
Theory of frequency and phase synchronization in a rocked bistable stochastic system

Jesús Casado-Pascual,* José Gómez-Ordóñez, and Manuel Morillo
Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, Sevilla 41080, Spain

Jörg Lehmann,† Igor Goychuk, and Peter Hänggi
Institut für Physik, Universität Augsburg, Universitätsstraße 1, D-86135 Augsburg, Germany

(Received 20 September 2004; published 5 January 2005)

We investigate the role of noise in the phenomenon of stochastic synchronization of switching events in a
rocked, overdamped bistable potential driven by white Gaussian noise, the archetype description of stochastic
resonance. We present an approach to the stochastic counting process of noise-induced switching events:
starting from the Markovian dynamics of the nonstationary, continuous particle dynamics, one finds upon
contraction onto two states a non-Markovian renewal dynamics. A proper definition of an output discrete phase
is given, and the time rate of change of its noise average determines the corresponding output frequency. The
phenomenon of noise-assisted phase synchronization is investigated in terms of an effective, instantaneous
phase diffusion. The theory is applied to rectangular-shaped rocking signals versus increasing input-noise
strengths. In this case, for an appropriate choice of the parameter values, the system exhibits a noise-induced
frequency locking accompanied by a very pronounced suppression of the phase diffusion of the output signal.
Precise numerical simulations corroborate very favorably our analytical results. The novel theoretical findings
are also compared with prior ones.
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I. INTRODUCTION

The theme of synchronization has widespread applica-
tions, covering a plenitude of phenomena [1–4]. Some char-
acteristic examples are the entrainment of a system by exter-
nal, time-dependent forcing, or the generalization of the
synchronization concept for systems that exhibit a chaotic
dynamics [5], lag synchronization [6], and also phase syn-
chronization [7]. Synchronization phenomena play not only a
key role for diverse technological applications, but increas-
ingly as well for the description, the control, and even for the
therapy of selected medical disorders [8].

Due to the interaction with a surrounding environment or
with internal degrees of freedom, noise is present in many
physical systems. This being so, its role cannot be ignored
when investigating synchronization phenomena. In recent
years, it has turned out that noise can actually play a con-
structive role in many physical situations. In particular, noise
can boost the transduction of information by means of the
phenomenon of stochastic resonance [9] in an ample number
of metastable physical and biological systems [10,11]. Fur-
thermore, noise enables Brownian motors to do work against
external load forces [12], or to induce phase transitions far
away from thermal equilibrium [13,14].

Our focus here is on the role of phase synchronization in
stochastic overdamped systems driven by white Gaussian
noise. In these cases, the velocity of the dynamics is not a
measurable quantity because the stochastic trajectories are
neither differentiable nor of finite variation, see, e.g.,

Ref. [15]. A recently proposed method for measuring the
average phase velocity or frequency which is based on the
generalization of a Rice rate formula for threshold crossings
is consequently not a suitable method [16]. An alternative
approach is based on the so-called “Hilbert phase” dynamics,
as pioneered by Gabor [17] for deterministic systems. In the
present work, we shall take a closer look at the synchroniza-
tion phenomenon in a periodically driven bistable system.
Then it is advantageous to introduce a discrete phase dynam-
ics, as recently proposed by Schimansky-Geier and collabo-
rators [4,14,18,19]. In order to extract this discrete phase
dynamics from the underlying continuous process, we shall
consider the stochastic counting process of the noise-induced
switches between the two potential minima. It turns out that
this counting process is in fact a nonstationary renewal pro-
cess [20].

The outline of the present work is as follows: First, we
introduce a dichotomic process associated to the original sto-
chastic process by filtering out the fluctuations around the
potential minima. This dichotomic process possesses a clear
interpretation in terms of a discrete phase. By contrast to the
underlying stochastic process, this two-state process, how-
ever, is no longer Markovian. Subsequently, in Sec. III, we
analyze in detail the statistical properties of the random
switching times associated to the dichotomic process. The
one-time statistical properties of the discrete phase are then
studied in Sec. IV. Based on these results, exact analytical
expressions for the instantaneous output frequency and the
phase diffusion are derived. Approximate expressions, valid
in the weak-noise limit and for a slow external driving, are
then obtained. Finally, our analytical findings will be applied
to the case of a symmetric bistable potential driven by a
periodic rectangular input signal. To corroborate our analyti-
cal results, we compare them with those obtained from a
numerical simulation of the original stochastic process.
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II. DESCRIPTION OF THE MODEL AND DEFINITION OF
THE DISCRETE PHASE

To start, we consider a stochastic dynamics characterized
by a single degree of freedom xstd, whose dynamics (in di-
mensionless units) is described by the stochastic differential
equation

