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We consider the kinetics of electron transfer reactions in condensed media with different
reorganization energies for the forward and backward processes. The starting point of our analysis
is an extension of the well-known Zusman equations to the case of parabolic diabatic curves with
different curvatures. A generalized master equation for the populations as well as formal expressions
for their long-time limit is derived. We discuss the conditions under which the time evolution of the
populations of reactants and products can be described at all times by a single exponential law. In
the limit of very small tunnel splitting, a novel rate formula for the nonadiabatic transitions is
obtained. It generalizes previous results derived within the contact approximation. For larger values
of the tunnel splitting, we make use of the consecutive step approximation leading to a rate formula
that bridges between the nonadiabatic and solvent-controlled adiabatic regimes. Finally, the
analytical predictions for the long-time populations and for the rate constant are tested against

precise numerical solutions of the starting set of partial differential equations. © 2003 American

Institute of Physics. [DOL: 10.1063/1.1525799]

I. INTRODUCTION

Electron transfer reactions are of prime importance in
many physicochemical and biological processes.' At a very
fundamental level, an electron transfer step is essentially an
electron tunneling event in the presence of a medium (sol-
vent). A non-negligible tunneling probability requires reso-
nance in the energy of localized electronic states. The solvent
thermal fluctuations provide the necessary energy for the
resonance condition. Thus, the kinetics of electron transfer
reaction requires an adequate description of the medium ther-
mal fluctuations that mediate the electronic charge redistri-
bution in an electron transfer.?

In the classical theory of Marcus,” Hush,* and Levich
and Dogonadze® the solvent fluctuations are described by an
equilibrium probability law. Thus, the knowledge of the free
energy as a function of an appropriate reaction coordinate is
all that is needed to evaluate the rate constant. About 20
years ago, Zusman® and Alexandrov’ introduced into the
theory the idea that nonequilibrium effects associated with
the relaxation of solvent fluctuations could also affect the
rate. In a phenomenological way, Zusman proposed a set of
four partial differential equations that incorporated the relax-
ation of the nonequilibrium probability laws of the reaction
coordinate in each diabatic state and the tunneling transitions
between them. In the original model, the diabatic states are
parabolic functions of the reaction coordinate, with equal
curvatures for the reactant and product states. The curvature
is related to the reorganization energy in such a way that
equal curvatures implies that the values of the reorganization
energy for the forward and backward reactions are identical.
Later on, Garg et al.® presented a derivation of the Zusman
equations starting from a Hamiltonian model. They use tech-
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niques of functional integrals to carry out the elimination of
the bath degrees of freedom from the total density operator.

Previous analytical and numerical studies indicate that
the reorganization energies for the direct and inverse reac-
tions might indeed have different values.” ' 1t is, therefore,
interesting to extend the classical Zusman—Alexandrov for-
mulation to the case of parabolas with different curvatures. A
few years ago, Tang'® discussed such an extension. From the
very beginning in his analysis, Tang made use of the so-
called contact approximation. Namely, he assumed that tun-
neling between diabatic curves takes place strictly at their
crossing points, thus neglecting any delocalization effects.
Even for diabatic surfaces with equal curvatures, the fact that
tunneling transitions are somewhat delocalized around the
crossing point is important, especially in the inverted
regime.'®!7 Delocalization leads to modifications of the rate
expression with respect to the typical Marcus—Arrhenius
structure. In previous work,'® we have also found strong in-
dications that the contact approximation is not adequate to
describe strongly biased electron transfer processes.

The starting point of this paper is a set of four partial
differential equations similar to those used by Tang.'> The
structure of such equations is the same as in the original
Zusman model, but with parabolic potentials with different
curvatures. The equations describe the dynamics of diagonal
and off-diagonal matrix elements of the reduced density op-
erator. We accept here the validity of Zusman model.
Frantsuzov'® has correctly pointed out the limitations of Zus-
man equations to describe electronic transfer processes in
strongly polar solvents. Indeed, if the solvent polarity is too
strong, the conditions under which Zusman equations are
derived from a more microscopic point of view??** might be

© 2003 American Institute of Physics
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violated. This is an interesting point that we propose to ad-
dress in the future. In the present work, we will concentrate
on the derivation of the usual macroscopic kinetic descrip-
tion of electron transfer reactions from a Zusman-like model
and on the determination of suitable expressions for the rate
constant and the long-time populations of reactants and prod-
ucts. In our derivation, we will not assume the contact ap-
proximation.

