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Theory of non-Markovian stochastic resonance
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We consider a two-state model of non-Markovian stochastic resonance ~SR! within the framework of the
theory of renewal processes. Residence time intervals are assumed to be mutually independent and character-
ized by some arbitrary nonexponential residence time distributions which are modulated in time by an exter-
nally applied signal. Making use of a stochastic path integral approach we obtain general integral equations
governing the evolution of conditional probabilities in the presence of an input signal. These equations gen-
eralize earlier integral renewal equations by Cox and others to the case of driving-induced nonstationarity. On
the basis of these equations a response theory of two-state renewal processes is formulated beyond the linear
response approximation. Moreover, a general expression for the linear response function is derived. The
connection of the developed approach with the phenomenological theory of linear response for manifest
non-Markovian SR put forward @I. Goychuk and P. Hänggi, Phys. Rev. Lett. 91, 070601 ~2003!# is clarified and
its range of validity is scrutinized. The theory is then applied to SR in symmetric non-Markovian systems and
to the class of single ion channels possessing a fractal kinetics.
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I. INTRODUCTION

The concept of stochastic resonance ~SR! has been origi-
nally put forward in order to explain the periodicity of gla-
cial recurrences on the Earth @1#. It has gained, however, an
immense popularity in the context of signal transduction in
nonlinear stochastic systems in physics and biology @2–4#.
Paradoxically enough, the detection of beneficial input sig-
nals in the background stochastic fluctuations of a signal-
transmitting physical system can be improved upon corrupt-
ing the information-carrying signal with input noise, or upon
raising the level of intrinsic thermal noise. A first example of
SR has been given for a continuous state bistable dynamics
agitated by the thermal noise and periodically modulated by
an external signal @1#. There exists a huge number of systems
in physics, chemistry, and biology which do exhibit SR
@2–4#. These range from the classical systems to the systems
with distinct quantum features @5#.

Experimentally, SR has been demonstrated in various
macroscopic systems, see, e.g., in the reviews @2,4# and the
references therein. For a mesoscopic system containing a fi-
nite number of molecules SR has been first demonstrated
experimentally in Ref. @6#. The mesoscopic system in Ref.
@6# consists of dynamically self-assembled alamethicin ion
channels of variable size that are placed in a lipid membrane.
Up to this date, however, there remains the challenge to dem-
onstrate SR on the level of single stable molecules. Ion chan-
nels of biological membranes @7,8# present one of the most
appealing objects for such single-molecular studies. The in-
vention of patch clamp technique ~Ref. @8#! made such in-
vestigations possible. The single-molecular SR experiments
which have been performed under the conditions of variable
intrinsic thermal noise intensity @9#, did not arrive at the
convincing conclusions. A recent theoretical study @10# sug-
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gested a parameter regime where SR effect should indeed
occur for a Shaker K1 channel under physiological condi-
tions when external noise is added to the signal. This issue
has further been examined theoretically in Ref. @11#. The
present status calls for both theoretical and experimental in-
vestigations. Particularly, the presence of distinct memory
effects in the dynamics of such single molecules as ion chan-
nels constitutes a major theoretical challenge @12#. The non-
Markovian features caused by these memory effects may be
crucial for the occurrence of stochastic resonance on the
level of single molecules.

The gross features of the observed bistable dynamics can
be captured by a two-state stochastic process x(t) that
switches back and forth between two values x1 and x2 at
random time points $t i%. Such a two-state random process
can be directly extracted from filtered experimental data and
then statistically analyzed. Basically, the process x(t) is
characterized as follows: The sojourn in the state x1 alter-
nates randomly at t i into the sojourn in the state x2, then x(t)
switches back to x1 at time t i11, and so on. If the sojourn
time intervals t i5t i112t i are independently distributed ~a
condition which we shall assume throughout the following!,
such two-state renewal processes are fully specified by two
residence time distributions ~RTDs! c1,2(t) @13#. In the sim-
plest case, which corresponds to the dichotomic Markovian
process, both RTDs are strictly exponential, i.e., c1,2(t)
5n1,2exp(2n1,2t), where n1,2 are the transition rates which
equal the inverse mean residence times ~MRTs!, which are
given by

^t1,2&ªE
0

`

tc1,2~t !dt , ~1!

with n1,25^t1,2&
21. The input signal f (t) causes the transi-

tion rates n1,2 to be time dependent, i.e., n1,2→n1,2(t). More-
over, the RTDs become functionals of the driving signal
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c1,2~ t2t8!→c1,2~ t ,t8!5n1,2~ t !expF2E
t8

t
n1,2~t !dtG .

~2!

As a consequence, the time-dependent probabilities p1,2(t) of
the states x1,2 obey the master equations

ṗ1~ t !52n1~ t !p1~ t !1n2~ t !p2~ t !

ṗ2~ t !5n1~ t !p1~ t !2n2~ t !p2~ t ! ~3!

with the signal-dependent rates which under an adiabatic as-
sumption obey the rate law @14#

n1,2~ t !5n1,2
(0)exp„2@DU1,27Dx f ~ t !/2#/kBT…. ~4!

In Eq. ~4!, n1,2
(0) are the frequency prefactors, DU1,2 are the

heights of the activation barriers, Dxªx22x1.0 is the am-
plitude of fluctuations, kB is the Boltzmann constant, and T is
the temperature. For a weak periodic signal

f ~ t !5 f 0cos~Vt !, ~5!

the use of Eqs. ~3! and ~4! allows one to calculate within
linear response theory the asymptotic, long-time response of
the mean value ^x(t)&5x1p1(t)1x2p2(t) to f (t),

i.e.,

^dx~ t !&5 f 0ux̃~V !ucos„Vt2w~V !…, as t→` . ~6!

In Eq. ~6!, x̃(V) is the linear response function in the fre-
quency domain and w(V) denotes the phase shift. The spec-
tral amplification of signal, h5ux̃(V)u2, exhibits the effect
of SR, i.e., a bell-shaped dependence vs increasing intrinsic
thermal noise strength which is measured by the temperature
T @2#.

The above outlined two-state Markovian theory has been
put forward by McNamara and Wiesenfeld @15#; this ap-
proach has proven very useful over the years as a basic,
prominent model for SR research @2#. Remarkably enough,
this simple model allows one to unify the various kinds of
SR such as periodic, aperiodic @16#, and even nonstationary
SR—within a unifying framework of information theory
@10#.

Many observed bistable stochastic processes x(t) are,
however, truly not Markovian, as can be deduced from the
experimentally observed RTDs. As a matter of fact, any de-
viation of RTDs from the strictly exponential form indicates
a deviation from the Markovian behavior @17,18#. The pro-
foundly non-Markovian case emerges when at least one of
the RTDs possesses a large ~diverging! variance var(t1,2)
5*0

`t2c1,2(t)dt2^t1,2&
2→` . The stochastic dynamics of

single molecules is especially interesting in this respect. For
example, the RTDs of the conductance fluctuations in bio-
logical ion channels are in many cases not exponential @19–
21#. Usually, a sum of many exponentials, c(t)
5( i51

N c in iexp(2nit), (i51
N ci51 is needed to describe the

experimental data @8#. Moreover, in some cases c(t) can
well be described by a stretched exponential @19#, or by a
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power law c(t)}1/(b1t)b,b.0 @20,21#. The power law is
especially remarkable. For example, in Ref. @21# such a
power law behavior has been found for the closed time RTD
of a large conductance ~BK! potassium channel with a power
law exponent b'2.24 yielding formally var(tclosed)5` .
This in turn implies that such conductance fluctuations
should exhibit a characteristic 1/f a noise power spectrum
S( f ) @22#. Indeed, this is the case of BK ion channel @23#, as
well as of some other ion channels @24#.

