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Stochastic resonance in single voltage-dependent ion channels is investigated within a three-state non-
Markovian modeling of the ion channel conformational dynamics. In contrast to a two-state description one
assumes the presence of an additional closed state for the ion channel which mimics the manifold of voltage-
independent closed subconformations sinactivated “state”d. The conformational transition into the open state
occurs through a domain of voltage-dependent closed subconformations sclosed “state”d. At distinct variance
with the standard two-state and also the three-state Markovian approach, the inactivated state is characterized
by a broad, nonexponential probability distribution of corresponding residence times. The linear response to a
periodic voltage signal is determined for arbitrary distributions of the channel’s recovery times. Analytical
results are obtained for the spectral amplification of the applied signal and the corresponding signal-to-noise
ratio. Alternatively, these results are also derived by use of a corresponding two-state non-Markovian theory
which is based on driven integral renewal equations fI. Goychuk and P. Hänggi, Phys. Rev. E 69, 021104
s2004dg. The non-Markovian features of stochastic resonance are studied for a power law distribution of the
residence time intervals in the inactivated state which exhibits a large variance. A comparison with the case of
biexponentially distributed residence times possessing the same mean value, i.e., the simplest non-Markovian
two-state description, is also presented.
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I. INTRODUCTION

Stochastic resonance sSRd f1,2g is by now a well-
established phenomenon with wide spread applications in
physics, chemistry, engineering sciences, and the life sci-
ences. It refers to the fact that in nonlinear stochastic systems
an optimal level of applied or intrinsic noise can dramatically
boost the response sor, more generally, the transportd to typi-
cally weak, time-dependent input signals. This fact plays a
prominent role in biology with its abundance of a variety of
thresholdlike systems that are subjected to noise influences
f1–4g. SR is often also characterized in terms of an underly-
ing stochastic synchronization between an applied stimulus
and an intrinsically stochastic dynamics f1,2,5g. From the
viewpoint of physical biology, the phenomenon of SR in
biological sensory systems is commonly assumed to be
rooted in the properties of excitable membranes. This being
so, it ultimately can be explained in terms of a driven sto-
chastic dynamics of assemblies of ion channels f6–13g. Al-
though biologically relevant SR is generally a property of a
cooperative coupling among ion channels f11–13g, the study
of stochastic resonance in single ion channels carries merit
on its own: s1d SR has not yet been convincingly demon-
strated on the level of single molecules, with biological ion
channels being such proper candidates f7g; s2d ion channels
can serve as suitable single-molecular sensors to be utilized
in nanodevices.
All these facts in turn have stimulated a vivid interest on

this subject matter. The recordings of ion current flowing
through a single ion channel, as obtained from a typical
patch clamp experiment f14,15g, bears close similarity with a

simple, driven bistable dynamics f1,2,16g. The occurrence of
SR in single ion channels thus seems very likely. In reality,
the situation is, however, more complex, because sid the de-
pendence of the opening and closing rates on the voltage and
temperature is generally not Arrhenius-like f17–20g, a char-
acteristic feature which plays a central role for the occur-
rence, or nonoccurrence of the SR f9g, and siid detailed stud-
ies of the statistics of the ion current switching events reveal
that the probability distributions of the residence time inter-
vals in different conductance states are normally not single
exponential. This implies that the observed dynamics of “on-
off” conductance fluctuations is generically non-Markovian
within a two-state stochastic description f21,22g. In the sim-
plest nontrivial case of a biexponential distribution of the
residence time intervals dwelling in the nonconducting con-
formation, the emerging non-Markovian dynamics can be
embedded into a three-state Markovian dynamics f15g with
an extra sunobservabled closed state. The presence of such a
third state sor, more generally, a number of additional sub-
statesd can, however, be inferred from the bursting character
of the observed dynamics when the ion channel dynamics
after switching between its open and closed states for a num-
ber of times suddenly stops, and then revives again later after
a notably longer time span has elapsed sas compared with the
typical sojourn length in the open or closed stated. The pres-
ence of such a third state can be considered as a closed
inactivated state. This “third” state in fact does not constitute
a single state, but rather a manifold of many substates. As a
consequence, the recovery of the ion channel from its inac-
tive state does not present an exponential rate process, but
will be governed by a nonexponential distribution of corre-
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sponding residence times. This feature, i.e., the absence of a
well-defined time scale for recovery from inactivation, can
be observed in various ion channels f23g.
Our main objective here is to investigate the basic fea-

tures of SR occurring in single ion channels within the
framework of a three-state non-Markovian dynamics. In ad-
dition, we contrast this approach with the two-state non-
Markovian theory of stochastic resonance developed in prior
works f24,25g.

II. MODEL SETUP

Following the reasoning put forward in Refs. f19,20g we
consider a discrete state model of ion channel gating, whose
essentials are depicted in Fig. 1. It consists of three “states”:
an open one sOd, a closed one sCd, and an inactivated state
sId. The inactivated state I is assumed to correspond to the
manifold of voltage-insensitive conformations of the ion
channel protein and the opening C→O and closing O→C
transitions are associated with the motion of a voltage sensor
and the opening or closing of the channel’s gate. The sto-
chastic transitions between the open and closed states are
characterized by generally time-dependent opening and clos-
ing rates, kostd and kcstd, respectively. These rates are as-
sumed to depend on an externally applied, time-dependent
voltage signal.
In the spirit of the modeling put forward in f19,20,26–29g

we assume that inactivation occurs from the closed state of
the ion channel. In doing so, we are dealing with an arche-
type model of gating with opening, closing, and inactivation
dynamics f14g. Furthermore, unlike in the standard Markov-
ian modeling f14,15g, we assume that the transition from the
inactivated, voltage-independent state to the closed state is
not rate limited, but rather is characterized by a broad distri-
bution of rates. Put differently, we model the step from inac-
tivation toward the closing state scf. Fig. 1d by a nonexpo-
nential distribution cstd of the residence time intervals spent
in the inactivated state. This distribution will be assumed to
possess a finite average ktrlªe0