The scheme of the paper is as follows: In Sec. II we set
up the model and the notation. In Sec. III we derive formal
expressions for the populations on the diabatic surfaces in
Laplace space. This is achieved by using Green functions
and projection operator techniques on the Zusman equations.
An alternative method of solution of the Zusman equations
has been put forward recently by Cao and Jung.* It is based
on the spectral properties of the evolution operator for the
density matrix in the Zusman approximation. As far as we
know, this alternative has only been applied to diabatic pa-
rabolas of equal curvatures. The long-time limit is explicitly
obtained. It is also shown that the populations satisfy inte-
grodifferential equations with a complicated kernel. Under
suitable conditions which are discussed in Sec. IV, we prove
that the populations satisfy a single exponential relaxation
law for all relevant time scales, characterized by the rate
constant and the long-time values of the populations. In Sec.
V, we present approximate analytical expressions for those
two kinetic parameters. In Sec. VI we present a detailed
comparison of the analytical predictions and precise numeri-
cal solution of the Zusman equations. Finally, we conclude
with comments about the main findings in this work. Some
of the calculations are very involved and they are presented
in the Appendices.

Il. THE ZUSMAN EQUATIONS FOR DIABATIC
POTENTIALS WITH DIFFERENT CURVATURES

The basic elements to describe electron transfer pro-
cesses are two diabatic electronic energy curves V;(x), j
=1, 2, and a generalized one-dimensional reaction coordi-
nate x with effective mass m. The electronic states before and
after the charge transfer will be denoted as donor, |1), and
acceptor, |2), respectively. The reaction coordinate represents
a combination of the selected nuclear modes coupled directly
to the electronic transfer system.! The reaction coordinate is
also coupled to the rest of nuclear modes. This coupling
introduces friction in the dynamics of the reaction coordinate
with a phenomenological friction coefficient 7. This is a
well established starting point in the microscopic treatment
of intramolecular electron transfer."®!* Tt should be noted
that our V;(x) are potential energy curves. They should not
be confused with the parabolic free energy curves appearing
in alternative descriptions of electron transfer, as those rely-
ing on computer simulations.'® In the overdamped limit, Zus-
man equations provide an appropriate description for the
time evolution of the matrix elements pj(x,7)
:=(j,x|p(t)|x,k) of the reduced density operator in the elec-
tron and reaction coordinate Hilbert space. Zusman equa-
tions and their validity conditions have been repeatedly de-
rived and discussed in the literature.®'*>* These equations
read
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FIG. 1. Parabolic diabatic surfaces with different curvatures as a function of
the reaction coordinate x. Notice that the number of crossing points depends
on the value of the energy bias €.
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The macroscopic diffusion constant D is connected with the
friction coefficient 7, which is assumed to be identical in
both diabatic states, and the temperature 7 by the Einstein
relation D=kpT/7. The operator £=(L,+ L,)/2 describes
diffusion on the average potential [V(x)+ V,(x)]/2. Fi-
nally, A denotes the electronic coupling matrix element, and
it characterizes the degree of overlap of the donor and accep-
tor wave functions. Here, we will take A to be independent
of the nuclear coordinates (Condon approximation).