ẋstd = − U8„xstd,t… + jstd , s1d

where jstd is a Gaussian white noise of zero mean with au-
tocorrelation kjstdjssdl=2Ddst−sd, and U8sx , td is the deriva-
tive with respect to x of the bistable quartic potential,

Usx,td =
x4

4
−
x2

2
− Fstdx , s2d

Fstd representing a periodic forcing with period T. Our focus
is on subthreshold signals; more precisely, we will assume
that, for any instant of time, uFstd u ,Ath=2/Î27, where Ath is
the static threshold value (the dynamical threshold value al-
ways exceeds this adiabatic threshold Ath). In this case, the
potential possesses two minima at q−1std,0 and q+1std.0,
and a maximum at qMstd. Introducing the function nstd
=arccosfFstd /Athg, with arccos y being the principal value of
the arc cosine of y (i.e., the value in the interval f0,pg), and

hnstd =
2
Î3

cosFnstd + 2pn
3 G , s3d

then h0std yields the location of the minimum to the right of
the barrier [i.e., q+1std=h0std], h1std yields the location of the
minimum to the left of the barrier [i.e., q−1std=h1std], and
h2std yields the location of the maximum [i.e., qMstd=h2std].
From now on, we will assume that at an initial instant of time
t0 the system is placed at one of the minima of the potential
qa0

st0d, with a0= +1 or 21. The long-time behavior of the
quantities of interest can be obtained by taking the limit as
t0→−` at the end of the calculations. Henceforth, we will
make explicit the dependence of all the quantities on the
initial preparation by the superscript a0, t0; see also the dis-
cussion after Eq. (26). Thus, for instance, we will write
xa0,t0std instead of xstd, meaning that xa0,t0st0d=qa0

st0d.
To analyze the synchronization phenomenon in this sto-

chastic bistable system, it is convenient to introduce a dis-
crete phase associated to the continuous stochastic process
xa0,t0std. In order to do so, first we will proceed to filter out
the fluctuations around the minima of the stochastic process
xa0,t0std to obtain a two-state stochastic process xa0,t0std
which only takes the values 11 or 21. The procedure used is
as follows: At the initial instant of time t0 we set xa0,t0st0d
=a0. A switch of state from ±a0 to 7a0 occurs whenever the
system, having started in one of the minima, reaches the
other minimum for the first time. The instant of time at
which the nth switch of state takes place is a random variable
which will be denoted by Tn

a0,t0, with n=1,2 ,… . Formally,
these random variables can be defined recursively as

Tn
a0, t0 = minft:t . Tn−1

a0, t0 and xa0, t0std = qan
stdg , s4d

where T0
a0,t0= t0 and an= s−1dna0. Thus, if we introduce the

stochastic process

Na0,t0std = maxfn:Tn
a0,t0 ø tg , s5d

which counts the number of switches of state in the interval
st0 , tg, then the two-state stochastic process xa0,t0std can be
expressed as

xa0,t0std = a0 cosfpNa0,t0stdg . s6d

By analogy with the case of a sinusoidal signal, we will
define the discrete phase wa0,t0std associated with xa0,t0std as
the stochastic process

wa0,t0std = pNa0,t0std . s7d

In Fig. 1, we illustrate the procedure just described in the
particular case of a rectangular signal [see Eq. (65) and text
below] with amplitude A=0.25 and frequency v=2p /T
=0.01, and a noise strength D=0.02. The initial instant of
time has been chosen to be t0=0, and the system has been
initially placed at q+1s0d, so that a0= +1. In the upper panel,
we have sketched the rectangular periodic signal Fstd,
whereas in the middle and lower panels, we have depicted a
random trajectory of the stochastic process x+1,0std and the
corresponding realization of the process x+1,0std, respec-
tively.

III. STATISTICAL CHARACTERIZATION OF THE
SWITCHING TIMES Tna0,t0

According to Eqs. (5) and (7), the statistical properties of
the discrete phase wa0,t0std are closely related to those of the

FIG. 1. Illustration of the procedure used to define the stochastic
process xa0,t0std in the particular case of a rectangular signal [see
Eq. (65) and text below] with amplitude A=0.25 and frequency V
=2p /T=0.01, and a noise strength D=0.02. The initial instant of
time has been chosen to be t0=0, and the system has been initially
placed at q+1s0d, so that a0= +1. In the upper panel, we have
sketched the rectangular periodic signal Fstd, whereas in the middle
and lower panels, we have depicted a random trajectory of the
stochastic process x+1,0std and the corresponding realization of the
process x+1,0std, respectively.
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random switching times Tn
a0,t0. The aim of this section is to

provide a detailed description of the statistical characteriza-
tion of these random variables previous to the analysis of
wa0,t0std, which will be postponed to the next section. The
connection between the statistical properties of the switching
times and the original stochastic process xa0,t0std will be also
analyzed in this section.