`tcstddt. It is voltage inde-
pendent but arbitrary otherwise. Furthermore, it is assumed
that the channel’s inactivation occurs from the closed state
with a voltage-independent rate kin. The voltage indepen-
dence of I↔C transitions follows from the underlying char-
acter of the conformational dynamics: namely, one assumes
that the I↔C transitions occur in a direction transverse to
the direction of C↔O transitions f20g. These latter transi-
tions are bound to the relocation of the gating charge across
the membrane, while the former transitions are not related to
a charge redistribution; for further details we refer the reader
to the discussion in Ref. f20g.

This chosen distribution of rates accounts for the fact that
for several types of ion channels the recovery process does
not have a well-defined time scale f23g. This circumstance in
turn implies that the gating process is non-Markovian within
our three-state description. The standard Markovian three-
state description is recovered when cstd=kr exps−krtd,
where krªktrl−1 is the rate of the I→C transition.

III. NON-MARKOV THEORY OF THREE-STATE GATING

The time evolution for the probabilities to occupy the
open, closed, or inactivated state, postd, pcstd, and pIstd, re-
spectively, is governed by the following generalized master
equations:

ṗostd = kostdpcstd − kcstdpostd ,

ṗcstd = − fkin + kostdgpcstd + kcstdpostd + E
t0

t

Gst − t8dpIst8ddt8,

ṗIstd = kinpcstd − E
t0

t

Gst − t8dpIst8ddt8. s1d

The Laplace-transformed kernel Gstd reads

G̃ssd =
sc̃ssd

1 − c̃ssd
, s2d

with c̃ssd denoting the Laplace transform of cstd sthe tilde
denotes throughout the Laplace transform of the correspond-
ing functiond. The solution depends also on the initial condi-
tion, chosen for example to read pcst0d=1, at initial time t
= t0.
This set of equations can formally be derived following

the approaches in Refs. f25,30–33g. Alternatively, this very
set of non-Markovian evolution equations can be obtained
more directly as well. The terms not expected from naive
grounds in Eq. s1d are the ones that involve memory. Let us
assume that the ion channel is prepared in the state I, pIs0d
=1 at t0=0, and impose kin→0, i.e., no returns are possible.
Then, the leakage of probability pIstd is due to the transition
into the state C, i.e., pIstd must equal swith such an absorbing
boundary conditiond the survival probability Fstd
=et

`cstddt. With this leakage given by Ḟstd=−e0
t Gst

− t8dFst8ddt8 we readily find by use of the Laplace transform
method the relation in Eq. s2d. The description in Eq. s1d
portrays a driven si.e., inhomogeneous in timed three-state,
non-Markovian renewal process with the corresponding resi-
dence time densities sRTDsdf25,34g, reading

cost + t,td = kcst + tdexpS− E
t

t+t

kcst8ddt8D ,
ccst + t,td = fkin + kost + tdgexpS− E

t

t+t

fkin + kost8dgdt8D ,

FIG. 1. Sketch of the three-state model setup with generally
time-dependent opening and closing rates and with a nonexponen-
tial residence time statistics in the inactivated state.
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cIstd = cstd . s3d

Note in particular that cost+t , td and ccst+t , td depend not
only on the length of residence time intervals t, but also on
the entrance time point t. We refer the reader to Ref. f25g for
a detailed trajectory description of such driven renewal pro-
cesses. These conditioned, nonstationary two-time RTDs
c jst u tdªc jst+t , tdsj=o ,cd are given as the negative time de-
rivatives of the corresponding survival probabilities
F jst u tdªF jst+t , td; i.e., c jst u tdª−dF jst u td /dt.
The averaged, time-dependent conductance gstd of the

considered ion channel reads kgstdl=postdgo+ fpcstd
+pIstdggc, where go and gc are the conductances of the open
and closed conformations, respectively. In the absence of a
time-dependent signal, kgstdl= kglst=po

stgo+ spc
st+pI

stdgc,
where pa

st with a=o ,c , I is the stationary solution of Eq. s1d
in the absence of driving. For the following we assume a
periodic voltage signal given by

Vsstd = A cossVtd . s4d

The mean deviation of the channel conductance
kdgstdlªkgstdl− kglst from its stationary value thus reads at
asymptotic times within a linear response approximation f1g,

kdgstdl = Aux̃sVducosfVt − wsVdg , s5d

where wsVd is the corresponding phase shift f1,29g. In Eq.
s5d, x̃sVd denotes the linear response function in the fre-
quency domain. The linear response result for the spectral
amplification sSPAd of the signal hsVd is given by hsVd
= ux̃sVdu2 f1g.

