >nancing scienti>c actions to prevent epi-
demics. These expenses are commensurable only with the sums earmarked to prevent
heart diseases [13–20]. In many countries of the world great money is spent on the
development of vaccines and serums, as well as prevention of epidemic outbreaks.
However the viruses of grippe and some other respiratory infections have great vari-
ability. There is a great variety of grippe virus cultures. Therefore any coming grippe
variant is diPcult to predict. The identi>cation of the virus presents a great problem,
consequently the prevention of epidemic outbreaks is complicated. Thus new preventive
measures and methods of predicting possible epidemic outbreaks [21–26] are of great
interest. The unexpected outbreak of grippe in March 2003 is a good example of the
case.
Now various methods of description and prediction of epidemic and pandemic pro-

cesses are developed in medicine [21–26]. Hypotheses about risk factors have been
formulated as a result of these studies. The standard statistics indices [26] are used
in traditional epidemic studies. The basic data yield the number of diseases, their in-
tensive parameters and average sizes. Extensive parameters, cumulative data, relative
number of presentation, ratio parameters and standardized parameters are used depend-
ing on the speci>c features of the epidemic process. However existing methods are not
ePcient enough. The model for the spread of an infection is analyzed [27] for di:er-
ent population structures. For more ordered systems, there exists a Nuctuating endemic
state of low infection. At a >nite value of the disorder of the network, a transition to
self-sustained oscillations in the size of the infected subpopulation has been recorded.
A spatial model related to bond percolation for the spread of a disease that includes
variation in susceptibility to infection has was in Ref. [28].
Methods of networks are all important for the solution of the problems related to the

spread of epidemics of grippe and ARTI. Traditionally these systems have been mod-
elled as random graphs, though topology and evolution of real networks are governed
by robust organization principles. In this connection it should be mentioned that an
excellent review of complex networks in a wide range of systems in wild nature and
human society was made in Ref. [29]. A method for embedding scale-free networks
in Euclidean lattices was proposed in Ref. [30]. The critical dynamics, Glauber-type
and Kawasaki-type, on two typical small-world networks, adding type and rewriting
type, was studied in Ref. [31]. Newman [32,33] considered assortative mixing of
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various types using empirical network data analytic models, and numerical simula-
tion. He showed that assortative (or disassortative) mixing is indeed present in many
networks, it can be measured and its e:ect on network structure and behavior can be
examined. Generalized Bethe–Peierls approach to random networks with degree corre-
lations and the analysis of the vertex cover (VC) problem as a prototype optimization
problems de>ned over graphs [34] has shown that uncorrelated power-law networks
are simple from the point of view of combinatorial optimization, and in this case
inhomogeneities of neighboring vertices can be exploited.
In hierarchical networks, the degree of clustering, characterizing di:erent groups,

follows a strict scaling law, which can be used to identify the presence of hierarchical
organization in real networks [35]. The consideration of structured scale free-networks
restores the order–disorder transitions in spite of the hubs, but the value of the order
parameter for the disordered state reveals the existence of ordered clusters [36]. The
nonstandard, susceptible-exposed-infected (SEI), compartmental model for disease epi-
demics comprising latency and temporal decay in the rates of infection, also known as
quenching, was examined in Ref. [37]. Consequently, the study of epidemic models has
been of long-standing interest for physicists. It has been stimulated by the similarity
in spreading phenomena in epidemic and physical systems which means application of
analytical techniques in both cases.
Numerous methods are successfully used in statistical physics to describe distinc-

tive characteristics of chaotic dynamics of various networks. However, three vexing
features that are diPcult for the detailed analysis can be observed in real networks.
Among them: nonstationarity, nonlinearity, and nonequilibrium phenomena. Further-
more, the signi>cant peculiarities of networks are directly related to the discreteness
in time of object–subject registration response. Non-Markov and long-range statistical
memory e:ects play an important role in epidemic dynamics in social networks. For
this reason we o:er a new statistical approach in the research of epidemic processes
with the help of our statistical theory of non-Markov stochastic discrete processes
[38–40]. This method has already been used by the authors to study various real
problems in cardiology [38,40], seismology [39], neuropsychology [41,42] and neuro-
physiology [43]. With the help of this method we intend to >nd the full spectrum of
dynamic, kinetic and spectral characteristics of the studied complex system. We shall
receive a more detailed representation of the stochastic dynamics of epidemic processes
taking into account the discrete behavior and nonstationarity of the dynamic and kinetic
epidemic parameters.
This work deals with the study of statistical properties of epidemic dynamics. The

key distinctions of grippe and respiratory infections epidemic processes are de>ned
with the help of long-range memory e:ects and statistical e:ects of non-Markovity in
these processes. In particular, one of the key problems consists in revealing the role
of randomness, regularity and predictability of epidemic processes.
The paper has the following structure. In Section 2 we show the basic points of our

statistical theory of nonstationary discrete non-Markov processes in complex systems
[38–40]. The description of the experimental data and the technique of their processing
are given in Section 3. The received results and their analysis are submitted in Section
4. The conclusions are submitted in Section 5.
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2. Statistical theory of non-stationary discrete non-Markov processes in complex
systems. Basic concepts and de�nition