Following the approach presented in Ref. [20], the ran-
dom variable Tn

a0,t0 can be characterized statistically by its
probability density function

gn
a0,t0std = lim

Dt→0+

Probft , Tn
a0,t0 ø t + Dtg
Dt

. s8d

Besides this probability distribution function, it is also con-
venient to introduce the (cumulative) distribution function

Gn
a0,t0std = ProbfTn

a0,t0 ø tg = E
t0

t

dt8gn
a0,t0st8d , s9d

as well as its complementary,

Gn
a0,t0std = ProbfTn

a0,t0 . tg = 1 − Gn
a0,t0std . s10d

In the particular case n=1, these functions can be directly
determined from the solution of the Fokker-Planck equation
(FPE)

]

] t
Psx,td =

]

] xFD ]

] x
+ U8sx,tdGPsx,td , s11d

with initial condition

Psx,t0d = d„x − qa0
st0d… , s12d

and absorbing boundary condition at q−a0
std, i.e.,

Pfq−a0
std,tg = 0 for all t ù t0. s13d

Denoting by Pa0,t0sx , td the solution of the above problem, it
follows from the definition of G1

a0,t0std in Eq. (10), with n
=1, that

G1
a0,t0std = da0,+1E

q−1std

+`

dx P+1,t0sx,td

+ da0,−1E
−`

q+1std

dx P−1,t0sx,td , s14d

for tù t0, and G1
a0,t0std=1 for t, t0. The function G1

a0,t0std is
the conditional survival probability of the discrete state a0.
The function G1

a0,t0std is then given by Eq. (10) with n=1,
whereas g1

a0,t0std=−Ġ1
a0,t0std is the corresponding conditional

residence time distribution (RTD). The dot indicates the de-
rivative with respect to time t. The knowledge of either the
conditional survival probabilities G1

a0,t0std, or (equivalently)
the conditional RTDs g1

a0,t0std, is sufficient to specify a driven
two-state non-Markovian renewal process [21]. These func-
tions can be found from the underlying continuous-state
Markovian dynamics by solving Eqs. (11)–(14).

For n.1, the functions Gn
a0,t0std, Gn

a0,t0std, and gn
a0,t0std can

be obtained iteratively from the ones corresponding to the

case n=1 by making use of three integral equations. To ob-
tain the first integral equation, let us consider the consistency
condition

Gn+1
a0,t0std = E

−`

+`

dt8 ProbfTn+1
a0,t0 . tuTn

a0,t0 = t8ggn
a0,t0st8d .

s15d

By use of the definition of the switching times in Eq. (4), as
well as the Markovian character of the original stochastic
process xa0,t0std, it is straightforward to verify that

ProbfTn+1
a0,t0 . tuTn

a0,t0 = t8g = G1
an,t8std . s16d

Inserting the above expression into Eq. (15) and taking into
account that G1

an,t8std=1 for t, t8 and gn
a0,t0std=0 for t, t0,

we obtain

Gn+1
a0,t0std = Gn

a0,t0std + E
t0

t

dt8G1
an,t8stdgn

a0,t0st8d s17d

for nù1. The interpretation of this result is straightforward:
The probability that the sn+1dth switch of state occurs after
the time t is equal to the probability that the nth switch
occurs after that instant of time plus the probability that the
nth switch has happened at any time t8 before t with the next
switch taking place after t. Similar interpretations hold for
the integral equations; i.e.,

Gn+1
a0,t0std = E

t0

t

dt8G1
an,t8stdgn

a0,t0st8d , s18d

gn+1
a0,t0std = E

t0

t

dt8g1
an,t8stdgn

a0,t0st8d , s19d

which are obtained from Eq. (17) by using Eq. (10) and
gn

a0,t0std=−Ġn
a0,t0std, respectively.

A formal solution for gn
a0,t0stnd is obtained by solving it-

eratively the integral equation (19). The result is

gn
a0,t0stnd = E

t0

tn
dtn−1¯E

t0

t2
dt1p

j=0

n−1

g1
aj,tjst j+1d s20d

for nù2. Thus, the probability distribution corresponding to
the first switch of state, g1

a0,t0std, which can be obtained from
the solution of the FPE (11) with Eqs. (12) and (13), deter-
mines completely the statistical properties of the rest of the
switching times.