A. Linear response theory

In order to evaluate the linear response function we ex-
pand the solution of Eq. s1d as pcstd=ok=−`

` rkstdexps−ikVtd
and postd=ok=−`

` qkstdexps−ikVtd. The solution for pIstd fol-
lows by virtue of probability conservation, i.e., pIstd=1
−postd−pcstd. In the limit t→` the solutions become time
periodic f1,16g with time-independent coefficients rk and qk
which depend on the amplitude strength A and frequency V.
The asymptotic, nonlinear periodic solution thus reads

pc
asstd = o

k=−`

`

rk exps− ikVtd, r−k = rk
*,

po
asstd = o

k=−`

`

qk exps− ikVtd, q−k = qk
*. s6d

The linear response function x̃sVd is encoded in the first
Fourier term f29g. It reads

x̃sVd = 2Dg lim
A→0

q1
A
, s7d

where Dgªgo−gc is the difference of ion channel conduc-
tances in the open and closed states, respectively.
To start out, we assume the following small-signal expan-

sion of the time-dependent reaction rates:

ko,cstd = n0 expf− DGo,c„Vstd…/kBTg < ko,c
s0df1 − bo,cVsstdg ,

s8d

where in the absence of driving

ko,c
s0d = n0 expf− DGo,csV0d/kBTg , s9d

with DGo,csV0d denoting the corresponding static free energy
barriers, V0 being a static voltage in the absence of signal,
i.e., Vstd=V0+Vsstd, and bo,c=−ufsd ln ko,c

s0dd /dVguV=V0.
The substitution of Eq. s6d into Eq. s1d and taking Eqs. s4d

and s8d into account yields for t0→−` sthis procedure is
equivalent to taking t0=0 and t→`d the following recur-
rence relations:

f− ikV + G̃s− ikVdgsrk + qkd = − kinrk +
1

ktrl
dk,0,

s− ikV + kc
s0ddqk + kc

s1dsqk−1 + qk+1d = ko
s0drk + ko

s1dsrk−1 + rk+1d ,
s10d

where

ko,c
s1d = −

1
2
Ako,c

s0dbo,c. s11d

In Eq. s10d, we used that lims→0G̃ssd=1/ ktrl which follows
from the expansion c̃ssd=1−sktrl+ossd, where ossd stands
for the terms such that lims→0fossd /sg=0. From the first
equation in s10d we obtain

q0 = 1 − s1 + kinktrldr0 s12d

for k=0 and

qk = − S1 + kin
− ikV + G̃s− ikVd

Drk s13d

otherwise. Therefore, either qk or rk can be determined from
the second equation in Eq. s10d which thus uncouples into a
recurrence relation for either qk or rk. To the lowest order in
A, q0=q0

s0d+OsA2d and r0=r0
s0d+OsA2d where hq0

s0d ,r0
s0dj are

the values when the perturbation is absent. A term linear in A
is absent because a change from A to −A swhich is equivalent
to a phase shift by pd cannot result in a shift of steady state
populations q0 and r0. Moreover, q1~A and r1~A to leading
order in A. Likewise, the expansions of q2 and r2 in A start
out from A2.
Then, by taking into account r0=kc

s0dq0 /ko
s0d+OsA2d in

Eqs. s10d, s12d, and s13d we obtain after some algebraic ma-
nipulations

r0 =
kc

s0d

ko
s0d + kc

s0ds1 + kinktrld
+ OsA2d ,

q0 =
ko

s0d

ko
s0d + kc

s0ds1 + kinktrld
+ OsA2d , s14d

and
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q1 =
1
2
A

bc − bo

ktol + ktc8l
1

kc
s0d − iV + iVko

s0d/hiV − kinf1 − c̃s− iVdgj

+ OsA2d , s15d

where

ktol = 1/kc
s0d s16d

is the mean residence time in the open state. Furthermore,

ktc8l = s1 + kinktrld/ko
s0d s17d

is the mean residence time within the set of closed states
c8= sC , Id in the absence of time-dependent driving.
This latter quantity is defined as ktc8lªe0

`tcc8stddt,
where cc8std is the stationary RTD in the set of compound
closed states, when no time-dependent signal acts, i.e.,
Vsstd=0. This auxiliary quantity is obtained as follows. The
channel is prepared in the closed state C at t0=0, i.e., pcs0d
=1, and the back transition O→C is set to zero by imposing
kc→0. Then, the solution of the first two equations in s1d in
the absence of driving yields the stationary survival probabil-
ity of the compound closed states as Fc8std=pcstd+pIstd and
cc8std follows as cc8std=−dFc8std /dt. Using this scheme we
find

F̃c8ssd =
1 + kin/fs + G̃ssdg

s + ko
s0d + kins/fs + G̃ssdg

s18d

and in virtue of c̃c8ssd=1−sF̃c8ssd

c̃c8ssd =
ko

s0d

s + ko
s0d + kins/fs + G̃ssdg

. s19d

By use of Eq. s2d in Eq. s19d this stationary distribution of
the residence times can be recast as

c̃c8ssd =
ko

s0d

s + ko
s0d + kinf1 − c̃ssdg

. s20d

Furthermore, ktc8l in Eq. s17d follows from Eq. s18d as
ktc8l=F̃c8s0d.
Let us introduce also the auxiliary function

G̃ssd =
f1 − c̃ossdgf1 − c̃c8ssdg

1 − c̃ossdc̃c8ssd
, s21d

where c̃ossd=kc
s0d / ss+kc

s0dd is the Laplace transform of the
stationary RTD of the open time intervals. Then, Eq. s15d can
be rewritten in a more compact form as

q1 =
1
2
A

bc − bo

ktol + ktc8l
G̃s− iVd
− iV

+ OsA2d . s22d

Since kinktrl does not depend on voltage V,
bo8ª ufsd lnktc8ld /dVguV=V0= u− fsd ln ko

s0dd /dVguV=V0=bo and
the result in Eq. s22d coincides with the result of the phe-
nomenological two-state theory of non-Markovian SR put

forward in f24,25g. Upon combining with Eq. s7d, Eq. s22d
yields the linear response result

x̃sVd =
sbc − bodDg
ktol + ktc8l

G̃s− iVd
− iV

, s23d

which in fact coincides with Eq. s61d in Ref. f25g.
The just outlined procedure can as well be extended into

the nonlinear response regime to obtain nonlinear response
functions of required order in the signal amplitude. This,
however, is beyond the scope of this work. This central result
in Eq. s23d is alternatively derived in the Appendix by mak-
ing use of the two-state non-Markovian theory detailed in
Ref. f25g.