A brief description of the theory is presented here. We will consider a spread of
epidemic as a time evolution of the number of patient’s (discrete random variable
x(T )). Therefore, we can use the results of the statistical theory of discrete non-Markov
nonstationary processes for complex systems. The comprehensive description of the
theory and the representation of the quantities used here can be found in the works
published earlier [38–43].
While analyzing complex systems we obtain discrete equidistant series of experi-

mental data, the so-called random variable

X = {x(T ); x(T + �); x(T + 2�); : : : ; x(T + k�); : : : ; x(T + �N − �)} : (1)

It corresponds to a time series of measured signal during the time (N −1)�, where � is
discretization time of the signal. In this work we take the number of patients/day x(T )
as a measurable parameter, (N − 1)� is a time interval of data recording (6 years), �
is 1 day.
For the dynamical analysis, it is more convenient to use a normalized time correlation

function (TCF). For nonstationary discrete processes TCF has the following form (t=
m�; N − 1¿m¿ 1):

a(t) =
1

(N − m)(0)(t)

N−1−m∑
j=0

�x(T + j�)�x(T + (j + m)�) ; (2)

where (0) and (t) is the variances of the initial (t = 0) and >nal (at moment t)
dynamic states of the systems, correspondingly. The properties of TCF a(t) are deter-
mined by the conditions of normalization (at t = 0) and attenuation of correlations (at
t → ∞)

lim
t→0

a(t) = 1; lim
t→∞ a(t) = 0 : (3)

If we take into account the nonstationarity and discreteness of complex systems for
real processes, the kinetic equation for TCF a(t) has the form of a closed set of the
>nite-di:erence kinetic equations of the non-Markov type [38–41]

Ra(t)
Rt

= �1a(t)− ��1
m−1∑
j=0

M1(j�)a(t − j�) : (4)

Here �1 is a relaxation parameter with the dimension of square of frequency, and
parameter �1 describes the eigenspectrum of Liouville’s quasioperator L̂

�1 = i
〈A0k(0)L̂A0k(0)〉

〈|A0k(0)|2〉
; �1 =

〈A0k(0)L̂12L̂21A0k(0)〉
〈|A0k(0)|2〉

; (5)

where angular brackets mean a scalar product of state vectors.
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The function M1(j�) in the r.h.s. of Eq. (4) represents the >rst-order memory function

M1(j�) =
〈A0k(0)L̂12{1 + i�L̂22}jL̂21A0k(0)〉

〈A0k(0)L̂12L̂21A0k(0)〉
; M1(0) = 1 : (6)

In Eqs. (5) and (6) operator L̂ is a >nite-di:erence operator

iL̂=
R
Rt
; Rt = �;

where � is a discretization time step, L̂ij =�iL̂�j (i; j = 1; 2) are matrix elements of
splittable Liouville’s quasioperator, �1 = �;�2 = P = 1 − � and � are projection
operators (for more details, see, Refs. [38–42]). It is easy to see, that in Eq. (6) we
deal with the time correlation of new orthogonal dynamic variable L̂21A0k(0).
Eq. (4) represents the >rst equation in the chain of >nite-di:erence kinetic equations

with memory for the discrete TCF a(t). One can recognize that the memory function
M1(t) takes the statistical memory about previous states of the system into account. By
using Gram–Schmidt orthogonalization procedure [38] we receive the recurrent formula,
in which the senior dynamic variable Wn =Wn(t) is connected to the junior one in
the following way:

W0 = A0k(0); W1 = {iL̂− �1}W0; : : : ;
Wn = {iL̂− �n−1}Wn−1 + �n−1Wn−2 + : : : ; n¿ 1 : (7)

Introducing the corresponding projection operators we come to the following chain of
connected non-Markov >nite-di:erence kinetic equations (t = m�; n= 1; 2; : : :):

RMn(t)
Rt

= �n+1Mn(t)− ��n+1
m−1∑
j=0

Mn+1(j�)Mn(t − j�): (8)

Here �n+1 is an eigenvalue of the Liouville’s quasioperator, and relaxation parameters
�n+1 are determined as follows:

�n = i
〈WnL̂Wn〉
〈|Wn|2〉 ; �n =−〈Wn−1(iL̂− �n)Wn〉

〈|Wn−1|2〉 ; : : : :

In this work we analyze the short time series with the help of Eqs. (4)–(8) where
nonstationary functions may not be taken into account [40]. So, we shall use full
set of the dynamic, kinetic and spectral parameters, functions and characteristics as a
quantitative information measure to describe of spread of epidemic in human popula-
tion. Among them, here are temporal dynamics of the >rst four orthogonal dynamic
variables, phase portraits in some planes of dynamic variables, TCF, junior mem-
ory functions and their power spectra, frequency dependence of >rst three points of
non-Markovity parameter, and local time behavior of the locally average relaxation
parameters.