IV. ONE-TIME STATISTICAL PROPERTIES OF THE
DISCRETE PHASE: THE OUTPUT FREQUENCYAND THE

PHASE DISPERSION

The one-time statistical properties of the discrete phase
wa0,t0std can be evaluated by making use of the probability
distribution of the number of switches of state

rn
a0,t0std = ProbfNa0,t0std = ng , s21d

with n=0, 1, 2, … . From the definition of Na0,t0std in Eq. (5)
it follows that
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ProbfNa0,t0std ù ng = Gn
a0,t0std , s22d

with G0
a0,t0std=1. Consequently, the probability distribution

of the number of switches of state and its derivative with
respect to t can be expressed, respectively, as

rn
a0,t0std = Gn

a0,t0std − Gn+1
a0,t0std = Gn+1

a0,t0std − Gn
a0,t0std , s23d

and

ṙn
a0,t0std = gn

a0,t0std − gn+1
a0,t0std , s24d

with G0
a0,t0std=g0

a0,t0std=0. The average of an arbitrary one-
time function of Na0,t0std, KfNa0,t0stdg, is obviously given by

kKfNa0,t0stdgl = o
n=0

`

Ksndrn
a0,t0std . s25d

Equations (23) and (24) can be written in a more trans-
parent form by introducing the probability of an almost im-
mediate switch of state after n switches,

Gn
a0,t0std = lim

Dt→0+

Probft , Tn+1
a0,t0 ø t + DtuNa0,t0std = ng

Dt
.

s26d

Note that if the process xa0,t0std were Markovian, these prob-
abilities could only depend on the state an. The explicit de-
pendence on the number of jumps n and on the initial prepa-
ration a0 at time t0 is a consequence of the non-Markovian
character of the process. Another fingerprint of the non-
Markovian nature of the dichotomic process is the fact that
these probabilities depend on the time t even in the absence
of the external driving. In order to clarify this point, let us
consider, e.g., the particular case n=0. Then, while initially,
right after the particle has been prepared at one of the
minima, the distribution function Pa0,t0sx , td is still very
sharply peaked around qa0

st0d, it becomes smeared out
around the minimum after the intrawell relaxation time. Con-
sequently, the probability of an immediate switch will be
different before and after this relaxation time, even without
an external driving.

Multiplying and dividing the right-hand side of the above
expression by rn

a0,t0std and taking into account that

lim
Dt→0+

Probft , Tn+1
a0,t0 ø t + Dt and Na0,t0std = ng

Dt
= gn+1

a0,t0std ,

s27d

it is readily seen that

Gn
a0,t0std =

gn+1
a0,t0std

rn
a0,t0std

. s28d

Then, it follows from Eqs. (17), (23), and (28) that

rn
a0,t0std = E

t0

t

dt8G1
an,t8stdGn−1

a0,t0st8drn−1
a0,t0st8d s29d

for nù1, with r0
a0,t0std=G1

a0,t0std. Analogously, Eq. (24) leads
to the following hierarchy of differential equations:

ṙn
a0,t0std = Gn−1

a0,t0stdrn−1
a0,t0std − Gn

a0,t0stdrn
a0,t0std s30d

for nù1, and

ṙ0
a0,t0std = − G0

a0,t0stdr0
a0,t0std , s31d

which must be solved with the initial condition rn
a0,t0st0d

=dn,0.
We will also introduce the conditional probability for

xa0,t0std to take the value b= ±1 at time t, provided that it
took the value a0 with probability 1 at the initial instant of
time t0,

pb
a0,t0std = Probfxa0,t0std = bg . s32d

Noting that after an even number of switches of state the
system ends up in the same state as it was initially, whereas
for an odd number of switches the system ends up in the
other state, it is clear that the events hxa0,t0std=a0j and
hxa0,t0std=−a0j are, respectively, equivalent to the events
hNa0,t0std is evenj and hNa0,t0std is oddj, and consequently

pb
a0,t0std = da0,bo

n=0

`

r2n
a0,t0std + d−a0,bo

n=0

`

r2n+1
a0,t0std . s33d

Besides the probability distribution of the number of
switches of state, later we will also use the probability dis-
tribution of the number of switches of state conditioned to
the value of xa0,t0std,

rn
a0,t0stubd = ProbfNa0,t0std = nuxa0,t0std = bg . s34d

Multiplying and dividing the right-hand side of the above
expression by pb

a0,t0std and taking into account that
ProbfNa0,t0std=n and xa0,t0std=bg=rn

a0,t0stddan,b, it results
that

rn
a0,t0stubd =

rn
a0,t0std

pb
a0,t0std

dan,b. s35d

The average of an arbitrary one-time function of Na0,t0std,
KfNa0,t0stdg, conditioned to the event hxa0,t0std=bj will be
denoted by kKfNa0,t0stdglb, with b= +1 or −1, and it is given
by

kKfNa0,t0stdglb = o
n=0

`

Ksndrn
a0,t0stubd

= da0,bo
n=0

`

Ks2nd
r2n

a0,t0std
pa0

a0,t0std

+ d−a0,bo
n=0

`

Ks2n + 1d
r2n+1

a0,t0std
p−a0

a0,t0std
. s36d

From the above expression and Eq. (25), it follows that

kKfNa0,t0stdgl = kKfNa0,t0stdgl+1p+1
a0,t0std

+ kKfNa0,t0stdgl−1p−1
a0,t0std . s37d

Another interesting quantity which will be useful later is
the probability of an almost immediate switch from state b,
defined as
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gb
a0,t0std = lim