B. Explicit results in terms of thermodynamic free energies

We next introduce formally the effective free energy bias
esTd, i.e.,

ktol
ktc8l

= expS− esTd
kBT

D . s24d

In accordance with the relations s16d and s17d we obtain

esTd = DGosV0d − DGcsV0d + kBT lns1 + kinktrld . s25d

Using that DGosV0d=G#−Gc and DGcsV0d=G#−Go, where
G# is the sGibbsd free energy of the transition state, and
Go,c=Ho,c−TSo,c is the free energy of the open sclosedd con-
formation, Eq. s25d can be recast as

esTd = DH − TDS + kBT lns1 + kinktrld , s26d

where DHªHo−Hc is the difference of thermodynamic en-
thalpies of the open and closed conformations sor of the in-
ternal energies, if no volume change of the macromolecule
occurs at the conformational transitiond and DSªSo−Sc is
the corresponding entropy difference.
Assuming that the free energy barriers in Eq. s8d have

linear dependence of voltage, DGosVd=DGo−qs1−ddV and
DGcsVd=DGc+qdV, where q is the gating charge and 0,d
,1 is a constant f14,20g, we find that bc−bo=−q / skBTd. For
the spectral amplification of the conductance response h
= ux̃sVdu2 we obtain then from Eq. s23d our first main result

hsV,Td =
sDgd2q2

16skBTd2
n2sTd

cosh4fesTd/2kBTg
uG̃s− iVdu2

V2 , s27d

with esTd given in Eq. s25d, while nsTd= ktol−1+ ktc8l
−1 de-

notes the sum of the closing and opening rates. G̃ssd in Eqs.
s21d and s27d reads explicitly

G̃ssd =
s

s + kc
s0d + sko

s0d/hs + kinf1 − c̃ssdgj
, s28d

where kc
s0d ,ko

s0d ,kin are the unperturbed rates and cstd is the
residence time distribution. The result in Eq. s27d coincides,
apart from a model specific constant, with the expression
given in Ref. f24g, Eq. s25d therein. Within the linear re-
sponse approximation the corresponding signal-to-noise ratio
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sSNRd at the angular driving frequency V is obtained from
RSNsV ,TdªpA2h /SNsv=Vd, where SNsvd denotes the spec-
tral power density of conductance fluctuations in the absence
of signal Vsstd. By use of the Stratonovich formula for the
autocorrelation function of the alternating renewal process
f35g and the Wiener-Khinchin theorem one finds for SNsvd
f25,35g

SNsvd =
2sDgd2

ktol + ktc8l
1

v2 RefG̃sivdg . s29d

Therefore, the SNR equals the result derived in Refs.
f24,25g, namely,

RSNsV,Td =
pA2q2

8skBTd2
nsTd

cosh2fesTd/2kBTg
NsVd , s30d

where

NsVd =
uG̃siVdu2

RefG̃siVdg
s31d

provides the specific function which accounts for manifest
non-Markovian effects. In the low frequency limit V→0,
NsVd approaches the limit Ns0d=2/ sCo

2+Cc8
2 d f24,25g, where

Co and Cc8 are the coefficients of variation of the RTDs of
the open and compound closed states, respectively.
By use of the expansion c̃ssd=1−sktrl+ossd in Eq. s28d

and Eq. s17d we find in the adiabatic limit V→0 that the
spectral power amplification acquires the universal form,
reading

hsV → 0,Td =
sDgd2q2

16skBTd2
1

cosh4fesTd/2kBTg
. s32d

This result holds in the presence of asymmetry with nonva-
nishing esTd. In such a case, the SPA s32d can exhibit a sharp
stochastic resonance at the physiologically relevant tempera-
tures when esTd changes sign, when the probabilities of the
channel to be open or to stay closed become equal. This
corresponds to the opening threshold for the case detailed
below of an ion channel sensitive to cold sor, vice versa,
sensitive to heat, if the open state is preferred from an en-
tropic viewpointd. The cold-sensitive or heat-sensitive ion
channels f36g present appropriate candidates to reveal this
entropic SR effect. This feature at very small driving fre-
quencies, which mimics a Markovian behavior, has thus
nothing to do with non-Markovian properties; it is solely due
to an entropic asymmetry. The non-Markovian effects
emerge, however, at small, but finite frequencies in the cor-
responding SPA curves ssee in Ref. f24gd. Most prominent
non-Markovian, long-time memory effects distinctly sup-
press, however, the SNR in the low frequency domain
f24,25g. For V→0, we obtain swith Co=1d

RSNsV → 0,Td =
pA2q2

8skBTd2
nsTd

cosh2fesTd/2kBTg
2

1 + Cc8
2 ,

s33d

with Cc8.1. Thus, the RSNsV=0,Td is fully suppressed,
making the detection of low frequency signals barely pos-
sible, e.g., for the power law distribution cstd~1/t2+a with
0,a,1 considered below. This suppression occurs due to
the 1/ f1−a noise feature in the spectral power SNsVd for
small frequencies. Let us illustrate now these general consid-
erations with two particular models.

IV. ION CHANNEL GATING: BIEXPONENTIAL
DISTRIBUTION VERSUS A POWER LAW

The current three-state model provides a suitable frame-
work to clarify the role of power law distributed residence
times in the inactivated and closed states as compared with
the simplest two-state non-Markovian situation swith respect
to the observable dynamicsd of a biexponential distribution,
which, likewise, can be embedded into a three-state Markov-
ian description.