What are the non-Markovian features of SR in similar
systems? We address this question below using the just de-
scribed non-Markovian generalization of McNamara-
Wiesenfeld model characterized by some arbitrary nonexpo-
nential RTDs c1,2(t) and the corresponding survival
probabilities F1,2(t)5*t

`c1,2(t8)dt8 @13#. Similar models
with alternating renewal processes have been used previ-
ously in the SR theory for some particular stochastic dynam-
ics contracted to the two-state dynamics @25,26#. Moreover,
the class of colored noise driven stochastic resonance @27# is
also intrinsically non-Markovian. All these prior studies have
been restricted, however, to situations with finite memory
effects on a finite time scale. A truly non-Markovian situation
emerges when the memory effects extend practically to in-
finity, exhibiting a scale free, weak power law decay. A phe-
nomenological linear response theory of such genuine non-
Markovian SR ~which does not presume a knowledge of the
underlying microscopic dynamics! has been put forward re-
cently in Ref. @28#. The present work provides further details
and, additionally, presents a more general framework for the
non-Markovian SR theory which extends beyond the linear
response description.

II. GENERAL THEORY

A. Two-state renewal process

To start, let us consider a two-state renewal process
~TSRP! x(t) which takes initially, at time t0, the value x1, or
the value x2 with the probability p1(t0), or p2(t0), corre-
spondingly. At a random time point t1 the process switches
its current state into another state and stays there until the
next random time point t2. Then, the renewal process pro-
ceeds further in time in the same manner. The survival prob-
ability to remain in the state 1, or the state 2 for the time
t i5t i112t i is F1(t i), or F2(t i), correspondingly. These
two survival probabilities completely specify the considered
TSRP @13#. The functions F1,2(t) must satisfy the following
obvious restrictions: ~i! 0<F1,2(t)<1, ~ii! F1,2(t1Dt)
<F1,2(t), Dt.0 ~nonincreasing function of time! ~iii!
F1,2(0)51, ~iv! lim

t→`
F1,2(t)50, but are otherwise arbi-

trary. One example is given by the stretched exponential law
or Weibull distribution

F~t !5exp$2@G~111/a !nt#a%, 0,a,1. ~7!

In Eq. ~7!, n51/^t& is a rate parameter having the meaning
of inverse MRT and G(x) denotes the gamma function.
Moreover, the power law dependence

F~t !5
1

@11nt/g#11g
, g.0 ~8!
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corresponds to the Pareto distribution. Both Weibull and
Pareto distributions typify the so-called fractal dependencies.
In particular, such distributions have been detected for sev-
eral different types of ion channels @19,21#. An interesting
feature of the Pareto distribution is that for 0,g,1 it dis-
plays a diverging variance, var(t)5` , whereas the MRT ^t&
is finite. The closed time intervals of a large conductance
potassium ion channel studied in Ref. @21# seems to obey Eq.
~8! with g'0.24. Other fractal-like distributions can be con-
structed from the expansion over exponentials

F~t !5(
i51

`

c iexp~2n it !, (
i

c i51, ~9!

assuming some recurrence scaling relations among the rate
constants $n i%, e.g., n i115an i , and among the expansion
coefficients $c i%, e.g., c i115bc i , with some structural con-
stants 0,a,1,0,b,1 @29,12,30#. If the hierarchy of rate
constants is obtained from a fundamental rate constant n0
applying a recurrence scaling relation similar to one given
above, the corresponding distribution can be characterized as
a fractal in time. If the whole hierarchy is produced by a
more complicated scaling law involving two, or more inde-
pendent fundamental rate constants, the distribution is mul-
tifractal. The corresponding stochastic processes can be re-
ferred to as fractal renewal processes @22#. Such random
processes presently attract renewed attention in physics and
in mathematical biology @12#.

The negative time derivative

c1,2~t !52
dF1,2~t !

dt
~10!

yields the corresponding residence time distributions @13#.
Next, let us assume that a number of alternations occurred
before the starting time point t0 and the considered process
became homogeneous in time before the observation started
at t0. Then, for such persistent, time-homogeneous process
the RTDs of the first time interval t05t12t0 , c1,2

(0)(t) must
differ from c1,2(t) @13,18,30–32#, namely @33#,

c1,2
(0)~t !5

F1,2~t !

^t1,2&
, ~11!

where ^t1,2& is given by Eq. ~1!. The corresponding survival
probability of the first residence time interval reads

F1,2
(0)~t !5

E
t

`

F1,2~ t !dt

^t1,2&
. ~12!

Moreover, if to choose p1,2(t0) as the stationary values,
p1,2(t0)5p1,2

st , the considered persistent process is station-
ary. From Eq. ~11! it follows that the two-state renewal pro-
cess ~TSRP! can be stationary only if the two mean residence
times ^t1& and ^t2& are finite. A diverging mean residence
time leads to anomalously slow diffusion ~subdiffusion! in
the multistate case @30,32,34#; such a situation is not consid-
ered here.
02110
When a time-dependent input signal is switched on, the
driven TSRP becomes a nonstationary process and the corre-
sponding survival probabilities depend not only on the length
of time intervals, but also on the initial time instant t8 of any
considered residence time interval, i.e., F1,2(t2t8)
→F1,2(t ,t8). The residence time distributions are then ac-
cordingly given by

c1,2~ t ,t8!52
dF1,2~ t ,t8!

dt . ~13!

The corresponding conditional survival probabilities can be
defined as F1,2(tut8)ªF1,2(t81t ,t8) ~here the condition is
different from that used in footnote @33#—in the absence of
signal—notwithstanding the use of identical notations!. The
particular choice, F1,2(t ,t8)5exp(2*t8

t n1,2(t)dt), leads to
Eq. ~2!—the only choice which is consistent with the Mar-
kovian assumption @17#. In the nonstationary driven case, the
distinction between F1,2

(0)(t ,t8) and F1,2(t ,t8), c1,2
(0)(t ,t8) and

c1,2(t ,t8) is not necessary. Nevertheless, we keep formally
this distinction in the following, because when the driving is
being switched off, the process x(t) relaxes to its stationary
state. This distinction becomes very important in order to
construct the evolution operator for time-homogeneous ini-
tial preparations.

B. Integral equations of nonstationary renewal theory

Our immediate goal is to obtain the evolution equations
for the considered stochastic process: we are looking for the
forward evolution operator P(tut0) ~or the matrix of condi-
tional probabilities! connecting the probability vector pW (t)
5@p1(t),p2(t)#T at two different instants of time t and t0,
i.e.,

pW ~ t !5P~ tut0!pW ~ t0!. ~14!

This evolution operator can be explicitly constructed by con-
sidering the contributions of all possible stochastic paths
leading from pW (t0) to pW (t). To start, let us separate these
contributions as follows

P~ tut0!5 (
n50

`

P(n)~ tut0!, ~15!

where the index n denotes the number of alternations that
occurred during the stochastic evolution. The contribution
with no alternations obviously reads,

P(0)~ tut0!5FF1
(0)~ t ,t0! 0

0 F2
(0)~ t ,t0!

G . ~16!

Stochastic paths with a single alternation contribute as

P(1)~ tut0!5E
t0

t
dt1P~ t ,t1!F(0)~ t1 ,t0!, ~17!

where
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P~ t ,t0!5FF1~ t ,t0! 0
0 F2~ t ,t0!

G ~18!

and

F(0)~ t ,t0!5F 0 c2
(0)~ t ,t0!

c1
(0)~ t ,t0! 0 G . ~19!

Next, the paths with two alternations contribute to Eq. ~15!
as

P(2)~ tut0!5E
t0

t
dt2E

t0

t2
dt1P~ t ,t2!F~ t2 ,t1!F(0)~ t1 ,t0!,

~20!

where

F~ t ,t0!5F 0 c2~ t ,t0!

c1~ t ,t0! 0 G . ~21!

Contributions with higher n are constructed along the same
line of reasoning.

This representation of the evolution operator P(tut8) in
terms of an infinite sum over the stochastic paths is exact,
although not very useful in practice. The structure of the
infinite series in Eqs. ~15!–~21! implies, however, the fol-
lowing representation

P~ tut0!5P(0)~ tut0!1E
t0

t
dt1P~ t ,t1!G~ t1 ,t0!, ~22!

where the unknown auxiliary matrix function G(t ,t0) satis-
fies the matrix integral equation

G~ t ,t0!5F(0)~ t ,t0!1E
t0

t
dt1F~ t ,t1!G~ t1 ,t0!. ~23!

The equivalence of Eqs. ~15!–~21! and Eqs. ~22! and ~23!
can be readily checked by solving Eq. ~23! with the method
of successive iterations.