Dt→0+

Probft , TNa0,t0std+1
a0,t0 ø t + Dtuxa0,t0std = bg

Dt
.

s38d

Notice that in the Markovian limit, these probabilities are
independent of the initial preparation a0 at time t0 and cannot
be distinguished from the probabilities defined in Eq. (26).
Multiplying and dividing the right-hand side of the above
expression by pb

a0,t0std and taking into account the equiva-
lence of the event hxa0,t0std=bj with the event
hNa0,t0std is evenjda0,b+ hNa0,t0std is oddjd−a0,b, as well as
Eqs. (26) and (36), it is easy to see that

gb
a0,t0std = kGNa0,t0std

a0,t0 stdlb
. s39d

Differentiating Eq. (33) with respect to t and taking into
account Eqs. (30), (36), and (39), it is straightforward to
obtain that

ṗb
a0,t0std = − gb

a0,t0stdpb
a0,t0std + g−b

a0,t0stdp−b
a0,t0std s40d

for b=1 and 21. Equation (40) is a non-Markovian master
equation for the conditional probabilities pb

a0,t0std. It is of the
time-convolutionless form [22,23]. The rate parameters
gb

a0,t0std entering this equation are time-dependent quantities
even in the absence of time-dependent driving. Such a time
dependence reflects primarily a nonexponential distribution
of the residence times of the renewal two-state non-
Markovian process [20,24], which results from the projection
of a continuous-state Markovian stochastic dynamics onto
the two discrete states b= ±1. A time-dependent driving in-
troduces an additional time dependence into gb

a0,t0std which is
present also in the driven Markovian case. In this latter case,
gb

a0,t0std becomes a time-dependent rate and this rate depends
neither on a0 nor on t0 (see below). Two other forms are
possible to describe the evolution of conditional probabilities
pb

a0,t0std. One is given by the generalized master equations
(GMEs) with the memory kernels expressed via the corre-
sponding RTDs. In the driven case, the kernels of corre-
sponding GMEs will become functionals of the driving and
will depend on both time arguments. Alternatively, integral
equations for the conditional probabilities pb

a0,t0std can be de-
rived for the driven two-state renewal process in terms of
(conditional) RTDs g1

a0,t0std [21]. Such integral equations
present a generalization of the integral renewal equations of
Ref. [20] to the driven case. We apply in this work a time-
convolutionless description of non-Markovian dynamics
[22,23] to the synchronization problem.

After these rather formal considerations, we shall now
apply these results to the evaluation of two important quan-
tities in the study of the synchronization phenomenon: The
instantaneous output frequency and phase diffusion.

A. The instantaneous output frequency

The instantaneous output frequency is defined as the de-
rivative with respect to t of the averaged discrete phase [18],
i.e.,

Vout
a0,t0std =

]

] t
kwa0,t0stdl = p

]

] t
kNa0,t0stdl . s41d

Multiplying Eq. (30) by n, summing up the series
on=1

` nṙn
a0,t0std, and taking into account Eq. (25), it is easy to

obtain that

]

] t
kNa0,t0stdl = kGNa0,t0std

a0,t0 stdl . s42d

Consequently, from Eqs. (37), (39), and (41), it results

Vout
a0,t0std = pfg+1

a0,t0stdp+1
a0,t0std + g−1

a0,t0stdp−1
a0,t0stdg . s43d

This finding for the averaged frequency of the discrete phase
dynamics constitutes a first main finding of this work.

B. The instantaneous phase diffusion

Let us now proceed to the evaluation of the instantaneous
phase diffusion Dout

a0,t0std, which can be defined as [18]

Dout
a0,t0std =

]

] t
hkfwa0,t0stdg2l − kwa0,t0stdl2j

= p2 ]

] t
hkfNa0,t0stdg2l − kNa0,t0stdl2j . s44d

Multiplying Eq. (30) by n2, summing up the series
on=1

` n2ṙn
a0,t0std, and taking into account Eq. (25), it is

straightforward to see that

]

] t
kfNa0,t0stdg2l = 2kNa0,t0stdGNa0,t0std

a0,t0 stdl + kGNa0,t0std
a0,t0 stdl .

s45d

Replacing the above expression into Eq. (44) and taking into
account Eqs. (41) and (42), it results that

Dout
a0,t0std = pVout

a0,t0std + 2p2fkNa0,t0stdGNa0,t0std
a0,t0 stdl

− kNa0,t0stdlkGNa0,t0std
a0,t0 stdlg . s46d

Equation (46) can be expressed in a more convenient form
by writing all the averages k¯l in terms of the conditional
averages k¯lb, according to Eq. (37). Then, after some sim-
plifications one obtains