306                                            

3. Experimental data and data processing

The registration and accounting materials, as well as the results of certain studies are
the initial data for epidemic research in medicine. We have made use of the accounting
materials of Kazan sanitary–epidemiological stations located in industrial districts. The
concrete data were given by the sanitary–epidemiological station of the Privolzhskii
district of Kazan covering the period from 10.27.1995 to 03.05.2002. Fig. 1A presents
the experimental raw data of the epidemic spread, involving the total population of the
Privolzhskii district (about 300 thousand people). The >rst group of the data represents
a 6-year dynamics of grippe, the second group describes a 6-year dynamics of acute
respiratory track infections in this district. The obtained data were processed with
the help of the above introduced technique. The set of three memory functions was
calculated for each sequence of the data. The power spectra for each of these functions
are obtained by the fast Fourier transform (FFT). We will also show the phase portraits
in plane projections of the multidimensional space of the dynamic orthogonal variables.
For a more detailed diagnosis of the system we will consider the frequency spectrum
of the >rst three points of the statistical spectrum of the non-Markovity parameter.
In this study we will use the frequency dependence of the statistical spectrum of
non-Markovity parameter [38–40]

�i(!) =
{
�i−1(!)
�i(!)

}1=2
: (9)

Here i=1; 2; : : : and �i(!) is a power spectrum for ith order memory function of the ith
relaxation level. The statistical spectrum of non-Markovity parameter �i(!) constitutes
an information measure of Markovity and non-Markovity or randomness and regularity
in time evolution of the underlying systems.

4. Discussion of the results

In this section the quantitative and comparative analysis of the 6-year period of
grippe chaotic dynamics (Fig. 1B(a)) and of ARTI (Fig. 1B(e)) will be carried out on
the basis of the theory submitted in Section 3. The time series of the initial signals,
the phase portraits of the dynamic variables, the power spectra of TCF and the junior
functions of memory as well as frequency dependence of the >rst three points of
the statistical non-Markov parameter are submitted in Figs. 1–4. We develop a new
approach in the study of epidemic processes on the basis the local time behavior of
the relaxation and kinetic parameters �1–�3, �1 and �2 (Figs. 5 and 6).
The 6-year sampling of grippe and ARTI dynamics are submitted in Fig. 1B

(Figs. 1B(a)–(d) for grippe, Figs. 1B(e)–(h) for ARTI). The time series of the orthog-
onal variable W0 (Fig. 1B(a)), W1 (Fig. 1B(b)), W2 (Fig. 1B(c)), W3 (Fig. 1B(d)) for
the chaotic dynamics of grippe and ARTI have appreciable symmetry relative to straight
line Wi=0, where i=1–3. The analysis of the time series of variable W0 (Fig. 1B(a))
for a grippe epidemic shows that the moment of the grippe outburst or the beginning of
an epidemic corresponds to the most signi>cant Nuctuations of this dynamic variable.



                                           307

0 500 1000 1500 2000 2500
0

200

400

600

800

1000

t

0 500 1000 1500 2000 2500

t

(a)

N
(t)

0

200

400

600

800
(b)

N
(t)

0 1000 2000 3000
-200

0

200

400

600

800

1000

t

W
0(

t)[
τ]

(a)

0 1000 2000 3000
-400

-200

0

200

400

600

t

W
1(

t)
W

1(
t)

(b)

0 1000 2000 3000
-400

-200

0

200

400

600

t

(c)

0 1000 2000 3000
-400

-200

0

200

400

600

t

(d)

0 1000 2000 3000
-200

0

200

400

600

800

t

W
0(

t)[
τ]

(e)

0 1000 2000 3000
-200
-100

0
100
200
300
400
500
600

t

(f)

0 1000 2000 3000
-200
-100

0
100
200
300
400
500
600

t

W
2(

t)[
τ−1 ]

W
2(

t)[
τ−1 ]

(g)

0 1000 2000 3000
-200
-100

0
100
200
300
400
500
600

t

W
3(

t)[
τ−2 ]

W
3(

t)[
τ−2 ]

(h)

(A)

(B)

Fig. 1. (A) 6-year temporal dynamics of the experimental raw data of grippe (1A(a)) and acute respiratory
track infections (1A(b)) in Privolzhskii district of Kazan, Russia, from 10.27.95 to 03.05.02. The dynamics
of ARTI is initially characterized by a slow increase and then by a slow decrease in the number of patients.
With grippe we have a more sharp picture, characterized by a low level of the background noise, then by a
sudden increase and decrease of the disease. (B) Time series of orthogonal variables W0 (a, e), W1 (b, f),
W2 (c, g), W3 (d, h) of chaotic dynamics of grippe (a–d) and acute respiratory track infections (ARTI)(e–h).
The spectral peaks in time series display the seasonal periodic occurrence of grippe and ARTI epidemics.
The time series of orthogonal variables for the epidemic process of ARTI di:er due to the occurrence of an
appreciable noise.
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Fig. 2. The phase clouds for epidemic processes of (A) grippe and (B) acute respiratory track infections
(ARTI) in plane projections for the various combinations of orthogonal variables Wi , Wj where i; j = 0–3.
During the epidemic of grippe the phase points disperse about the nucleus. The phase clouds for the epidemic
process of ARTI acquires the shape of a “boot” and they clustered around nucleus.