In components, Eq. ~22! reads

P11~ tut0!5F1
(0)~ t ,t0!1E

t0

t
F1~ t ,t1!G11~ t1 ,t0!dt1 ,

~24a!

P22~ tut0!5F2
(0)~ t ,t0!1E

t0

t
F2~ t ,t1!G22~ t1 ,t0!dt1 ,

~24b!

P12~ tut0!5E
t0

t
F1~ t ,t1!G12~ t1 ,t0!dt1 , ~24c!

P21~ tut0!5E
t0

t
F2~ t ,t1!G21~ t1 ,t0!dt1 . ~24d!

It is worth to note that the set of Eqs. ~24a!–~24d! is not
independent. The conservation of probability implies that
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P11~ tut0!1P21~ tut0!51,

P22~ tut0!1P12~ tut0!51. ~25!

The consistency of Eqs. ~24a!–~24d! with the conservation
law, Eq. ~25!, can be checked readily. The matrix integral
equation ~23! reads in components

G11~ t ,t0!5E
t0

t
c2~ t ,t1!G21~ t1 ,t0!dt1 , ~26a!

G22~ t ,t0!5E
t0

t
c1~ t ,t1!G12~ t1 ,t0!dt1 , ~26b!

G12~ t ,t0!5c2
(0)~ t ,t0!1E

t0

t
c2~ t ,t1!G22~ t1 ,t0!dt1 ,

~26c!

G21~ t ,t0!5c1
(0)~ t ,t0!1E

t0

t
c1~ t ,t1!G11~ t1 ,t0!dt1 .

~26d!

From Eqs. ~26a!–~26d! one can deduce independent scalar
integral equations for each component of matrix function
G(t ,t0). Indeed, after substituting G21(t ,t0) from Eq. ~26d!
into Eq. ~26a! the closed equation for G11(t ,t0) follows as

G11~ t ,t0!5j1
(0)~ t ,t0!1E

t0

t
j1~ t ,t1!G11~ t1 ,t0!dt1 . ~27!

In Eq. ~27!,

j1
(0)~ t ,t0!5E

t0

t
c2~ t ,t1!c1

(0)~ t1 ,t0!dt1 ~28!

and

j1~ t ,t0!5E
t0

t
c2~ t ,t1!c1~ t1 ,t0!dt1 ~29!

is a renewal density. Analogously,

G22~ t ,t0!5j2
(0)~ t ,t0!1E

t0

t
j2~ t ,t1!G22~ t1 ,t0!dt1 , ~30!

where

j2
(0)~ t ,t0!5E

t0

t
c1~ t ,t1!c2

(0)~ t1 ,t0!dt1 ,

j2~ t ,t0!5E
t0

t
c1~ t ,t1!c2~ t1 ,t0!dt1 . ~31!

Moreover, for the off-diagonal elements of G(t ,t0) we find

G12~ t ,t0!5c2
(0)~ t ,t0!1E

t0

t
j1~ t ,t1!G12~ t1 ,t0!dt1 ,
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G21~ t ,t0!5c1
(0)~ t ,t0!1E

t0

t
j2~ t ,t1!G21~ t1 ,t0!dt1 . ~32!

Equations ~27!–~31! together with Eqs. ~24a!–~24d! present
the first main result of this work. This set of equations gen-
eralizes the integral equations of renewal theory obtained by
Cox @13# and others @18# to the case of nonstationary renewal
processes modulated by external signals. The solution of the
evolution operator P(tut0) is thereby reduced to solve the set
of independent scalar integral equations for G i j(t ,t0). This
presents an essential simplification as compare to the case of
an evaluation of infinite matrix integral series in Eqs. ~15!–
~21!.

C. Time-homogeneous case

In the absence of a signal, all two-time quantities depend
only on the time-difference t5t2t0. In this case, the inte-
gral equations of renewal theory can be solved formally by
use of the Laplace transform method and the evolution op-
erator ~i.e., its Laplace transform! can be found explicitly.
Let us denote the Laplace transform of any function F(t)
below as F̃(s)ª*0

`exp(2st)F(t)dt. Then, upon Laplace
transforming Eqs. ~24a!–~32!, using Eqs. ~11! and ~12! and
some well-known theorems of Laplace transform, one finds
the explicit expression for the evolution operator P̃(s). It
coincides with the known result in the literature @13,18,28#,
reading

P̃~s !5
1
s F 12

G̃~s !

s^t1&

G̃~s !

s^t2&

G̃~s !

s^t1&
12

G̃~s !

s^t2&

G , ~33!

where

G̃~s !5
~12c̃1~s !!~12c̃2~s !!

~12c̃1~s !c̃2~s !!
~34!

is an auxiliary function.
The existence of finite mean residence times ^t1,2& im-

plies the following useful representation for the Laplace-
transformed RTDs:

c̃1,2~s !ª12^t1,2&s@11g1,2~s !# . ~35!

In Eq. ~35!, g1,2(s) are corresponding functions vanishing at
s→0, i.e., g1,2(s)→0. Note that the functions g1,2(s) are not
necessarily analytical. For example, g(s);sg with some
real-valued exponent, 0,g,1, is allowed, for an example,
see below in Eq. ~94!. Such nonanalytical feature leads to
diverging variance of RTDs. From the formal expression
~33! a number of important results follows:
02110
1. Stationary probabilities

The vector of stationary probabilities pW st5@p1
st ,p2

st#T can
be evaluated as pW st5lims→0@sP̃(s)pW (0)# . With Eqs. ~33!–
~35! one readily obtains the result

p1
st5

^t1&

^t1&1^t2&
, p2

st5
^t2&

^t1&1^t2&
. ~36!

2. Relaxation function

The generally nonexponential relaxation of ^x(t)&
5x1p1(t)1x2p2(t) to the stationary mean value xst5x1p1

st

1x2p2
st is described by the relaxation function R(t), i.e.,

p1,2~ t01t !5p1,2
st 1@p1,2~ t0!2p1,2

st #R~t !, ~37!

where R(t) obeys the Laplace transform

R̃~s !5
1
s 2S 1

^t1&
1

1
^t2&

D 1
s2G̃~s !, ~38!

and G̃(s) is given by Eq. ~34!. The validity of Eqs. ~37! and
~38! can be easily checked upon the use of Laplace trans-
formed Eq. ~14! and the result in Eqs. ~33! and ~34! along
with the normalization condition p1(t0)1p2(t0)51 and Eq.
~36!. It should be emphasized here that the relaxation func-
tion R(t) for the considered persistent renewal process is
unique, i.e., it does not depend on p1,2(t0). This corresponds
to the situation where the random process x(t) has not been
prepared at t5t0 in a particular state x1, or x2, but rather has
almost relaxed to its stationary state. In other words, a num-
ber of alternations occurred before t5t0 and the probability
p1,2(t0) to measure the particular value x1,2 of x(t) at the
instant of time t0 is close to its stationary value p1,2

st . This
class of initial preparations, where the relaxation function
does not depend on the actual initial probabilities, is termed
the time-homogeneous preparation class. This preparation
class @35,36# must be distinguished from strongly non-
equilibrium initial preparations, where the system is pre-
pared, for example, in a particular definite state, say in the
state x1, with the probability one, p1(t0)51.

3. Stationary autocorrelation function and regression theorem

Let us consider next the normalized autocorrelation func-
tion, i.e.,

k~t !5 lim
t→`

^dx~ t1t !dx~ t !&

^dx2&st
~39!

of the stationary fluctuations, dx(t)5x(t)2xst . In Eq. ~39!,

^dx2&st5~Dx !2
^t1&^t2&

~^t1&1^t2& !2
~40!

is the mean-squared amplitude of the stationary fluctuations
and Dx5x22x1 is the fluctuation amplitude. With ^dx(t
1t)dx(t)&5^x(t1t)x(t)&2^x&st

2 , as t→` , and
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lim
t→`

^x~ t1t !x~ t !&5 (
i51,2

(
j51,2

x ix jP i j~t !p j
st , ~41!

we obtain the same result as in Ref. @38#, i.e.,

k̃~s !5
1
s 2S 1

^t1&
1

1
^t2&

D 1
s2G̃~s !. ~42!