A. The case of a biexponential distribution

We start our driven channel gating investigation with the
simplest case of an exponential residence time distribution of
the transition I→C, i.e., cstd=kr exps−krtd. Then, Eq. s20d
yields

c̃c8ssd =
ko

s0dss + krd
ss + ko

s0ddss + krd + kins
. s34d

The inversion of Eq. s34d yields a biexponential probability
density, i.e.,

cc8std = c1l1 exps− l1td + c2l2 exps− l2td s35d

with the rate coefficients l1,2=
1
2 sko

s0d+kin
+kr±Îsko

s0d−kin−krd2+4ko
s0dkind and corresponding weight

factors c1,2=
1
2 f1± sko

s0d−kin−krd /Îsko
s0d−kin−krd2+4ko

s0dking.
The mean residence time corresponding to this RTD s35d is

ktc8l =
1
ko

s0dS1 + kin
kr
D . s36d

Such a nonexponential, i.e., biexponential, RTD can actually
be very broad as characterized by the corresponding coeffi-
cient of variation CªÎkt2l− ktl2 / ktl, yielding from Eq. s35d

Cc8 =Î1 +
2ko

s0dkin
skin + krd2

. s37d

Indeed, for kr!kin!ko
s0d we deduce from Eq. s37d that Cc8

<Î2kos0d /kin@1. This implies that the distribution s35d has a
small, but very broad long-time tail, which in turn results in
a large variance of the residence times. This finding carries
important consequences: As shown in Refs. f24,25g the
signal-to-noise ratio RSN is then strongly suppressed in the
low-frequency limit V→0 by the factor 1 /Ns0d= 1

2 sCo
2
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+Cc8
2 d, where Co is the coefficient of variation for costd,

Co=1 in the present case. This presents a first manifest non-
Markovian effect which is present already within this sim-
plest non-Markovian setting. We also note that the auxiliary
function G̃ssd can be recast as

G̃ssd =
sss + kin + krd

fs + m1sTdgfs + m2sTdg
, s38d

where

m1,2sTd =
1
2

sko
s0d + kc

s0d + kin

+ kr ± Îsko
s0d + kc

s0d − kin − krd2 + 4ko
s0dkind s39d

are the decay rates of the conductance time correlations. By
use of Eqs. s38d and s31d the results in Eqs. s27d for the SPA
and s30d for the SNR assume explicitly the form

hsV,Td =
sDgd2q2

16skBTd2
n2sTd

cosh4fesTd/2kBTg

3
V2 + skin + krd2

fV2 + m1
2sTdgfV2 + m2

2sTdg
s40d

and

RSNsV,Td =
pA2q2

8skBTd2
nsTd

cosh2fesTd/2kBTg

3
V2 + skin + krd2

V2 + skin + krd2 + ko
s0dkin

, s41d

respectively. The remaining parameters are nsTd= ktol−1

+ ktc8l
−1=kc

s0d+ko
s0dkr / skr+kind with ko,c

s0d in Eq. s9d and esTd
=DGosV0d−DGcsV0d+kBT lns1+kin /krd with exponential
Arrhenius rates kin=n0 exps−DGin /kBTd and kr=n0 expf
−DGr /kBTg f37g.
The results in Eqs. s40d and s41d constitute central results

for the SR occurring in a three-state Markovian model of
gating in ion channels possessing an inactivation from the
closed state. At the same time, these results correspond to a
simplest non-Markovian two-state model of the observable
dynamics of conductance fluctuations.
We performed numerical calculations for the set of test

parameters given in Table I which is chosen to mimic the
experimental temperature dependence of the cold-sensitive
ion channels ssee in Ref. f36gd.
The temperature dependence of the corresponding Mar-

kovian transition rates are given in Fig. 2sad. For this set of
parameters, the coefficient of variation of the closed resi-
dence time scompound stated within the three-state Markov-
ian description is Cc8<17.14 and the low-frequency SNR is
suppressed by the factor of 1 /Ns0d<147.43 as compared
with the corresponding two-state Markovian case with the
same rates kc

s0d and ko8
s0d
ª ktc8l

−1. Their temperature depen-
dence is depicted in Fig. 2sbd. The frequency prefactor n0 has
been taken to be n0=6.1131012 s−1. This value corresponds
approximately to a gas-phase value of kBT /h at T=20 °C. It
clearly overestimates any effects that relate to friction and

other details determining the transmission coefficient k in
condensed phases. The correct estimation of this prefactor
would require a more elaborate theory of the Kramers type
f37g rather than the absolute rate theory used here. Neverthe-
less, this ambiguity does not play a role if we assume that the
frequency prefactor n0 is one and the same for all the rate

TABLE I. Free energy barriers DGa=DHa−TDSa.

a Enthalpy part DHa skJ/molda Entropy part DSa sunits of kBd

c 175 52
o 15 −10
in 15 −15
r 15 −20
aTable depicts the corresponding parameters for the free energy bar-
riers that enter the related rate coefficients. Here, DHa must be
divided by the Avogadro number NA to obtain the corresponding
value per single molecule. For example, DHc=175 kJ/mol thus cor-
responds swe use the Boltzmann constant kB and not the gas con-
stant R=kBNA in the rate expressionsd to a value DHc<2.91
310−19J<1.81 eV, etc.