Epidemic outbursts of the disease are located at equal distances from each other. This
is the evidence of periodicity and interval constancy between grippe epidemics within
the whole period of observation. The time series for three orthogonal variables W1
(Fig. 1B(b)), W2 (Fig. 1B(c)), W3 (Fig. 1B(d)) of grippe epidemics are almost per-
fectly symmetrical. The time series of dynamic variables W0 (Fig. 1B(e)), W1
(Fig. 1B(f)), W2 (Fig. 1B(g)), W3 (Fig. 1B(h)) of ARTI epidemiological processes
present a di:erent picture. The visible Nuctuations of the dynamic variables for ARTI
are observed in the autumn–winter period same as in case of grippe epidemics. How-
ever, dynamic noises can be observed between the outbursts of ARTI epidemics. They
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Fig. 3. The power spectra of time correlation function (TCF) �0(!) (a) and of the three junior memory
functions �i(!); i = 1(b), 2(c), 3(d) for the epidemic processes of (A) grippe and (B) acute respiratory
track infections (ARTI). For a more detailed analysis the power spectrum of TCF �0(!) (a) is submitted
in double logarithmic scale. In the area of high frequencies three additional spectral splashes are observed.
The spectral peaks in the registered spectra are the evidence of long-range memory in the system.
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Fig. 4. The frequency dependence of the >rst three points of statistical non-Markov parameter �i(!) for
epidemic processes of (A) grippe and (B) acute respiratory track infections (ARTI). For the >rst point of
�1(!) the splash of Markovization process is observed in the vicinity of !=0. The values of other parameters
�2(!) and �3(!) change in a narrow interval about a unit. This reNects the existence of long-range memory
order in the system.

are represented by monotonously inequable parabolas. One of the half-parabolas cor-
responds to one of the epidemics and another corresponds to the next one. The time
development of orthogonal variables W1 (Fig. 1B(f)), W2 (Fig. 1B(g)), W3 (Fig. 1B(h))
of the ARTI epidemiological process presents a symmetric series about straight line
Wi=0. There are seven outbursts in the time behavior of the dynamic variables in the
seven autumn–winter periods (from 10.27.1995 to 03.05.02). They corresponds to the
seven cycles of grippe and ARTI epidemics. However the time series of orthogonal
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Fig. 5. (a–e) The time dependence of local kinetic and relaxation parameters �1–�3, �1 and �2 for the
epidemic process of grippe in units of �. The sampling of local averaging is equal to 200 points. The sudden
dropout of the system from a balanced condition is determined by the epidemic of grippe. The reversion of
the system into a former steady state de>nes the intervals between the epidemics of grippe.

variables Wi (i = 1–3) for ARTI di:er from grippe’s case in the strongly expressed
asymmetry and the existence of a clearly expressed noise.
In Fig. 2 the phase clouds in the six plane projections of the four >rst dynamic

variables Wi, i = 0–3 for epidemic processes of grippe and ARTI are submitted. In
case of grippe the phase clouds have a well-de>ned asymmetry about the center of
coordinates. All the phase clouds contain a centralized nucleus and an aggregate of
points scattered on perimeter in a fan-shaped way. The interval of the dispersal makes
up 900�. Owing to such asymmetric strati>cation the phase clouds take an elongated
shape. The phase portraits of the ARTI epidemiological process are less symmetrical
about the center of coordinates. The nucleus of the portrait takes the shape of a right
angle and resembles a “boot”. Apical emissions of separate points are appreciable
on each side of the “boot”. The interval of the dispersal of the points decreases up to
700�. The strati>cation of the phase clouds of a grippe epidemiological process is more
prominent, than in case of an ARTI epidemic. The analysis of the data in other Kazan
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Fig. 6. (a–e) The time dependence of local kinetic and relaxation parameters �1–�3, �1 and �2 for epidemic
process of acute respiratory track infections (ARTI) in units of �. The length of the sampling of local
averaging is equal to 200 points. The sharp splash in a time series demonstrates the beginning of an ARTI
epidemic. The end of the epidemic process is de>ned by the following peak. At the moment of epidemic
the system is in an unstable state.

districts reveals a prominent phase portrait of a grippe epidemic. It is an elongation of
the phase portrait for an ARTI epidemic namely its “boot-type” shape.
In Fig. 3 the power spectra of TCF �0(!) and three junior memory functions �i(!),

i = 1–3 for grippe and ARTI epidemiological processes are submitted. The frequency
spectra of �0(!) are given in doubly-log scale for a more detailed analysis of the
data. In case of grippe the fractal dependence in the region of intermediate and high
frequencies is found in the power spectrum of the initial TCF �0(!). The area of
these frequencies is divided by a small outburst of power on frequency ! = 3 ×
10−1 f :u: (1 f :u: = 2�=�). In the domain of the low frequencies sharp breaks of the
spectrum are observed. The frequency dependency of the next three junior memory
functions �i(!); i = 1–3 are accompanied by spectral outbursts at equal intervals and
by condensation of spectral lines near the outbursts. A spectral noise is present in all
diagrams of the frequency dependencies. The spectrum of the initial TCF �0(!) for an
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ARTI epidemic process di:ers from a grippe epidemic only in the high frequency area.
Additional spectral peaks are appreciable at frequencies !=10−1 f :u: and !=10−1=2 f :u:
The power spectra of the three junior memory functions �i(!); i = 1–3 for an ARTI
epidemic have bright fractal dependence with several spectral peaks at every 0:15 f :u.
In Fig. 4 the spectra of the >rst three points of statistical non-Markov parameter