Dout
a0,t0std = pVout

a0,t0std + 2p2Dga0,t0stdCa0,t0std

+ 2p2 o
b=±1

Cb
a0,t0stdpb

a0,t0std , s47d

where

Dga0,t0std = g+1
a0,t0std − g−1

a0,t0std , s48d

Ca0,t0std = fkNa0,t0stdl+1 − kNa0,t0stdl−1gp+1
a0,t0stdp−1

a0,t0std ,
s49d

and we have introduced the conditional covariance

Cb
a0,t0std = kfNa0,t0std − kNa0,t0stdlbg

3fGNa0,t0std
a0,t0 std − kGNa0,t0std

a0,t0 stdlb
glb

. s50d
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Making use of Eqs. (30) and (40) and after some lengthy
calculations, it is possible to prove that Ca0,t0std satisfies the
differential equation

Ċa0,t0std = − ga0,t0stdCa0,t0std

− o
b=±1

bfCb
a0,t0std + gb

a0,t0stdpb
a0,t0stdgpb

a0,t0std ,

s51d

where

ga0,t0std = g+1
a0,t0std + g−1

a0,t0std . s52d

Equation (51) can be formally solved taking into account
that, as it follows from the definition (49), Ca0,t0st0d=0. The
result is

Ca0,t0std = − o
b=±1

bE
t0

t

dt8 fCb
a0,t0st8d + gb

a0,t0st8dpb
a0,t0st8dg

3pb
a0,t0st8de−et8

t dt9ga0,t0st9d. s53d

Replacing the above expression into Eq. (47), one obtains

Dout
a0,t0std = p Vout

a0,t0std + Qa0,t0std − 2p2Dga0,t0std

3 o
b=±1

bE
t0

t

dt8gb
a0,t0st8dfpb

a0,t0st8dg2e−et8
t dt9ga0,t0st9d,

s54d

where all the dependence on the conditional covariance
Cb

a0,t0std has been included in the function

Qa0,t0std = 2p2 o
b=±1

Cb
a0,t0stdpb

a0,t0std − 2p2Dga0,t0std

3 o
b=±1

bE
t0

t

dt8Cb
a0,t0st8dpb

a0,t0st8de−et8
t dt9ga0,t0st9d.

s55d

The expression (54) for the instantaneous phase diffusion
presents a second main result of this work.

C. The weak-noise and low-frequency limit

Throughout the following, we will assume that the noise
strength D is sufficiently small so that the intrawell relax-
ation time scale is negligible compared with the time scale
associated to the interwell transitions and, as well, the driv-
ing time scale T. In this case, for t− t0 much larger than the
characteristic intrawell relaxation time, the probability of an
almost immediate switch of state after 0 switches, G0

b,t0std,
can be approximated by the Kramers rate of escape [25] from
the state b at time t, i.e.,

G0
b,t0std < gb

Kstd =
vbstd vMstd

2p

3expH−
UfqMstd,tg − Ufqbstd,tg

D J , s56d

where vbstd=ÎU9fqbstd , tg=Î3fqbstdg2−1 and vMstd

=ÎuU9fqMstd , tgu=Î1−3fqMstdg2. Furthermore, from Eqs.
(17), (19), (23), and (28) it follows that, within this approxi-
mation, we also have that Gn

b,t0std<gb
Kstd for nù1 and, con-

sequently, gb
a0,t0std<gb

Kstd and Cb
a0,t0std<0. In this case, the

conditional survival propabilities and the residence time dis-
tributions in state a0 read

G1
a0,t0std = expF− E

t0

t

ga0
K st8ddt8G s57d

and

g1
a0,t0std = ga0

K stdexpF− E
t0

t

ga0
K st8ddt8G , s58d

respectively. This corresponds to a two-state Markovian pro-
cess with rates g±1

K std. In this Markovian limit for the re-
duced, two-state dynamics, the instantaneous output fre-
quency and phase diffusion become

Vout
a0,t0std = pfg+1

K stdp+1
a0,t0std + g−1

K stdp−1
a0,t0stdg s59d

and

Dout
a0,t0std = pVout

a0,t0std

− 2p2DgKstd o
b=±1

bE
t0

t

dt8gb
Kst8dfpb

a0,t0st8dg2

3 e−et8
t dt9gKst9d, s60d

respectively. Here, gKstd=g+1
K std+g−1

K std, DgKstd=g+1
K std

−g−1
K std, and pb

a0,t0std is obtained by solving the master equa-
tion

ṗb
a0,t0std = − gb

Kstdpb
a0,t0std + g−b

K stdp−b
a0,t0std , s61d

with initial condition pb
a0,t0st0d=da0,b.