FIG. 2. Temperature dependence of the rates used for the ion
channel gating dynamics, absent the driving: sad the considered
three-state Markovian model; sbd the corresponding two-state non-
Markov model with the effective opening rate defined as ko8

s0d

ª ktc8l
−1, where ktc8l is the mean residence time. The rate kc

s0d

denotes again the transition from the open state O toward the closed
state C in the absence of time-dependent driving.
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parameters. This is so because a different value of n0 would
result in one and the same sunknownd systematic entropy
correction for all metastable states. The entropy differences
between the metastable states remain unchanged.
Our results for this choice of parameters are depicted in

Fig. 3sad for the spectral amplification h, and Fig. 3sbd for
the corresponding signal-to-noise ratio RSN. In particular,
Fig. 3sad convincingly demonstrates the possibility of sto-
chastic resonance within the range of physiological tempera-
tures when esTd<0, in accordance with Eq. s32d. The SNR
in Fig. 3sbd also exhibits the SR-like increase with increasing
temperature. It does not, however, reach a resonance peak
behavior in the corresponding temperature range. This peak

behavior would formally be assumed fnot depicted in Fig.
3sbdg only at physiologically unrealistic high temperatures of
about 600 °C. This resonance behavior is formally contained
in Eq. s33d fnotice the presence of nsTd in the numerator
there, which invalidates the criterion esTd<0g. The behavior
at extreme high frequencies V@kin ,kr ,ko

s0d fcf. Eq. s41dg as-
sumes qualitatively the same behavior as depicted in Fig.
3sbd; the only difference being that the SNR becomes in-
creased by the factor sCc8

2 +1d /2. Surprisingly sin view of the
rather large enthalpic barriersd, this does not exclude the ap-
pearance of stochastic resonance in the SNR behavior at
physiological temperatures at some intermediate high fre-
quency of the signal. For the studied model system this oc-
curs, for example, for V=104 s−1 fthis feature is not depicted
because the accompanying spectral amplification hsTd in
Fig. 3sad comes out to be extremely smallg.

B. The case with a power law distribution

To model the gating dynamics more realistically we next
consider a description with a nontrivial nonexponential resi-
dence time distribution in the inactivated regime cstd in Eq.
s28d. In particular, we use a probability density cstd with the
following characteristic function f29g:

c̃ssd =
1

1 + sktrlgasstdd
, s42d

where

gaszd =
tanhsza/2d

za/2 . s43d

The RTD s42d has been obtained in Ref. f29g as the solution
of a conformational diffusion model accounting for an
anomalous subdiffusion over energetically quasidegenerate
substates within the given conformation, i.e., I in the present
work. This probability density possesses three parameters:
the mean residence time ktrl in this inactivated conforma-
tion, the conformational diffusion time td, and the index of
subdiffusion a, 0,aø1.
In spite of possessing three independent parameters only,

the RTD s42d is capable of displaying a rich behavior. The
case of single-exponential distribution with the rate param-
eter krª = ktrl−1 is rendered for td=0. The case a=1 corre-
sponds to normal diffusion. For td! ktrl, the intraconforma-
tional diffusion effects are not essential. However, for td
@ ktrl and in the range ktrl2 /td!t!td the corresponding
RTD assumes a negative power law, i.e., cstd~t−3/2, which
ends up in an exponential tail for t.td f19g. For a,1, the
distribution s42d has an infinite variance, since kt2l=` for
any tdÞ0 and, depending on a subtle interplay of param-
eters, it can display up to three different power laws. These
are cstd~t−a/2 initially, cstd~t−s2−a/2d intermediately, and
cstd~t−s2+ad asymptotically f29g. With the discussed choice
of cstd, the characteristic function of the RTD in the com-
pound C8 state reads

FIG. 3. Markovian three-state model of ion channel gating: sad
spectral power amplification h fin units of sDgqd2 / sJ /mold2g and
sbd signal-to-noise ratio RSN fin units of psqAd2 / sJ /mold2 s−1g ver-
sus temperature sin degCd at different angular frequencies V of the
harmonic signal. In sad, the full line corresponds to the adiabatic
limit V→0; the dash-dotted line corresponds to V=10 s−1 and the
dotted line corresponds to V=100 s−1. The corresponding lines for
V=0.1 and 1 s−1 cannot be resolved from the zero-frequency limit.
In sbd, all the lines for the above mentioned four different frequen-
cies merge with the zero-frequency result ssolid lined. Note that for
the two-state Markovian counterpart of the considered three-state
model with the rates depicted in Fig. 2sbd, all the lines for the
different frequencies merge with the zero-frequency result in sad.
Likewise, in sbd, the depicted line must be multiplied by the factor
1 /Ns0d<147.43 to yield the corresponding Markovian two-state
result.
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c̃c8ssd =
ko

s0dfsgasstdd + krg
ss + ko

s0ddfsgasstdd + krg + kinsgasstdd
. s44d

It possesses the same average residence time s36d and the
coefficient of variation is

Cc8 = 5` , a , 1,

Î1 +
2ko

s0dkin
skin + krd2

s1 + krtd/3d , a = 1. 6 s45d

Note that for a,1, Cc8=`. This implies that the detection of
low frequency signals V→0 is fully suppressed as RSNsVd
→0 at V→0 f24,25g. A bistable stochastic element with
such properties can thus be used as a high pass filter for the
signal transduction. In this case, the first leading terms of the
small-s expansion of c̃c8ssd read c̃c8ssd<1− ktc8ls
+ 1
3 skin /ko

s0dkrtddsstdd1+a. This corresponds asymptotically to
a distribution cc8std~t−s2+ad, similar to the Pareto law be-
havior considered in Refs. f24,25g.
With Eq. s42d in Eqs. s27d, s28d, and s30d one can evaluate