�i(!), where i = 1–3 are presented. Fractalness is appreciable only in the behavior
of �1(!). With approximation to frequency ! = 0 the monotonous ampli>cation of
markovization is observed. The second point �2(!) in the spectra of the non-Markovity
parameter for ARTI and grippe epidemics accept value �2(!) = 1, they are almost
identical with small Nuctuations. It testi>es to strong non-Markovity. The sinuosity
with two frequency crests in area ! = 0:1 and 0:3 f :u: is appreciable in frequency
spectra of the third point of statistical non-Markovity parameter �3(!).
In Fig. 5 the time dependence of local (with local averaging) kinetic and relaxation

parameters �1–�3, �1 and �2 for a grippe epidemic is submitted. The sampling for
the local averaging includes 200 points. The similar size of the sampling allows to
consider the physical nature of a real object (a grippe and ARTI epidemics) in a more
detailed way. Breaks are observed at a great number of points in the time scanning of
the parameters. In the time dependence of all the parameters within 6 years of every
autumn–winter period the system drops out of the steady state and returns to it. The
whole process can be described as recurrence of two various processes. At >rst small
Nuctuations of the parameter are observed. The Nuctuations visibly grow in the moment
of seasonal epidemics. Then the system acquires the state of quasistable balance. The
time interval for each process is 125 points, that corresponds precisely to one of the
autumn–winter periods.
Recently the correlation analysis has experienced a marked lack of information con-

cerning the object of the research. The procedure of local averaging of various
parameters allows to examine separate hidden properties of the studied objects. The
characteristic feature of the usual correlation analysis is the fact that the greatest possi-
ble set of signals is required for the qualitative analysis of the properties of the object
of the research. With a longer sample of such signals it is possible to receive more
reliable information with the help of the correlation analysis. Let us take a random
non-Markov process as an example. This process consists of a sequence of alternating
states. Thus there is necessity for more information about the whole process as well as
its separate states. In this case the use of the correlation analysis for all the time series
will be inePcient. The processing of the signals is necessary for separate local sites
of the whole time series. It will allow to consider the properties of separate dynamic
states of the system.
Hereinafter a new method of data processing based on the local averaging of kinetic

and relaxation parameters is o:ered. This method allows to consider the properties of
separate, non-stationary states of the systems. The idea of the method is the following:
there exists an initial data set. Let us take a sampling in length N of signals and
calculate its kinetic and relaxation parameters. Then the operation of “step-by-step shift
to the right” for one time interval is carried out. The kinetic and relaxation parameters
are calculated again. The “step-by-step shift to the right” is continued to the end of
a time series. Such locally averaged parameters have high sensitivity to the e:ects of
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intermittency and non-stationarity. If the initial time series has some irregularity, it is
instantly reNected in the behavior of the locally averaged parameters.
The use of this method requires the choice of the optimal length of a sampling

which enables to receive the most trustworthy information. If a sampling is too short,
noise e:ects do not allow to receive qualitative information. Besides with a short
length sampling we have signi>cant errors. On the other hand at a great length of a
sampling locally averaged parameters lose “sensitivity” necessary for the study. As a
result of the studies of di:erent lengths of local samplings we have received the optimal
length which makes 100–120 points. Further proofs of all aforesaid will be given
below.
In Fig. 6 the time dependence of local kinetic and relaxation parameters �1–�3, �1

and �2 for an ARTI epidemic is submitted. Two hundred points where selected for
the procedure of localization. Due to a more signi>cant noise of the ARTI chaotic
dynamics the time scanning of the parameters essentially di:ers from grippe. The
time dependence of the >rst parameter �1 reNects the physical features of an ARTI
epidemic process. Instead of small Nuctuations sharp Nuctuation splashes appear at
the beginning of the epidemic. Between them the system acquires a rather quiet state
followed by a new epidemic peak. When the epidemic is over only small Nuctuations
in the system can be appreciable. This process repeats periodically during the whole
long-term interval. Some de>nite regularity can be observed in the time dependence
of the next kinetic and relaxation parameters. The sharp peak at the beginning and at
the end of an ARTI epidemic process is related to them. Only small Nuctuations of
the system are appreciable at the time of an epidemic. After each ARTI epidemic the
considered system comes back to the state of relative balance.
Judging by the behavior of the parameters the distinction between the epidemic of

grippe (I) and that of ARTI (II) comes to the following. The initial values of the
intensity �i(!= 0) for all i = 0–3 for systems I and II di:er by more than one order.
It is the evidence of remarkable distinction in times of relaxation (correlations). For
system I these times are almost 20–50 times shorter, than for system II. The intensity
scales also di:er almost by 50 times. Thus the initial values of �1(!=0) di:er almost
by 5 times for systems I and II.
On the basis of the aforesaid it is possible to come to certain conclusions about great

randomness of grippe dynamics in comparison with ARTI dynamics. The last one has
greater regularity and predictability. An other feature of the investigated epidemics
is the existence of three additional well-de>ned spectral splashes besides the basic
annual one. From Figs. 3(b)–(d) and (f)–(h) one can see that these groups of spectral
peaks correspond to the characteristic frequencies equal to 0.14, 0.28 and 0:43 f :u:
accordingly. The intensity of the high-frequency peak is almost an order lower, than
the two other peaks of lower frequencies.
The clear-cut distinction in the dynamic behavior of grippe and ARTI epidemics is

shown in local time dependence of relaxation constants �1–�3, �1 and �2. Parameters
�i ; i=1; 2; 3; : : : remind Luapunov’s exponents for various relaxation levels. For system
II great regularity is observed. All parameters of �1–�3 are negative, which is the
evidence of relative stability of the system. For system I (grippe) parameter �1(t) gets
small positive values on tail owing to the general instability. It corresponds to the
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Fig. 7. Time dependence of local relaxation rate �1(t) for grippe (b) and ARTI (d) with initial row data for
grippe (a) and ARTI (c). We show extracted sampling for comparison. One can see the dramatic revising
of �1(t) during both epidemic. Time behavior �1(t) at grippe contains isoline’s regime whereas in case of
ARTI one can notice continuous alteration of �1(t).