In this work, we will assume parabolic diabatic curves of
the form

B mwf 5
V/(x)— T(X_xoaf,z) - 605_/,29 (6)

where x and €, are the horizontal and vertical shifts, respec-
tively, between the minima of the parabolas (cf. Fig. 1). The

frequencies w; characterize their curvatures, and they are
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related to the reorganization energies A; by the expression
N;= mwfxﬁ/z. Therefore, the fact that the curvatures are dif-
ferent implies that these reorganization energies for the for-
ward and backward reactions are also different. To avoid
confusion, we want to emphasize that the curvatures of our
diabatic potential energies, w;, can be different. If one de-
scribes electron transfer processes in terms of free energy
profiles, then, as pointed out by Tachiya,? the two free en-
ergy curves are not independent, and they cannot be strictly
parabolic when the curvatures at their minima are different.
Obviously, our potential energies, not being free energies,
are not tied up by such a restriction. The difference in cur-
vatures also yields a difference in the phenomenological re-

laxation times corresponding to each diabatic curve,

n kgT
T=——= .
/ mwjz- ma)jz»D

(7)

Notice that these relaxation times are related to the reorgani-
zation energies by 7, /7,=N\,/\;. For later convenience, we
will also introduce the relaxation time of the overdamped
oscillator on the averaged potential [ V(x)+ V,(x)]/2,

2kyT

T —.
mD(w?+ w3)

(®)

From the above expressions, it follows that 2/7=1/7,
+1/7,.

Electron tunneling is most effective near the crossing
points of the diabatic curves, which are given by

>\2+(—1)j\/(1—?)>\17\z}, ©)

where €,=N ;N\, /(N;—N\,). Depending on the relative val-
ues of €, and €, there can be two, one, or no crossing points.

.
TN

lll. FORMAL SOLUTION OF THE ZUSMAN
EQUATIONS

In this section we obtain some exact, though formal,
analytical results for the time evolution of the populations
P;(#). They are obtained by integrating the corresponding
probability densities over configuration space, i.e., P;(f)
=[%_.dxp i(X,2). The first step is to reduce the four Zus-
man equations to just two integral equations for the diagonal
elements p;;(x,7). This is achieved by first replacing
pia(x,t) and p,y(x,¢) in Egs. (1) and (2) by the result of
formally solving the two off-diagonal equations (3) and (4).
This yields
d (—1)VA (=
Epjj(xst): TJlmdM Im[ G, 4(x,t|x1) p12(x1,0)]

(—1)A2 [0 (=
el 2N IR
0 —

XRe[ Goy(x,t—11]x1)]

X[pi1(xy,t1) = poalxy Jl)]"’ﬁj pjj(x,t), (10)
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where G, (x,t|x"), the off-diagonal Green function, is the
solution of the partial differential equation

P ) .
_God(x’tlx’)z L— %[Vl(x)_ VZ(x)]] God(x:t|x’)a

at
(11)
with initial condition
Goy(x,0]x")=8(x—x"), (12)
and boundary conditions
lim G, (x,t]x")=0. (13)
x>t

An evaluation of this Green function for the harmonic poten-
tials with different curvatures can be found in Appendix A 1.
From now on, we shall assume that p,(x,0)=0, so that the
first term on the right-hand side of expression (10) will not
be present. This initial condition describes the usual situation
in which the electronic coherences between donor and accep-
tor states are initially neglected.

Next, formal solution of Eq. (10) in terms of the diago-
nal Green functions GY)(x,z|x") leads to

1 *
ij(xat):(_l)]fodtlf_ dxlaj(xJ_f1|x1)
X[p11(x1,21) = paalxy,t1)]
+j dx; GP(x,t]x1)p,;(x1,0). (14)

The propagators a,(x,|x") in Eq. (14) are given in terms of
the Green functions by

A% [t o )
a;(x,t|x")= ﬁfo dt’ fﬁwdx" GP (x,t

—t'|x") Re[Goy(x",t"|x")]. (15)

The diagonal Green functions describe the diffusive motion
on the diabatic curves V;(x). They are the solution of the
partial differential equations

J . .
EGquuq=gcyuﬂfL (16)

with the same type of initial and boundary conditions as
G a(x,t]x"). Explicit expressions for GY)(x,7[x") can be
found in Appendix A 2.