the spectral amplification of the signal and the signal-to-
noise ratio. We did this for the above set of thermodynamical
parameters ssee Table Id entering rates that are supplemented
with the following parameters of the RTD in Eq. s42d: a
=0.25, td=0.1 s. As can be seen in Fig. 4sad, the non-
Markovian effects resolve the lines at the frequencies
V=0.1 and 1 s−1 which merge with the zero-frequency line
in Fig. 3sad. Moreover, the different lines that merge in Fig.
3sbd become also resolved fsee Fig. 4sbdg, where upon in-
creasing the angular frequency V the SNR RSNsV ,Td grows;
namely, at zero frequency RSNsV→0,Td=0 and for V
<100 s−1 RSNsV ,Td reaches approximately sfrom belowd its
low frequency three-state Markovian limit in Fig. 3sbd. With
the further increase of V the SNR will, however, grow fur-
ther, approaching asymptotically the two-state Markovian
limit, where the non-Markovian form factor becomes unity,
i.e., NsVd=1. It is worth noticing that for the two lower
curves in Fig. 4sbd the SNR seemingly saturates with in-
creasing temperature. In fact, however, the SR behavior ex-
hibits a rather broad maximum. The occurrence of this maxi-
mum is quite surprising ssee the discussion at the end of Sec.
IV Ad and is due to non-Markovian effects.
Moreover, at variance with the SNR behavior swhere the

SNR increases with increasing angular frequency of signald
the corresponding SPA diminishes with increasing angular
frequency. Therefore, there should exist an intermediate fre-
quency range which would prove optimal for the detection of
non-Markovian SR.

V. SUMMARY

With this work we have investigated stochastic resonance
in a three-state non-Markovian model of ion channel gating.
We note that our scheme of a three-state non-Markovian
modeling is distinctly different from a similar one, recently
applied to an excitable neuronal dynamics f38,39g. The latter
model assumes a three-state system which cycles unidirec-
tionally between three states, 1 ssilentd, 2 sexcitedd, and 3

srefractoryd, i.e., 1→2→3→1. This unidirectional cycling
corresponds to processes that are very far from the thermal
equilibrium and which require a continuous supply of free
energy. In contrast, our modeling is compatible with the ther-
mal equilibrium. The ion channel gating is commonly as-
sumed to be a thermal equilibrium process f14g. This is in
contrast to the situation with ion pumps and neuronal sys-
tems which do require a free energy supply for proper func-
tioning. As has been shown in this work, our three-state de-
scription is compatible with the phenomenological two-state
theory of non-Markovian stochastic resonance put forward in
Ref. f24g, while the nonequilibrium, three-state model of
Ref. f39g is not within this class of system behaviors f25g.
Nevertheless, the result of Ref. f39g for the spectral power
amplification can be reproduced from our Eq. sA1d by speci-
fying the RTD of the compound silent state si.e., the silent
state plus the refractory stated as a time convolution of two

FIG. 4. The case with a power law distribution of residence
times for three-state ion channel gating scf. Fig. 1d. Instead of a
single-exponential RTD cstd, the residence time distribution in the
inactivated state is given now by Eq. s42d with a=0.25 and td
=0.1 s. The other parameters remain the same as in Fig. 3. The
manifest non-Markovian effects result in a resolution of the differ-
ent lines that merged in Fig. 3. Note in sbd that the signal-to-noise
ratio is fully suppressed toward zero for V→0 sthe result merges
with the horizontal axisd. The adiabatic limit of the corresponding
Markovian three-state model is approximately assumed at V
=100 s−1; cf. the dotted line in sbd which compares with the solid
line in Fig. 3sbd.
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corresponding residence time probability densities and ex-
panding it as in Eq. sA2d. In other words, the model of Ref.
f39g can be recovered as a special case within our general
nonequilibrium approach put forward in Ref. f25g sSec. IV
thereind.
In conclusion, the non-Markovian SR effects such as the

suppression of the signal-to-noise ratio for low frequency
signals and the resolution of different signal frequencies in
the spectral amplification of signal in the presence of possi-
bly large sentropicd asymmetries can be nicely modeled al-
ready within a three-state Markovian model. Such a three-
state Markovian model yields the simplest non-Markovian
model after the corresponding projection onto the subspace
of two observable states. The signal-to-noise ratio remains,
however, finite in the limit of the zero-frequency signal. Its
complete suppression requires an infinite variance of the resi-
dence time intervals in the inactivated state. For such a mani-
fest non-Markovian SR behavior, weak external oscillating
signals with an intermediate frequency should be used in
order to detect SR experimentally.
Our present results provide a theoretical proof for the oc-

currence of stochastic resonance in single biomolecules at
physiological temperatures. This being so, our findings can
guide the experimentalists to choose both the appropriate
molecules for doing experiments and to identify the corre-
sponding experimental parameter regime which in turn will
reveal the SR phenomenon in a single ion channel. Presently
there exist only very few experimental, ion-channel-based
SR works. In Ref. f7g attempts to identify SR in a single ion
channel were made; the occurrence of SR therein is, how-
ever, not convincing. In Ref. f6g one investigates SR and
demonstrates SR. The phenomenon has been studied, how-
ever, only on the level of a small number of dynamically
self-assembled alamethicin ion channels.
Our findings show that ideal candidates to observe SR

experimentally on the level of single molecules are cold- sor
heat-dsensitive ion channels f36g. From this viewpoint, we
believe that a repetition of the experiments in Ref. f7g by
resorting to such channels would indeed become successful
for observing SR in a single ion channel operating within its
physiological regime.
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APPENDIX: DERIVATION OF LINEAR RESPONSE
FUNCTION WITHIN NON-MARKOVIAN TWO-STATE