slump of epidemic. From Eq. (8) one can see, the system becomes unstable at values
�1(t)¿ 0.
The time behavior of parameters �1(t) and �2(t) is more dramatic. If �i(t)¿ 0; i=

1; 2 then solution of Eq. (8) corresponds to a steady condition of social network, if
�i(t)¡ 0 instability grows. From Figs. 5(d) and (e) and 6(d) and (e) it is clear, that
annual epidemics of grippe has a greater instability of the system. In case of ARTI
(system II)the behavior of �2(t) has steady everywhere. However the parameter of
�1(t) in the greater part of the time scale is negative, this testi>es to a loss of stability
in this area.
So, parameter �1(t)=R means a relaxation rate of random process. In case of grippe

(I) isoline exists in the behavior of �1 = �1(t) with values 0:08�−16R6 0:24�−1.
Simultaneously, relaxation rate on recession of grippe epidemic sharply grows up to
(0.8–1.0) �−1, that it is by 4–12 times, approximately. This implies greater stabilization
of the system, than during its rise or at the peak of the epidemic (see, Fig. 7(a) and
(b) for more details).
In case of ARTI isoline does not exist at all in the behavior �1(t). It testi>es to

quasistability and seasonal prevalence in the relaxation behavior, in-whole. Absolute
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Table 1
Some kinetic and relaxation parameters for grippe and ARTI, calculated from our theory, in comparison

�1(�−1) �2(�−1) �3(�−1) �1(�−2) �2(�−2)

Grippe −0:1127 −1:1093 −1:0278 −0:0262 0:1972
ARTI −0:3775 −1:0313 −1:0092 −0:0307 0:1149

values of the relaxation rates Nuctuate within the interval of 0:24�−16R6 0:6�−1.
The relaxation rate on recession of epidemic ARTI increase in 2–2.5 times. Therefore
the system, as a whole, acquire greater macroscopic stability.
We can draw the following conclusion from comparison of relaxation parameter

�1(t) of grippe and ARTI (see, Table 1 for the whole sampling). Relaxation rates di:er
almost by 3.4 times. It testi>es to macroscopic stability of the epidemiological process
of ARTI. On the other hand, local ampli>cation of the relaxation rate (on a recession
of grippe epidemic) in case of grippe creates an additional source of stabilization for
the unstable process of grippe epidemic.
The spread of atypical pneumonia (SARS) makes any research into ARTI epidemics

especially timely. Cases similar to SARS may become more numerous. Thus the method
introduced here might be of great scienti>c signi>cance.

5. Conclusions

In this paper we have shown that the chaotic dynamics of epidemic processes of
grippe and ARTI in real social network may be considered as a stochastic discrete
non-Markov process. It is more convenient to use the statistical theory of discrete
non-Markov processes for real objects and live systems [38–40] to study the similar
processes. The used theory allows to de>ne essential distinctions between the epi-
demic processes of grippe and acute respiratory track infections by degrees of ran-
domness, regularity and predictability. By processing the experimental data about the
number of patient’s we received the time series of dynamic variables Wi(t) and cal-
culated the memory functions and the >rst three points of the statistical spectra of the
non-Markovity parameter. We used the power spectra, which were received with the
help of the fast Fourier transform (FFT) to analyze diverse time functions (correlation
and memory functions).
The new qualitative approach in studying statistical properties of epidemic processes

of grippe and ARTI originates when using locally average kinetic and relaxation pa-
rameters �1–�3, �1 and �2.
On the basis of the conceptions about long-range memory and localization of pa-

rameters it is possible to come to the following conclusions. The epidemic process of
grippe causes a great danger to mankind because of its randomness and unpredictabil-
ity. Each epidemic process of grippe is characterized by a sudden outburst and sudden
attenuation. The peak of an epidemic lasts a comparatively short period of time (60
days). It takes great e:orts to liquidate the consequences of a grippe epidemic. The
epidemic process of ARTI is characterized by a greater regularity and predictability.
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It is accompanied by a small outburst at the beginning of the epidemic, then the number
of patients diminishes. After it a drastic outburst corresponding to the epidemic peak
is observed. The process ends with small short-term splashes which later quickly fade.
Unlike grippe, an ARTI epidemic is characterized by a less drastic outburst and atten-
uation. During the interval insigni>cant outbursts of respiratory infections are observed
followed by periodic outbursts of ARTI.
We have revealed and explained essential distinctions in phase portraits, frequency

spectra and quantitative estimations of memory functions and statistical non-Markov pa-
rameters between the epidemic processes of grippe and ARTI. Relative distinctions of
the quantitative data on epidemics of grippe and ARTI are the evidence of the distinc-
tion in long-range memory, order and organization of each process in a certain social
system. These distinctions allow to de>ne the degree of importance of each epidemic.
In particular, we have shown that the epidemic processes of grippe and respiratory
infections have essentially di:erent quantitative measure of randomness and regularity.
The local kinetic and relaxation parameters of epidemic processes of grippe and