Upon comparison of Eq. ~38! with Eq. ~42! we find the fol-
lowing regression theorem for these non-Markovian two-
state processes, namely,

R~t !5k~t !. ~43!

The regression theorem ~43!, which relates the decay of the
relaxation function R(t) to the decay of stationary autocor-
relations k(t), presents a cornerstone result for the deriva-
tion of phenomenological linear response theory for non-
Markovian SR @28#.

Usually, the Laplace transform ~42! cannot be inverted
analytically. If k(t)>0 for all times t, one can define the
mean correlation time

tcorr5E
0

`

k~ t !dt5 lim
s→0

k̃~s !. ~44!

Assuming finite second moments of RDTs, ^t1,2
2 &

5*0
`t2c1,2(t)dt we obtain from Eqs. ~42! and ~44! the

simple result

tcorr5RNMtM , ~45!

where

tM5
^t1&^t2&

^t1&1^t2&
~46!

is the correlation time of the Markovian process possessing
the same MRTs ^t1,2& as the considered non-Markovian pro-
cess. The coefficient

RNM5 1
2 ~C1

21C2
2! ~47!

presents a numerical quantifier of non-Markovian effects in
terms of the coefficients of variation of the corresponding
residence time distributions, i.e.,

C1,25
A^t1,2

2 &2^t1,2&
2

^t1,2&
. ~48!

For example, for the stretched exponential ~7! the coefficient
of variation emerges as

C5A G~112/a !

G2~111/a !
21. ~49!

For the Pareto law distribution in Eq. ~8! it reads
02110
C5H ` ,g<1

Ag11
g21,g.1.

~50!

As a criterion for Markovian vs non-Markovian behavior one
can propose to test the coefficients of variation C1,2 of the
experimentally determined RTDs c1,2(t). In the strict Mar-
kovian case we have C15C251. Large deviations of any of
the two coefficients of variation, C1,2 , from unity indicate
the presence of strong non-Markovian memory effects. The
proposed test-criterion appears experimentally to be more
conveniently applied than the direct test of the Chapman-
Kolmogorov-Smoluchowski equation @37#. For example, in
the fractal model of the ion channel gating by Liebovitch
et al. the closed residence time distribution is fitted by Eq.
~7! with a'0.2 @19#. This yields Cclosed'15.84. Thus, as-
suming that the open residence times are exponentially dis-
tributed, i.e., Copen51, one obtains RNM'126. Further-
more, according to Ref. @21# BK ion channels display a
closed residence time distribution following a Pareto law
with b521g'0.24. In such a case, the memory effects
should depict an infinite range since tcorr5` . In both cases,
the observed two-state fluctuations do exhibit long-range
temporal correlations. The gating dynamics is thus clearly
non-Markovian within such a two-state description.

4. Power spectrum of fluctuations

For the power spectrum of fluctuations, i.e.,

SN~v !52^dx2&stE
0

`

k~ t !cos~vt !dt52^dx2&stRe@ k̃~ iv !# ,

~51!

the use of Eqs. ~40! and ~42! in Eq. ~51! yields
@22,26,28,36,38#

SN~v !5
2~Dx !2

^t1&1^t2&

1
v2Re@G̃~ iv !# . ~52!

It is evident that asymptotically, in the limit v→` , the
power spectrum ~52! is Lorentzian in the case of time-
continuous RTDs @22,39#,

SN~v !→ 2~Dx !2

^t1&1^t2&

1
v2 , as v→` . ~53!

This follows from the fact that lim
v→`

c1,2(iv)50 and thus

lim
v→`

G̃(iv)51 @39#. Practically this situation occurs for
v@^t1,2&

21. On the other hand, one can deduce from Eq.
~51! that in the opposite limit for v→0,

SN~v !→SN~0 !52^dx2&sttcorr , ~54!

where ^dx2&st is the mean-squared amplitude of stationary
fluctuations given by Eq. ~40! and tcorr is given in Eq. ~45!.
A very interesting situation emerges for tcorr→` , implying
SN(0)→` . This occurs when at least one of the residence
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time distributions possesses a diverging variance, cf. Eqs.
~45!–~47!. In such a case, for the low-frequency region v
,^t1,2&

21 the power spectrum drastically differs from the
Lorentzian form. For example, for a symmetric TSRP with
the survival probabilities given by the Pareto distributions
~8! one can show @22# ~see also below! that for 0,g,1,
SN(v);1/v12g. For g→0 this corresponds to celebrated
1/f noise @22,40#.

III. PHENOMENOLOGICAL THEORY
OF LINEAR RESPONSE

It is possible to predict the linear response of the under-
lying stochastic process x(t) to the external driving f (t) by
referring only to information on its stationary properties, i.e.,
without explicit knowledge of the concrete mechanism at
work by which the process x(t) is perturbed by the external
signal. The phenomenological theory of linear response for
general stochastic processes @36,41# and for thermal physical
systems @42# provides a very useful and widely applied tool
to answer this question. It is also the only method available if
no further detailed knowledge of the microscopic dynamics
is at hand for the observed two-state dynamics. This is the
common experimental situation. The common linear re-
sponse approximation

^dx~ t !&ª^x~ t !&2xst5E
2`

t
x~ t2t8! f ~ t8!dt8, ~55!

holds independently of the underlying stochastic dynamics
@36#. In Eq. ~55!, x(t) denotes the linear response function in
the time domain. The universality of the relation ~55! allows
one to find the linear response function x(t) using a properly
designed form of the perturbation f (t). Within the phenom-
enological approach it can be obtained following an estab-
lished procedure @42#: ~i! First, apply a small static force f 0,
~ii! then, let the process x(t) relax to the constrained station-
ary state with mean value xst( f 0), and finally ~iii! suddenly
remove the force at t5t0, see Fig. 1.

Then, in accord with Eq. ~55! the response function reads

x~t !52
1
f 0

d
dt

^dx~ t01t !&, t.0, ~56!

where ^dx(t01t)&5x1p1(t01t)1x2p2(t01t) is deter-
mined by Eq. ~37! with the initial p1,2(t0) taken as p1,2(t0)
5^t1,2( f 0)&/@^t1( f 0)&1^t2( f 0)&# . The limit f 0→0 is im-

FIG. 1. Relaxation of a perturbed persistent renewal process
x(t). A constant force f 0 is applied long before and is released at
t5t0. The mean value ^x(t)& relaxes from the constrained station-
ary value xst( f 0) to its true stationary value xst .
02110
plicitly assumed in Eq. ~56!. Expanding p1,2(t0) to first order
in f 0 we find with Dx5x22x1

^dx~ t01t !&5
^dx2&st

Dx @b22b1#R~t ! f 01o~ f 0!, ~57!

where

b1,2ª
dln^t1,2~ f 0!&

d f 0
U
f 050

. ~58!

Note that in the derivation of this result it is tacitly assumed
that the initial constrained stationary populations p1,2(t0) at
t5t0 belongs to the class of time-homogeneous initial prepa-
rations @36# for the process x(t) in the absence of applied
force. This seems a natural and intuitively clear assumption
in view of the facts that the limit f 0→0 has to be taken in
Eq. ~56! at the very end of calculation, and the considered
process is persistent. Nevertheless, this commonly accepted
assumption is a hidden hypothesis which, strictly speaking,
cannot be proven within the phenomenological approach.

Upon combining Eq. ~57! with the regression theorem
~43! we obtain from Eq. ~56!, after taking the limit f 0→0,
the fluctuation theorem @28#

x~t !52@b22b1#
u~t !

Dx
d
dt

^dx~ t1t !dx~ t !&st , ~59!

wherein u(t) denotes here the unit step function. The non-
Markovian fluctuation theorem ~59! presents a prominent re-
sult @28#; in particular, it does not assume thermal equilib-
rium @36#. In the frequency domain it reads

x̃~v !5
~b22b1!^dx2&st

Dx @11iv k̃~2iv !# , ~60!

where x̃(v)5*2`
` x(t)e ivtdt denotes the linear response

function in the frequency domain, and k̃(s) is given by Eq.
~42!. Substitution of Eqs. ~42! and ~40! in Eq. ~60! yields

x̃~v !5
~b22b1!Dx
^t1&1^t2&

i
v
G̃~2iv !, ~61!

where G̃(s) is given in Eq. ~34!. The expression ~61! to-
gether with Eq. ~34! connects the linear response function
x̃(v) with the Laplace-transformed residence time distribu-
tions c̃1,2(iv), i.e., with the characteristic functions of the
RTDs.