In order to obtain expressions independent of the initial
preparation, it is necessary to take the limit t0→−` of Eqs.
(59) and (60). In this limit, it can be shown that the functions
Voutstd=limt0→−`Vout

a0,t0std and Doutstd=limt0→−`Dout
a0,t0std are

periodic functions of the time t. Then, one can perform a
cycle average and define the averaged output frequency

Vout =
1
TE0

T

dt Voutstd =
p

TE0

T

dt fg+1
K stdp+1std + g−1

K stdp−1stdg ,

s62d

where pbstd is the periodic long-time solution, pbstd
=limt0→−`pb

a0,t0std, of Eq. (61). After some lengthy calcula-
tions, it is also possible to show from Eq. (60) that the aver-
aged phase diffusion is given by
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Dout =
1
TE0

T

dtDoutstd = pVout −
p2

T
cschSgKT

2 D
3 o

b=±1
bE

0

T

dtE
0

T

dt8DgKstdgb
Kst8dfpbst8dg2

3 expFsgnst - t8d
gKT
2

− E
t8

t

dt9gKst9dG , s63d

with

gK =
1
TE0

T

dtgKstd . s64d

In the next section we will consider the case of a rectangular
input signal. In this case, explicit analytical evaluations of
the integrals in Eqs. (62) and (63) can be carried out.

V. PERIODIC RECTANGULAR INPUT SIGNAL

As an example of the use of Eqs. (62) and (63) which is
amenable to analytical treatment, we will consider the case
of the periodic rectangular driving force

Fstd = s− 1dnstdA , s65d

where nstd= b2t /Tc, bzc being the floor function of z, i.e., the
greatest integer less than or equal to z. In other words, Fstd
=A fFstd=−Ag if t[ fnT /2 , sn+1dT /2g with n even (odd).
Because the potential fulfills the symmetry property
Usx , t+T /2d=Us−x , td, we have qMstd= s−1dnstdqMs0d, and

qbstd = b
Dqs0d

2
− s− 1dnstdqMs0d

2
, s66d

where Dqs0d=q+1s0d−q−1s0d. Here, we have taken into ac-
count Vieta’s formula q+1std+q−1std+qMstd=0.

According to the above mentioned symmetry property of
the potential, gb

Kstd can be expressed in the form

gb
Kstd =

g

2
f1 − s− 1dnstdbDpeqs0dg , s67d

where g=g+1
K s0d+g−1

K s0d, and Dpeqs0d=p+1
eq s0d−p−1

eq s0d,
pb

eqs0d being the equilibrium population of the state b corre-
sponding to the rates taken at time t=0, i.e., pb

eqs0d
= fdb,−1 g+1

K s0d+db,+1 g−1
K s0dg /g. Notice that for the rectangu-

lar input signal in Eq. (65), gKstd=gK=g. We can also write

DgKstd = g+1
K std − g−1

K std = − s− 1dnstdgDpeqs0d . s68d

As shown in Ref. [26], the long-time probabilities p±1std are
given by

p−1std = 1
2 f1 − s− 1dnstdDpeqs0dg

+ s− 1dnstdDpeqs0d
e−ght−fnstdT/2gj

1 + e−gT/2 , s69d

and p+1std=1−p−1std.
Replacing the above expressions into Eqs. (62) and (63),

one obtains after some lengthy simplifications that

Vout =
pg

2
51 − fDpeqs0dg231 −

4 tanhSgT
4 D

gT
46 , s70d

and

Dout = pVout −
2p2

T
fDpeqs0dg4FtanhSgT

4 DG3

−
p2

2T
fDpeqs0dg2h1 − fDpeqs0dg2jX12 tanhSgT

4 D
− gTH1 + 2FsechSgT

4 DG2JC . s71d

In the next subsection, we will compare these analytical re-
sults for the averaged output frequency and phase diffusion
with results obtained from a numerical solution of the sto-
chastic differential equation (1).

Comparison with numerical results

Following the algorithm developed by Greenside and Hel-
fand [27,28] (consult also the Appendix in Ref. [29]), we
have integrated Eq. (1) for a large number of noise realiza-
tions, M, starting from one of the minima qa0

s0d. From the
initial instant of time, which we set equal to zero, we start
monitoring the switches of states and recording the instants
of time at which those switches occur, according to Eq. (4).
We will denote by tn,i

a0,0 the instant of time of the nth switch
of state in the ith trajectory. From the switching times tn,i

a0,0,
the realization of Na0,0std corresponding to the ith trajectory,
Ni

a0,0std, can be easily calculated using Eq. (5), and the cor-
responding realization of the discrete phase, wi

a0,0std, by Eq.
(7). The noise-averaged phase is then obtained by

kwa0,0stdl =
1
Mo

i=1

M

wi
a0,0std , s72d

and the phase variance by

ya0,0std = kfwa0,0stdg2l − kwa0,0stdl2 =
1
Mo

i=1

M

fwi
a0,0stdg2

−
1
M2Fo

i=1

M

wi
a0,0stdG2

. s73d

After a sufficiently long number of periods L for the system
to “forget” the initial preparation, the averaged output fre-
quency is calculated from the expression