ARTI allow to study statistical features of these systems in detail. The local time
dependencies allow to >nd the internal features of the epidemic process. It helps in the
study of real objects. With abundant experimental data the method allows to de>ne the
laws of epidemic processes.
The received results can be of practical value when studying other diseases as well

as in estimation how serious the threat of epidemic might be.
In this paper we have demonstrated that the set of relaxation, kinetic and spectral

parameters and characteristics of discrete non-Markov stochastic processes are valuable
for the description of the role of randomness, regularity and predictability of epidemic
processes, the spread of grippe and ARTI in the world.
Since the similar situation is typical of the majority of epidemic diseases on networks

our conclusions are of profound importance for a large number of physical, biological
and technological networks. The results received here are connected with non-stationary
and non-ergodic processes in stochastic systems. Therefore they are certainly of value
for physics of the disorder matter in which similar processes can occur on molecular
or structural levels.

Acknowledgements

This work supported by the RHSF (Grant N 03-06-00218a), RFBR (Grant N 02-02-
16146, 03-02-06084, 03-02-96250) and CCBR of Ministry of Education RF
(Grant N E 02-3.1-538). The authors acknowledge Dr. L.O. Svirina for technical
assistance.

References

[1] M.E. Newman, Spread of epidemic disease on networks, Phys. Rev. E 66 (2002) 016 128.
[2] R. Pastor-Satorras, A. Vespignani, Epidemic dynamics in >nite size scale-free networks, Phys. Rev. E
65 (2002) 035 108.



                                           317

[3] P. Grassberger, H. Chate, G. Rousseau, Spreading in media with long-time memory, Phys. Rev. E 55
(1997) 2488.

[4] M. Ipsen, A. Mikhailov, Evolutionary reconstruction of networks, Phys. Rev. E 66 (2002) 046 109.
[5] L.A. Amaral, A. Scala, M. Barthelemy, H.E. Stanley, Classes of small-world networks, Proc. Natl.
Acad. Sci. USA 97 (2000) 11 149.

[6] M. Barthelemy, L.A.N. Amaral, Small-world networks: evidence for a crossover picture, Phys. Rev.
Lett. 82 (1999) 3180.

[7] S. Mossa, M. Barthelemy, H.E. Stanley, L.A.N. Amaral, Truncation of power law behavior in scale-free
network models due to information >ltering, Phys. Rev. Lett. 88 (2002) 138 701.

[8] J. Camacho, R. Guimera, L.A.N. Amaral, Analytical solution of a model for complex food webs, Phys.
Rev. E 65 (2002) 030901(R).

[9] R.F. Burk, W. Scha:ner, M.G. Koenig, Severe inNuenza virus pneumonia in the pandemic of 1968–
1969, Arch. Intern. Med. 127 (1971) 1122.

[10] S.D. Collins, J. Lehman, Excess deaths from inNuenza and pneumonia and from important chronic
diseases during epidemic periods 1918–1951, Public Health Monographs, Vol. 10, 1953, p. 1.

[11] S.W. Schwarzmann, J.L. Adler, R.J. Sullivan, W.M. Marine, Bacterial pneumonia during the Hong Kong
inNuenza epidemic of 1968–1969, Arch. Intern. Med. 127 (1971) 1037.

[12] C.H. Stuart-Harris, Virus of the 1968 InNuenza pandemic, Nature 225 (1970) 850.
[13] C.K. Peng, S.V. Buldyrev, A.L. Goldberger, S. Havlin, M. Simons, H.E. Stanley, Finite size e:ects on

long-range correlations: implications for analyzing DNA sequences, Phys. Rev. E 47 (1993) 3730.
[14] C.K. Peng, S. Havlin, H.E. Stanley, A.L. Goldberger, Quanti>cation of scaling exponents and crossover

phenomena in nonstationary heartbeat time series, Chaos 6 (1995) 82.
[15] L.A.N. Amaral, S.V. Buldyrev, S. Havlin, M.A. Salinger, H.E. Stanley, Power law scaling for a system

of interacting units with complex internal structure, Phys. Rev. Lett. 80 (1998) 1385.
[16] Y. Ashkenazy, P.Ch. Ivanov, S. Havlin, C.K. Peng, A.L. Goldberger, H.E. Stanley, Magnitude and sign

correlations in heartbeat Nuctuation, Phys. Rev. Lett. 86 (2001) 1900.
[17] L.A.N. Amaral, P.Ch. Ivanov, N. Aoyagi, I. Hidaka, S. Tomono, A.L. Goldberger, H.E. Stanley,

Y. Yamamoto, Behavioral-independent features of complex heartbeat dynamics, Phys. Rev. Lett. 86
(2001) 6026.

[18] V. Schulte-Frohlinde, Y. Ashkenazy, P.Ch. Ivanov, L. Glass, A.L. Goldberger, H.E. Stanley, Noise
e:ects on the complex patterns of abnormal heartbeats, Phys. Rev. Lett. 87 (2001) 068 104.