If, in addition, the mean residence times obey the thermal
detailed balance relation

^t1~ f 0!&

^t2~ f 0!&
5expS 2e~T !2 f 0Dx

kBT
D , ~62!

where e(T) is the free-energy difference between two meta-
stable states, we recover for the fluctuation theorem in Eq.
~59! the form that characterizes classical equilibrium dynam-
ics @36,42,43#, i.e.,
4-7
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x~t !52
u~t !

kBT
d
dt

^dx~t !dx~0 !&st . ~63!

Equation ~61! then yields

x̃~v !5
~Dx !2

kBT
1

^t1&1^t2&

i
v
G̃~2iv !. ~64!

For example, this result is valid for an Arrhenius-like depen-
dence of ^t1,2& on temperature T and force f 0, i.e.,

^t1,2~ f 0!&5A1,2expS DU1,27Dx1,2f 0
kBT

D , ~65!

where DU1,2 are the heights of activation barriers, Dx1
5zDx , Dx25(12z)Dx with Dx5x22x1 , 0,z,1. Equa-
tion ~63! presents a key result because it provides a link
between the phenomenological theory of linear response
theory and the actual physical processes which are in thermal
equilibrium and do exhibit long-range time correlations. Let
us assume, for example, the following situation: The ob-
served two-state process results from thermally activated
transitions in a complex potential energy landscape U(xW )
possessing two domains of attraction ~i.e., two metastable
states! separated by distance Dx along the direction of the
reaction coordinate x which describes transitions between the
metastable states. Next, let us assume that the coupling of the
external force f (t) to the dynamics has the potential energy
form U int52x f (t). Then, the classical equilibrium fluctua-
tion theorem ~63! follows from first principles @42#, or, like-
wise, from a mesoscopic starting point in terms of the gen-
eralized master equation for the thermal equilibrium
dynamics @43#; in other words, it is exact. The nonexponen-
tial features of the RTDs in the described situation stems
from the motions ‘‘perpendicular’’ to the above reaction co-
ordinate x. In such a case, the thermodynamic relations like
Eq. ~62! are compatible with non-Markovian kinetics. This is
the case where the phenomenological theory of linear re-
sponse in non-Markovian systems has a firm foundation. The
readers should be warned, however, that the phenomenologi-
cal theory is not universally valid for nonequilibrium physi-
cal systems; see, for an example in Ref. @44#. Nevertheless,
below we explicitly define an universality class of such sys-
tems ~which are beyond the thermal equilibrium class! where
its validity can be proven on a more general basis.

IV. ASYMPTOTIC RESPONSE THEORY BASED
ON DRIVEN RENEWAL EQUATIONS

Starting from the driven renewal equations ~24a!–~32!
one can develop the theory of the linear and the nonlinear
response which possesses a broader range of validity as com-
pared to the above phenomenological theory. For a periodic
signal ~switched on in the infinite past! like in Eq. ~5!, the
conditional survival probabilities F1,2(tut)ªF1,2(t1t ,t)
acquire ~at asymptotic times t@t0) the time periodicity in t
of the driving signal and therefore can be expanded into the
Fourier series, i.e.,
02110
F1,2~tut !5 (
n52`

`

F1,2
(n)~t !exp@2inVt# ,

F1,2
(2n)~t !5@F1,2

(n)~t !#*. ~66!

Similar expansions hold also for the conditional residence
time distributions c1,2(tut) with the corresponding expan-
sion coefficients c1,2

(n)(t)52(d/dt)F1,2
(n)(t). Note that

F1,2
(0)(t) and c1,2

(0)(t) in this section denote the Fourier expan-
sion coefficients with n50. These quantities are clearly not
related to the survival functions ~12! and RTDs ~11! of the
first time interval. We hope that such use of notations will
not confuse the readers. The corresponding Laplace-
transformed quantities of the t-dependent Fourier coeffi-
cients c̃1,2

(n)(s) and F̃1,2
(n)(s) in Eq. ~66! are related by

c̃1,2
(n)~s !5dn ,02sF̃1,2

(n)~s !. ~67!

Our goal is to evaluate the asymptotic behavior of the popu-
lations p1,2

(as)(t) and of the mean value ^x (as)(t)&. To do so,
one needs to determine the asymptotic evolution operator
P (as)(t)ªlimt0→2`

P(tut0). Obviously, P11
(as)(t)5P12

(as)(t)
and P22

(as)(t)5P21
(as)(t). Moreover, p1

(as)(t)5P11
(as)(t),

p2
(as)(t)5P22

(as)(t). Next, let us define the auxiliary quantity
G(as)(t) as G(as)(t):5limt0→2`

G(t ,t0). Then, Eqs. ~24a!
and ~27! in the limit t0→2` yield

p1
(as)~ t !5E

2`

t
F1~ t ,t1!G11

(as)~ t1!dt1 , ~68!

where G11
(as)(t) is solution of the integral equation:

G11
(as)~ t !5E

2`

t
j1~ t ,t1!G11

(as)~ t1!dt1 , ~69!

with the renewal density j1(t ,t1) given in Eq. ~29!. The
equation determining p2

(as)(t) likewise reads

p2
(as)~ t !5E

2`

t
F2~ t ,t1!G22

(as)~ t1!dt1 , ~70!

where G22
(as)(t) is the solution of integral equation

G22
(as)~ t !5E

2`

t
j2~ t ,t1!G22

(as)~ t1!dt1 , ~71!

with j2(t ,t1) given in Eq. ~31!. Note that the conditional
renewal densities j1,2(tut):5j1,2(t1t ,t) also acquire a time
periodicity in t and can be represented in the form like Eq.
~66! with the corresponding expansion coefficients j1,2

(n)(t).
One can show that the corresponding Laplace-transformed
quantities j̃1,2

(n)(s) are related with the quantities c̃1,2
(n)(s) as

follows:

j̃1
(n)~s !5 (

m52`

`

c̃2
(m)~s !c̃1

(n2m)~s1imV !,
4-8
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j̃2
(n)~s !5 (

m52`

`

c̃1
(m)~s !c̃2

(n2m)~s1imV !. ~72!

For periodic driving f (t), both p1,2
(as)(t) and G11,22

(as) (t) must be
periodic functions of time @2# and can be expanded into Fou-
rier series

p1
(as)~ t !5 (

k52`

`

p1,2
(k)e2ikVt, p1,2

(2k)5@p1,2
(k)#* ~73!

and

G11,22
(as) ~ t !5 (

k52`

`

g1,2
(k)e2ikVt, g1,2

(2k)5@g1,2
(k)#*, ~74!

respectively.
Using Eqs. ~5! and ~55! and the expansion ~73! one can

show that the coefficient p1
(1) in Eq. ~73! determines the lin-

ear response function x̃(V) in the frequency domain as

x̃~V !52
2Dx
f 0

p1
(1) ~75!

in the limit f 0→0. Moreover, from the normalization condi-
tion p1

(as)(t)1p2
(as)(t)51 it follows that

p1
(0)1p2

(0)51, p1
(n)52p2

(n) for nÞ0. ~76!

Upon substituting Eqs. ~73! and ~74! and the expansions like
Eq. ~66! into Eqs. ~68!–~71!, performing the time integration
and comparing the coefficients of the Fourier expansions on
the left- and right-hand sides of the corresponding equations
we finally end up with

p1
(k)5 (

n52`

`

F̃1
(n)~2ikV !g1

(k2n) , ~77!
02110
g1
(k)5 (

n52`

`

(
m52`

`

c̃2
(m)~2ikV !

3c̃1
(n2m)~2i@k2m#V !g1

(k2n) , ~78!

and

p2
(k)5 (

n52`

`

F̃2
(n)~2ikV !g2

(k2n) , ~79!

g2
(k)5 (

n52`

`

(
m52`

`

c̃1
(m)~2ikV !