THEORY

In this appendix the result in Eq. s23d is rederived from
the non-Markovian two-state theory of Ref. f25g. Namely, in
Ref. f25g it has been shown that the linear response function

of an arbitrary two-state renewal process characterized by the
conditional RTDs c j=1,2st u td and the amplitude of conduc-
tance fluctuations Dg to a periodic signal in Eq. s4d is given
in the limit A→0 by

x̃sVd = −
2iDg
AV

1
kt1l + kt2l

3
c̃2

s1ds− iVdf1 − c̃1s− iVdg − c̃1
s1ds− iVdf1 − c̃2s− iVdg

1 − c̃1s− iVdc̃2s− iVd
.

sA1d

In Eq. sA1d, c̃ jssd denote the Laplace transforms of station-
ary RTDs in the absence of driving and c̃ j

s1dssd are the
Laplace transforms of the corresponding contributions in the
expansion of the conditional, driven RTDs, i.e.,

c jstutd = o
n=−`

`

c j
sndstdexps− inVtd . sA2d

The quantities c̃ j
s1dssd must be evaluated from an underlying

multistate or continuous state dynamics to first order in A.
Whenever c̃ j

s1dssd satisfy the relation

c̃ j
s1ds− iVd = −

1
2

b jAf1 − c js− iVdg , sA3d

then the result of the phenomenological theory in Eq. s23d is
recovered from Eq. sA1d. For the exponential form of distri-
bution of open residence times cost u td=c2st u td=kcst
+tdexpf−et

t+tkcst8ddt8g, the relation sA3d is satisfied. We
identify here the state “1” with the compound closed state
“sC, Id” and the state “2” with the open state “O”; note also
that b1;bo, b2;bc. This relation is valid as well for a
multiexponential distribution which assumes a scaling rela-
tion among the rate parameters which is not modified by
driving, i.e., a form-invariant RTD, cf. f25g. Below we dem-
onstrate that the relation sA3d is also valid in the present case
which obviously does not belong to the latter universality
class. Nevertheless, the application of the phenomenological
linear response theory to the considered non-Markovian pro-
cesses f24g is justified.
In order to obtain the conditional survival probability of

the compound closed state F1st u tdªF1st+t , td one needs to
solve the system of equations

d
dt

pcstutd = − fkin + kost + tdgpcstutd

+ E
0

t

Gst − t8dpIst8utddt8,

d
dt

pIstutd = kinpcstutd − E
0

t

Gst − t8dpIst8utddt8, sA4d

with the initial conditions pcs0 u td=1 and pIs0 u td=0. Then
F1st u td=pcst u td+pIst u td. Asymptotically, the considered pe-
riodically driven renewal process becomes cyclic-stationary.
For such a cyclic-stationary process, F1st u td must be invari-
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ant under time shifts t→ t+nT, n= ±1, ±2, . . . with period
T=2p /V; it thus can be expanded into Fourier series as in
Eq. sA2d. With kostd being a periodic function of time, we are
seeking a solution of Eq. sA4d in the form past u td
=on=−`

` pa
sndstdexps−inVtd, pa

s−ndstd= fpa
sndstdg*, a=c, I. Invok-

ing additionally a small-signal expansion s8d this yields an
infinite system of coupled integro-differential equations for
pa

sndstd which upon the use of the Laplace-transform method
results in a recurrent-difference relation for p̃c

sndssd, i.e.,

Ss + kin + kos0d −
kinG̃ssd

s + G̃ssd
D p̃csndssd + ko

s1dfp̃c
sn+1dss − iVd

+ p̃c
sn−1dss + iVdg = dn,0, sA5d

and a relation expressing p̃I
sndssd through p̃c

sndssd, reading

p̃I
sndssd =

kin
s + G̃ssd

p̃c
sndssd , sA6d

where ko
s1d~A is given in Eq. s11d. Note that p̃a

sndssd are non-
linear functions of the driving amplitude A. Equation sA5d
can be solved perturbatively by using the corresponding ex-
pansions of p̃a

sndssd in A. The expansion of pa
s0dssd in A starts

from the driving-independent terms and obviously sfrom the
symmetry reasons, A→−Ad does not contain a linear contri-
bution in the amplitude strength A. Moreover, p̃a

s±1dssd~A, to
the lowest order in A. Hence, p̃a

s±2dssd=OsA2d because the
response at the second harmonic driving frequency cannot be

linear. The use of standard perturbation theory then yields to
the lowest order in A

p̃c
s0dssd =

1

s + kin + ko
s0d − kinG̃ssd/fs + G̃ssdg

+ OsA2d ,

sA7d

p̃c
s1dssd = −

ko
s1dp̃c

s0dss + iVd

s + kin + ko
s0d − kinG̃ssd/fs + G̃ssdg

. sA8d

Equation sA7d determines in combination with Eq. sA6d for
n=0 the stationary si.e., in the absence of drivingd survival
function of the compound closed state in Eq. s18d and the
corresponding RTD s19d, respectively.
Equation sA8d yields in virtue of p̃c

s0ds0d=1/ko
s0d+OsA2d

and Eq. s11d the result

p̃c
s1ds− iVd

=
1
2
A

bo

− iV + kin + ko
s0d − kinG̃s− iVd/f− iV + G̃s− iVdg

.

sA9d

Together with Eq. sA6d for n=1 this gives with bo=b1

F̃1
s1ds− iVd =

1
2
Ab1F̃1

s0ds− iVd . sA10d

Upon using the general relation, c̃a
sndssd=dn,0−sF̃a

sndssd, Eq.
sA10d thus yields the desired relation in sA3d.
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