Vout =
kwa0,0fsL + 1dTgl − kwa0,0sLTdl

T
, s74d

and the averaged phase diffusion from

Dout =
ya0,0fsL + 1dTg − ya0,0sLTd

T
. s75d

Figures 2–4 show the results of the numerical solution
just described for a periodic rectangular input signal with
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angular frequency V=2p /T=0.01 and three different values
of the driving amplitude: A=0.14 (see Fig. 2), A=0.25 (see
Fig. 3), and A=0.3 (see Fig. 4). As reported previously in
Ref. [18] and observed experimentally in Ref. [30], for high
enough, but still subthreshold, driving amplitudes, the
present system exhibits a noise-induced frequency locking,
i.e., starting from a nonzero value of the noise strength D, the
frequency of the output signal matches the frequency of the
input signal, until, for strong noise, the output signal be-
comes desynchronized again. This effect is accompanied by
a very pronounced suppression of the phase diffusion of the
output signal, i.e., a noise-induced phase locking. For the
relevant values of the noise strength D, our analytical esti-
mates Eq. (70) and Eq. (71) agree very well with the results
obtained from the numerical solution. Only for rather strong
noise can a noticeable deviation be observed. In this regime,
the Kramers rates (56) are no longer valid. We have also
plotted the results of the previous work [18], using the rates
(56). We note that while the improvement of our analytical

estimates for the frequency synchronization is moderate only,
our prediction for the phase diffusion is strongly improved.

VI. CONCLUSIONS

With this work, we have investigated in detail the phe-
nomenon of frequency and phase synchronization in bistable,
periodically driven stochastic systems. This objective is not
only of foremost interest for the well known phenomenon of
stochastic resonance [9,10] and the topic of rocked Brownian
motors [12], but also carries great potential for the study of
driven stochastic neuronal dynamics and driven excitable
sytems per se [31]. Our approach takes a new look at this
prominent problem. Starting out from a driven, Markovian
continuous dynamics, we derived in great detail the stochas-
tic renewal dynamics of the noise-induced switching events.
This contraction of the full Markovian dynamics in state
space onto the discrete counting process of subsequent
switches between the metastable states implies a non-
Markovian dynamics for the switching times and the corre-
sponding phase dynamics whose explicit time evolution de-
pends on initial preparation effects. The resulting non-
Markovian expressions still contain the full information of
the driven dynamics in the relevant state space and thus are
not readily accessible for analytical estimates.

In contrast, for weak noise and slow external driving, the
dynamics of the underlying process simplifies considerably.
Consequently, in the long time limit the phase dynamics now
assumes again a Markovian nature. In this regime, we put
forward new results for the phase diffusion and the fre-
quency synchronization. In doing so, we have employed
rectangular-shaped periodic driving signals. This choice en-
tails two distinct advantages, namely (i) it allows a conve-
nient analytic analysis of the corresponding synchronization
quantities and (ii) its two-state character is also known to
optimize the efficiency for the synchronization features. The
same optimization feature holds true for related effects such
as the achievements of optimizing the gain for stochastic
resonance [32] or the enhancements of energy transduction
in driven chemical reactions [33].

FIG. 4. Like Fig. 2 but for a driving amplitude A=0.30.FIG. 2. Averaged output frequency (upper panel) and averaged
phase diffusion (lower panel) as a function of the noise strength D
for a periodic rectangular input signal [see Eq. (65) and text below]
with amplitude A=0.14 and angular frequency V=2p /T=0.01.
Solid line: Analytical results obtained from Eq. (70) (upper panel)
and Eq. (71) (lower panel), respectively. Dashed line: Theoretical
result from Ref. [18]. Crosses: Precise numerical results. In the
upper panel, a horizontal dotted line indicates the frequency of the
input signal.

FIG. 3. Like Fig. 2 but for a driving amplitude A=0.25.
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Our analysis is in the spirit of prior works [18,19]; our
novel estimates, however, quantitatively supersede in accu-
racy those prior results, cf. the detailed comparison per-
formed above. While the improvement for the frequency
synchronization is moderate only, the novel estimates present
a sizable improvement for the role of the phase diffusion. In
the weak-noise regime and for slow external driving, the
Markovian theory provides a very good agreement with nu-
merical precise simulations. This being so, we are confident
that the new insight gained into the complexity of non-
Markovian, driven switching time dynamics together with its
Markovian simplification obtained at weak noise and slow

driving will prove useful for modeling and interpreting sto-
chastic synchronization phenomena in driven metastable and
excitable dynamics.
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