3c̃2
(n2m)~2i@k2m#V !g2

(k2n) . ~80!

The relations ~77!–~80! also serve as the basis for a response
theory without restriction on the linear response approxima-
tion. In order to apply these equations, one has to specify the
expansion coefficients in Eq. ~66!, i.e., to specify the way
how the external signal f (t) enters the conditional residence
time distributions c1,2(tut), or, equivalently, the conditional
survival probabilities F1,2(tut) to the required order in the
signal amplitude f 0. It is worth noting that the solutions of
Eqs. ~78! and ~80! are defined up to some arbitrary constants
which can be fixed at the end of calculations by applying the
normalization relations in Eq. ~76!.

In the linear response approximation, F̃1,2
(0)(s)5F̃1,2(s),

i.e., F̃1,2
(0)(s) coincide with the unperturbed survival prob-

abilities F̃1,2(s). Moreover, F̃1,2
(1)(s)} f 0. All the higher or-

der terms F̃1,2
(n>2)(s) can be neglected, being of higher order

proportional to f 0
n , n>2. The same holds true for c̃1,2

(n)(s).
After some cumbersome algebra, one finds from Eqs. ~77!–
~80! an expression for p1

(1) , which then by use of relation
~75! yields
x̃~V !52
2iDx
f 0V

1
^t1&1^t2&

c̃2
(1)~2iV !@12c̃1~2iV !#2c̃1

(1)~2iV !@12c̃2~2iV !#

12c̃1~2iV !c̃2~2iV !
. ~81!
The result in Eq. ~81! presents a second cornerstone result of
this work. Note that this general result depends on the quan-
tities c̃1,2

(1)(s)} f 0 which do not follow directly from the char-
acteristic functions of stationary RTDs, i.e., c̃1,2(s), but their
knowledge requires one to specify a microscopic model.
Generally, Eq. ~81! is not mathematically reducible to the
result ~61! of the phenomenological theory. A question arises
whether such a reduction is possible in practice and the phe-
nomenological theory of linear response can be put on a
more firm ground beyond the time-homogeneous preparation
class result in Eq. ~61! of which the thermal equilibrium
result in Eq. ~64! is a special case. Below we describe a
rather broad class of relevant systems.
Models with form-invariant RTDs

Let us assume that the survival probability and the corre-
sponding RTD can be parametrized by a single frequency
parameter n which has the meaning of an inverse mean resi-
dence time, i.e., n5^t&21. Furthermore, we assume that a
weak signal f (t) causes n to became time dependent, i.e.,

n→n~ t !5n@12b f ~ t !# , ~82!

with b!1/f 0 ~the subscripts 1,2 are suppressed!. Moreover,
the survival probabilities become modified applying the fol-
lowing rule: nt→* t

t1tn(t8)dt8. More generally, let us con-
4-9



I. GOYCHUK AND P. HÄNGGI PHYSICAL REVIEW E 69, 021104 ~2004!
sider arbitrary survival probabilities of the form ~9! general-
ized to the time inhomogeneous case in the following way

F~t !→F~tut !5(
i51

`

c iexpS 2E
t

t1t

n i~ t8!dt8D , (
i

c i51.

~83!

In Eq. ~83!, we assume that ~to leading order! neither the
expansion coefficients c i nor the ratios between any of n i(t)
and n j(t) are modified by the applied signal f (t), i.e.,

n i~ t !
n j~ t !

5a i j , ~84!

with a i j being some structural constants. This covers fractal
~although not multifractal! time distributions. Put differently,
the scaling law which produces the whole hierarchy of rate
constants out of a single rate constant is invariant of the
applied signal. If the mean residence time ^t&5( ic i /n i ex-
ists, one can always set n5^t&21 as the relevant rate con-
stant in the absence of driving. This rate will acquire an
explicit time dependence like in Eq. ~82! when the signal is
switched on. Given our assumptions, all the time-dependent
rates n i(t) in Eq. ~83! will be proportional to the rate n(t) in
Eq. ~82!. Then, in the lowest first order in b f 0, we find

F~tut !5F~t !1bc~t !E
t

t1t

f ~ t8!dt8. ~85!

From Eq. ~85! we obtain upon observing Eq. ~5!

F1,2
(1)~t !5

1
2 i

b1,2f 0
V

c1,2~t !@exp~2iVt !21# ~86!

and

F̃1,2
(1)~s !52

1
2 i

b1,2f 0
V

@ c̃1,2~s !2c̃1,2~s1iV !# . ~87!

Observing Eq. ~67! by taking into account c̃1,2(0)51 in Eq.
~87! thus yields

c̃1,2
(1)~2iV !52 1

2 b1,2f 0@12c̃1,2~2iV !# . ~88!

Substituting Eq. ~88! into Eq. ~81! we recover the result of
the phenomenological theory in Eq. ~61!. In conclusion, for
the considered class of models the nonequilibrium fluctua-
tion theorem ~61! is well justified. This model class can
therefore be reconciled with the assumption of time-
homogeneous initial preparations used in the phenomeno-
logical theory of linear response ~see Sec. III!. This assump-
tion is naturally not always justified a priori. It rather
delimits an important and rather broad class of correspond-
ing physical systems. Nevertheless, the equilibrium fluctua-
tion theorem ~63! presents a fundamental relation which
must be obeyed for all thermal equilibrium systems. This
imposes a salient restriction on mesoscopic models leading
to the observed equilibrium non-Markovian dynamics. In
particular, if one knows that the considered system is in the
thermal equilibrium, one must use the rigorous relation ~64!,
021104
rather than Eq. ~81! for the calculation of the linear response.
This constitutes the essence of the phenomenological theory
of non-Markovian stochastic resonance developed in Ref.
@28#. For other systems, e.g., for those modeling neuronal
dynamics ~which are far away from thermal equilibrium! the
use of Eq. ~81! is preferred. In order to apply Eq. ~81!, how-
ever, one must also specify the underlying nonequilibrium
microscopic dynamics in the presence of a time-periodic
stimulus. This means that the time-inhomogeneous condi-
tional RTDs c1,2(tut) must be measured, or modeled ~to the
linear order! in the driving signal strength. We next present a
detailed study of non-Markovian stochastic resonance in
thermal equilibrium systems that do exhibit prominent tem-
poral long-range time correlations @28#.

V. STOCHASTIC RESONANCE

In the presence of applied periodic signal ~5!, the spectral
power amplification ~SPA! @2,45#, h(V)5ux̃(V)u2 reads by
use of the fluctuation theorem in Eq. ~64! upon combining
~39!,~42!,~40!, ~65! as follows

h~V ,T !5
~Dx/2!4

~kBT !2
n2~T !

cosh4@e~T !/~2kBT !#

uG̃~ iV !u2

V2 .

~89!

In Eq. ~89!, n(T)5^t1&
211^t2&

21 denotes the sum of ef-
fective rates. The quantity e(T)5DU22DU11TDS denotes
the free-energy difference between the metastable states
which includes the entropy difference DSªS22S1
5kBln(A2 /A1). In the Markovian case we obtain G̃(s)
5s/(s1n) and Eq. ~89! equals the known result, see in
Refs. @2,45#.

The signal-to-noise ratio ~SNR! is given within linear re-
sponse approximation by

RSN~V ,T !ª
p f 0

2ux̃~V !u2

SN~V !
, ~90!

where SN(v), Eq. ~51!, is the spectral power of stationary
fluctuations @2#. By use of Eq. ~89!, we obtain

RSN~V ,T !5
p f 0

2~Dx/2!2

2~kBT !2

n~T !

cosh2F e~T !

2kBT
G N~V !, ~91!

where the term

N~V !5
uG̃~ iV !u2

Re@G̃~ iV !#
~92!

denotes a frequency- and temperature-dependent non-
Markovian correction. For arbitrary continuous c1,2(t) the
function N(V) approaches unity for high-frequency signals,
V@^t1,2&

21. Thus, Eq. ~91! reduces in this limit to the
known Markovian result @2#, i.e., the Markovian limit of
SNR is assumed asymptotically in the high-frequency re-
gime. More interesting, however, is the result for small fre-
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quency driving. In the zero-frequency limit we find N(0)
51/RNM with RNM given in Eq. ~47!. With RNM5` as it is
the case for the Pareto distribution ~8! with 0,g,1, N(0)
50, i.e., RSN(V50,T)50 as well. Consequently, ultraslow
signals are difficult to detect within the SNR-measure in a
strongly non-Markovian situation.