[19] Z. Chen, P.Ch. Ivanov, K. Hu, H.E. Stanley, E:ect of nonstationarities on detrended Nuctuation analysis,
Phys. Rev. E 65 (2002) 041 107.

[20] P.Ch. Ivanov, L.A.N. Amaral, A.L. Goldberger, S. Havlin, M.G. Rosenblum, H.E. Stanley, Z.R. Struzik,
From 1=f noise to multifractal cascades in heartbeat dynamics, Chaos 11 (2001) 641.

[21] R.G. Webster, W.J. Bean, T.O. Gorman, Evolution and ecology of inNuenza A viruses, Microbiology
56 (1992) 159.

[22] H. Scheiblauer, M. Reinacher, M. Tashiro, R. Rott, Interactions between bacteria and inNuenza A virus
in the development of inNuenza pneumonia, J. Infect. Dis. 166 (1992) 783.

[23] F.M. LaForce, K.L. Nichol, N.J. Cox, InNuenza: virology, epidemiology, disease, and prevention, Am.
J. Prev. Med. 10 (1994) 31.

[24] P.O. Hokanen, T. Keistinen, S.-L. Kivela, Factors associated with inNuenza coverage among elderly:
role of health care personnel, Public Health 110 (1996) 163.

[25] Y. Ghendon, InNuenza vaccines: a main problem in control of pandemics, Eur. J. Epidemiol. 10 (1994)
485.

[26] R. Snacken, J.C. Manuguerra, P. Taylor, European inNuenza surveillance scheme on the internet, Method
Inf. Med. 37 (1998) 266.

[27] M. Kuperman, G. Abramson, Small world e:ect in an epidemiological model, Phys. Rev. Lett. 86
(2001) 2909.

[28] C.P. Warren, L.M. Sander, I.M. Sokolov, Firewalls, disorder, and percolation in epidemics,
cond-mat/0106450 v1 (2001) 1.

[29] R. Albert, A.-L. Barabasi, Statistical mechanics of complex networks, Rev. Mod. Phys. 74 (2002) 47.
[30] A.F. Rozenfeld, R. Cohen, D. ben-Avraham, S. Havlin, Scale-free networks on lattices, Phys. Rev. Lett.

89 (2002) 218 701.



318                                            

[31] J.-Y. Zhu, H. Zhu, Introducing small-world network e:ects to critical dynamics, Phys. Rev. E 67 (2003)
026 125.

[32] M.E. Newman, Mixing patterns in networks, Phys. Rev. E 67 (2003) 026 126.
[33] M.E. Newman, Assortative mixing in networks, Phys. Rev. Lett. 89 (2002) 208 701.
[34] A. Vazguez, M. Weigt, Computational complexity arising from degree correlations in networks, Phys.

Rev. E 67 (2003) 027 101.
[35] E. Ravasz, A.-L. Barabasi, Hierarchical organization in complex networks, Phys. Rev. E 67 (2003)

026 112.
[36] K. Klemm, V.M. Equiluz, R. Toral, M.S. Miguel, Nonequilibrium transitions in complex networks:

a model of social interaction, Phys. Rev. E 67 (2003) 026 120.
[37] J.A.N. Filipe, C.A. Gilligan, Solution of epidemic models with quenched transients, Phys. Rev. E 67

(2003) 021 906.
[38] R.M. Yulmetyev, P. H/anggi, F.M. Gafarov, Stochastic dynamics of time correlation in complex systems

with discrete current time, Phys. Rev. E 62 (2000) 6178.
[39] R.M. Yulmetyev, F.M. Gafarov, P. H/anggi, R.R. Nigmatullin, Sh. Kayumov, Possibility between

earthquake and explosion seismogram di:erentiation by discrete stochastic non-Markov processes and
local Hurst exponent analysis, Phys. Rev. E 64 (2001) 066 132.

[40] R.M. Yulmetyev, P. H/anggi, F. Gafarov, Quanti>cation of heart rate variability by discrete nonstationary
non-Markov stochastic processes, Phys. Rev. E 65 (2002) 046 107.

[41] R.M. Yulmetyev, F.M. Gafarov, D.G. Yulmetyeva, N.A. Emelyanova, Intensity approximation of random
Nuctuation in complex systems, Physica A 303 (2002) 427.

[42] R. Yulmetyev, N. Emelyanova, P. H/anggi, F. Gafarov, A. Prokhorov, Long-range memory and
non-Markov statistical e:ects in human sensorimotor coordination, Physica A 316 (2002) 361.

[43] R. Yulmetyev, S. Demin, N. Emelyanova, F. Gafarov, P. H/anggi, Strati>cation of the phase clouds
and statistical e:ects of the non-Markovity in chaotic time series of human gait for healthy people and
Parkinson patients, Physica A 319 (2003) 432.


	Non-Markov stochastic dynamics of real epidemic process of respiratory infections
	Introduction
	Statistical theory of non-stationary discrete non-Markov processes in complex systems. Basic concepts and definition
	Experimental data and data processing
	Discussion of the results
	Conclusions
	Acknowledgements
	References