A. Symmetric SR

As a first example, we address non-Markovian SR in a
symmetric system with the survival probabilities F1,2(t) de-
scribed by the identical power laws ~8! with n5^t&21 deter-
mined from Eq. ~4! with f (t)50, n1,2

(0)5n0 and DU1,2
5DU . In this case, the Laplace-transformed RTDs read

c̃~s !512~g^t&s !g11exp~g^t&s !G~2g ,g^t&s !, ~93!

where G(x ,y) is the incomplete gamma function @47#. For
0,g,1, the distribution ~93! has a diverging variance; its
small-s expansion reads

c̃~s !'12^t&s1ggG~12g !@^t&s#11g. ~94!

Using Eqs. ~94! and ~34! in Eq. ~52! we obtain for the
low-frequency part of the power spectrum

SN~v !'
1
2 ~Dx !2G~12g !sin~pg/2!

g^t&

@g^t&v#12g
.

~95!

To obtain the spectral amplification ~89! and the SNR ~91!
numerically one has to use Eq. ~93! in Eq. ~34!. For g.1,
the power spectrum of this process mimics a conventional
Lorentzian. Moreover, for g@1, C'1, cf. Eq. ~50!. Thus,
one can expect that for large g the considered situation does
not differ much from the Markovian case, at least qualita-
tively. Indeed, for very large g;100 the discrepancy with
the Markovian case in the SNR behavior vs noise intensity
D5kBT is not detectable. The well-known bell-shaped sto-
chastic resonance behavior is reproduced with the maximum
at D5DU/2. Nevertheless, in the behavior of h(V ,T) some
discrepancy still remains detectable even for such large g
~not shown!.

Next, the case with 0,g<1 is of major interest as it is
qualitatively very distinct from the Markovian stochastic
resonance, see Fig. 2. The reason is that the mean correlation
time tcorr in Eq. ~44! becomes formally infinite and the
power spectrum exhibits a typical 1/f a- characteristics, with
a512g , cf. Eq. ~95!. Nevertheless, an important time scale
of the stochastic dynamics does still exist: It is defined by the
mean time of stochastic turnovers between the metastable
states, t0(D)52^t&. Invoking the reasoning of a stochastic
synchronization of stochastic resonance @45# one can expect
stochastic resonance to occur when the time scale of stochas-
tic turnovers t0(D) matches the period of external driving
T52p/V , i.e., t0(D);T. Indeed, Fig. 2~a! unambiguously
demonstrates the stochastic resonance phenomenon for a
non-Markovian system with g50.2. Thus, the interpretation
of SR as the phenomenon caused by stochastic synchroniza-
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tion between the time scales of the random, temperature
driven transitions, and the external periodic modulations
@2,45# can be extended even onto this extreme non-
Markovian case ~with diverging mean correlation time,
tcorr5`). Note, however, that the maximal value of the
spectral amplification of signal is strongly suppressed in the
present case by the factor of about 20 as compared with the
corresponding Markovian counterpart possessing the same
^t&, see Fig. 2~b!.

In contrast to the overall simpler behavior of the spectral
amplification measure the SNR displays prime features, cf.
Figs. 3~a! and 3~b!. First, the SNR becomes frequency de-
pendent. In the limit V→0, we obtain for the form-factor
N(V) in Eq. ~92!,

N~V !'
@^t&V#12g

2sin~pg/2!ggG~12g !
. ~96!

In this limit, the signal-to-noise ratio can be approximated as

RSN~V ,D !'
p

4 ~ f 0Dx/2!2

3
~2n0!g

sin~pg/2!ggG~12g !

3
exp~2gDU/D !

D2 V12g. ~97!

This SNR expression ~97! displays several nontrivial fea-
tures: ~i! the stochastic resonance peak occurs at smaller
noise strength DNM(V→0)5gDU/2 as compare to the Mar-
kovian case, where DM5DU/2. ~ii! The SNR displays a
nontrivial, power law dependence on the angular driving fre-
quency RSN(V);V12g. Moreover, with the increasing an-
gular frequency V of signal the signal-to-noise ratio RSN(V)
should approach its frequency independent Markovian limit.
Thus, the resonance value DNM(V) becomes frequency de-
pendent for an intermediate range of frequencies and ap-
proaches the Markovian value DM in the limit of high fre-
quencies. This profound frequency dependence of non-

FIG. 2. The spectral amplification of the signal ~in arbitrary
units! is depicted vs the thermal noise intensity D5kBT at different
driving frequencies V: ~a! non-Markovian symmetric system and
~b! its Markovian counterpart. In the non-Markovian case, both
RTDs follow a Pareto law with g50.2. D is scaled in units of the
barrier height DU; V is scaled in units of n0.
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Markovian stochastic resonance is very distinct from its Mar-
kovian counterpart, compare Fig. 3~a! with Fig. 3~b!.

B. SR in ion channels with fractal kinetics

Our second example pertains to the non-Markovian SR in
an asymmetric system. An especially interesting case
emerges when one of the RTDs is exponential, while the one
presents a power law with a giant ~divergent! dispersion.
Interestingly enough, such a case apparently is realized in
nature for the gating dynamics of the locust BK channel @21#.
Indeed, this and some other ion channels exhibit a fractal
gating kinetics together with the 1/f a noise power spectrum
of fluctuations @21,23,24,46#. In the context of gating dynam-
ics, x(t) corresponds to the conductance fluctuations and the
forcing f (t) is proportional to the time-varying transmem-
brane voltage. For a locust BK channel the measured unper-
turbed closed time statistics c1(t) can be approximated by a
Pareto law ~8! with g'0.24 and ^t1&50.84 ms @21#. The
open time RTD assumes an exponential form with ^t2&
50.79 ms @21#.

Unfortunately, neither the voltage, nor the temperature de-
pendence of the mean residence times are experimentally
available. For this reason, we employ here the common
Arrhenius dependence in Eq. ~65! with some characteristic
parameters, namely, because the temperature dependence of
open-to-closed transitions is typically strong @7#, we assume
a high activation barrier, i.e., DU25100 kJ/mol
(;40 kBTroom). The closed-to-open transitions are assumed
to be weakly temperature dependent with DU1510 kJ/mol.
Because ^t1&;^t2& at room temperature Troom , the differ-
ence between DU1 and DU2 is compensated by an entropy
difference DS;236kB . The physical reasoning is that the
closed time statistics exhibits a power law, i.e., the confor-
mations in the closed state form a self-similar hierarchy and
are largely degenerate @46#. This in turn implies a larger en-
tropy as compared to the open state.

The normalized autocorrelation function k(t) and the
power spectrum SN(v) of the current fluctuations are of
prime interest. In the considered case, the auxiliary function
~34! simplifies to

FIG. 3. Signal-to-noise ratio ~in arbitrary units! vs thermal noise
intensity D5kBT at different driving frequencies V: ~a! non-
Markovian symmetric system and ~b! its Markovian counterpart. In
the non-Markovian case, both RTDs follow a Pareto law with g
50.2. D is scaled in the units of barrier height DU , V is measured
in units of n0.
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G̃~s !5
^t2&s@12c̃1~s !#

^t2&s112c̃1~s !
, ~98!

where c̃1(s) is given by Eq. ~93! with ^t&5^t1&. The
Laplace transform of k(t) can in the limit s→0 be approxi-
mated as

k̃~s !→ ggG~12g !^t1&^t2&

^t1&1^t2&
@^t1&s#g21. ~99!

From Eq. ~99! the long-time (t→`) behavior of the autocor-
relation function follows immediately by virtue of a Taub-
erian theorem @30#, namely,

k~t !→p2
stS t

g^t1&
D 2g

, ~100!

where p2
st is the channel’s stationary opening probability. The

result in Eq. ~100! describes a power law decay with an
exponent g50.24. In Fig. 4~a!, this analytical result is com-
pared with the numerical inversion of k̃(s) with G̃(s) in Eq.
~98!, obtained due to the Stehfest algorithm @48#. This figure
shows that the long-time asymptotical behavior of k(t) in-
deed obeys the power law in ~100! for t.10 sec. However,
for smaller t,10 sec some kind of transient behavior occurs
which cannot be characterized by a simple power law. Nev-
ertheless, the slow decay of correlations is clearly nonexpo-
nential.

For v@^t1,2&
21 the power spectrum of fluctuations is ex-

pected to approach a Lorentzian tail, S(v);v22. Indeed,
this behavior starts in Fig. 4~b! for v.500 sec21. The non-
trivial frequency dependence emerges for the sufficiently
small v!^t1,2&

21. In this case we obtain from Eq. ~99!

S~v→0 !'2~Dx !2
^t1&

2^t2&
2

~^t1&1^t2& !3

3G~12g !sin~pg/2!
g

@g^t1&v#12g
. ~101!

FIG. 4. ~a! The normalized autocorrelation function of current
fluctuations, see Eq. ~39!, and ~b! the corresponding power spec-
trum for the studied model of locust BK channel. The amplitude of
current fluctuations is taken to be 10 pA. The broken line in ~a!
corresponds to the long-time asymptotic, Eq. ~100!, being in agree-
ment with the numerical result ~full line! in long-time limit.
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Thus, for g50.24 we have S(v→0)}1/va with a512g
50.76. This typical 1/f a noise behavior is depicted in Fig.
4~b!. We should remark, however, that the experiment @23#
gives a slightly different value of a'1. The reasons of this
discrepancy are presently not clear. One possibility is that the
durations of the subsequent open and closed time intervals
are yet mutually correlated, contrary to the assumptions
made in the present model. If this is the case indeed, the
studied model should be generalized further to account for
such correlations.

The spectral power amplification vs the temperature is
depicted for various angular driving frequencies in Fig. 5~a!.
The panel in Fig. 5~b! corresponds to an overall Markovian
modeling with an exponential c1(t) possessing the same
mean residence time ^t1&. We observe a series of striking
non-Markovian features in Fig. 5: ~i! A characteristic SR
maximum occurs in the physiological range of varying tem-
peratures. This maximum is caused by entropic effects which
have not been addressed before in the theory of stochastic
resonance. Because of the fact that the free-energy bias e(T)
is temperature dependent, due to a large entropic asymmetry
between states, stochastic resonance in the spectral amplifi-
cation occurs in a temperature regime where the populations
of both states become approximately equal, e(T)'0. Note
that this effect occurs also in the Markovian case, cf. Figs.
5~a! and 5~b!. Therefore, it is not caused by non-Markovian
effects. ~ii! Due to an intrinsic asymmetry the ~angular! fre-
quency dependence of the spectral amplification h(V ,T) for
the Markov modeling is rather weak for small frequencies
V!^t1,2&

21 @2#. In contrast, the non-Markovian SR exhibits
a distinct low-frequency dependence, thereby frequency re-
solving the three overlapping lines in Fig. 5~b!. This feature
constitutes an authentic non-Markovian effect. ~iii! The
evaluation of the SNR yields—in clear contrast to the
frequency-independent Markov modeling—a profound, very
strong non-Markovian SR frequency suppression of SNR to-
wards smaller frequencies: The SNR maximum for the top
line in Fig. 5~a! is suppressed by two orders of magnitude as
compared to the Markov case, cf. Fig. 6. As a consequence,
for a strong non-Markovian situation it is preferable to use
low-to-moderate frequency inputs in order to monitor non-
Markovian stochastic resonance with SNR.

VI. SUMMARY AND CONCLUSIONS

In the present work we have put forward a general theory
of stochastic resonance for two state non-Markovian sys-

FIG. 5. ~a! The spectral power amplification h(V), Eq. ~89!, ~in
arbitrary units! vs temperature ~in °C) for the BK ion channel gat-
ing scenario ~see text! and ~b! its comparison with a corresponding
Markov modeling.
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tems. The theory is based on time-inhomogeneous integral
renewal equations governing the evolution of conditional
probabilities in the presence of driving signal. These equa-
tions for driven renewal processes generalize earlier result by
Cox @13# and others @18# for stationary renewal processes to
include the signal influence on the residence time distribu-
tions. Based on these equations we presented a general out-
line of the theory of the linear and the asymptotic nonlinear
response to the sinusoidal signal. In particular, we obtained a
general expression for the linear response function x̃(v),
Eq. ~81!, which can be used for a variety of applications. The
expression in Eq. ~81! presents a major result of this paper.
We note, however, that the explicit use of Eq. ~81! requires
one to specify explicitly the way in which the periodic signal
modulates the asymptotic, nonequilibrium residence time
distributions. For a class of nonequilibrium fractal distribu-
tions where the signal enters the RDTs through a single fre-
quency parameter having the meaning of the inverse mean
residence time, it has been shown that Eq. ~81! reduces to the
result ~61! of the phenomenological theory of linear response
developed previously in Ref. @28#. Moreover, if the mean
residence times obey the thermal detailed balance condition
~62!, the expression ~61! reduces further to Eq. ~64! which
can be obtained independently from the classical fluctuation-
dissipation theorem ~63! by use of the expression in Eq. ~42!
for the autocorrelation function of the considered non-
Markovian stochastic process. Even though the microscopic
~or mesoscopic! details of the thermal equilibrium dynamics
leading to the observed two-state non-Markovian fluctua-
tions are generally not known, the linear response function is
determined uniquely by the characteristic functions of the
residence time distributions c̃1,2(s) via Eqs. ~64! and ~34!.
For such equilibrium non-Markovian fluctuations, the knowl-
edge of the equilibrium RTDs allows one to determine the
linear response of the considered physical system to weak
signals. This is the essence of the phenomenological theory
of non-Markovian stochastic resonance put forward in Ref.
@28#. For such equilibrium systems, the general expressions
for the spectral power amplification, Eq. ~89!, and for the

FIG. 6. The signal-to-noise ratio (RSN in arbitrary units! vs tem-
perature ~in °C) for the studied model of Stochastic Resonance in a
locust BK channel. The upper curve depicts the Markovian limit
attained for large angular driving frequencies of the signal.
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signal-to-noise ratio ~SNR!, Eq. ~91!, are available. We ap-
plied these general expressions to study the main features of
stochastic resonance in several non-Markovian systems ex-
hibiting long-range temporal correlations along with 1/f a

power spectra of fluctuations.
In particular, for a symmetric non-Markovian system with

a power law distributed residence time intervals the occur-
rence of stochastic resonance has been demonstrated to com-
ply with a stochastic frequency synchronization similar to
the Markovian case @2#. However, both the SPA measure and
the SNR measure become strongly suppressed due to strong
non-Markovian effects. The most striking feature of the non-
Markovian SR is a distinct frequency dependence of the
SNR measure. In particular, the SNR becomes immensely
suppressed for low frequency signals. Thus, the use of sig-
nals with an intermediate frequency range matching the
mean time of the stochastic escapes between states yields
most distinct non-Markovian SR feature.

For asymmetric non-Markovian fluctuations pertinent to
fractal gating dynamics of the locust BK ion channel several
interesting features have been revealed. ~i! The expected
diminution of the SPA measure relative to the Markovian
021104
case does not occur. This can be attributed to the fact that
one of the RDTs in the considered case is strictly exponential
similar to the Markovian case. ~ii! For asymmetric Markov-
ian systems the SPA measure ceases to be frequency depen-
dent for small adiabatic frequencies. The non-Markovian ef-
fects, however, introduce at low driving frequencies a
distinct dependence, both for the SPA and the SNR. This
latter phenomenon can be used to detect and establish a
strong non-Markovian behavior in practice.

Our non-Markovian theory of stochastic resonance pos-
sesses a whole range of applications and we hope that it will
be used by the practitioners in their further research work on
stochastic resonance. Especially, we hope that our theory will
guide experimentalists to find the proper and more interest-
ing parameter regimes and to reveal the stochastic resonance
effect on the level of single biomolecules.
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