Typically, a reaction starts from a situation where the
solvent is thermally equilibrated. Thus, we will restrict our
study to initial conditions for the diagonal terms of the form
p;i(x,0)=g;(x)P;(0), where

exp = V;(x)/kpT]

g;(x)=— (17)
J, dx" exp[ = V(x")/kgT]

are the equilibrium distributions on each of the diabatic
curves, and P;(0) are the initial conditions for the popula-
tions. Obviously, with these initial conditions, the second
term on the right-hand side of expression (14) reduces to

gi(x)P;(0).
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For later convenience, we will rewrite Eq. (14) in matrix
notation by introducing the one-column vector o(x,#) with
components @;(x,1)=p;;(x,t), and the 2X2 matrices U,
A(x,t|x"), and g(x) with matrix elements Ujp=(— 1)/ 7k,
Ap(x,t|x")=a;(x,t|x")8; s, and g (x)=g;(x) &, ;, respec-
tively. The solution of Eq. (14) is best sought by using the
Laplace transform f(s)=[ odt f(t)exp(—st). Thus, one finds

Br9)=s " gPO)~ [ e Alwslr) VB 9). (18)

We will use standard projection operator techniques to
get an expression for the Laplace transform of the popula-

tions P(s). We define the projection operators IT and Q as
TF(x) = Fi(x) =g(x) J dx'F(x'), (19)

OF(x)=F, (x)=F(x)~ Fj(x), (20)

F(x) being an arbitrary one-column vector or 2X2 matrix
depending on x. By acting with IT on Eq. (18) and integrating
over x, one obtains after some simplifications

P(0)= sI~I—f dx, K(x;,s)Ug(x,) | P(s)
+f dxll?(xlas)UéJ_(xlas)a (21)
where I is the 2X2 unit matrix and
A% (=
K(x,s =—f dx' Re[ G (x',s]x)]. 22
(r)= 5| dx RG] (2)
Using Eq. (A16) in Eq. (22), we obtain
- A% [
K(x,s)= —f dt Refexp[ —st—c(t,x)]}, (23)
2720

with ¢(¢,x) given by Eq. (A11). The action of Q on Eq. (18)

leads to

01 (x,5)=~ J_ dxy Ay (x,s|x)ULg(x1)P(s)+ 0 (x.9)],
(24)

where

- A2 o0 -
Ausla) =~ de T sl)

X Re[ Goq(x",s|x")1, (25)

with J(x,s|x") being the 2X2 diagonal matrix with matrix
elements

Ti(x,s|x') =8, dlg;(0) 17 'GP sl =57 (26)

A formal solution for @ 1(x,s) is obtained by solving itera-
tively the integral equation (24). Substitution of the result in
Eq. (21) leads to

P(0)=[s I+ Uk(s)]P(s), (27)

where k(s) is the diagonal matrix obtained by summing the
series

Casado-Pascual et al.

k(s) :,,Zl Em(s). (28)
The terms of the series K™(s) are given by

)= | Ko ogen 9)
and

EW(s)y=(—1)""! ficdxl E f:cdx,, K(xy,s)

><112 T AL (x;-1,5]x,)1g(x,) (30)

for n=2.
According to Eq. (27), the Laplace transform of the
populations can be expressed in terms of the diagonal matrix

k(s) as
P(0)+5'[8; 1kn(s)+ 8 2k11(s)]
s+kii(s)+kxls) .

After carrying out the inverse Laplace transform of the above
expression, one obtains the time evolution of the popula-
tions, P;(¢). It follows from expression (31) that the long-
time limit of the populations is given by

1:';]'(3)2

€2))

Pj():= lim P;(t)= lim sP(s)

t—+» s—0+
_ 8,.1k2,(0)+ 8, ,k1,(0)
k11(0) +k5(0)
Notice that these values are independent of the initial condi-
tions P;(0).
Finally, rearranging Eq. (27) and carrying out the inverse

Laplace transform, we find that the populations P;(¢) satisfy
the set of generalized master equations

(32)

d t
0= [ tet= )P bt 1= ) Pala1),
33)

d t
Epz(f):_ Jodﬂ Lhpa(t=1")Py(t") =k (t=1") Py (27) ],
where k;(7) is the inverse Laplace transform of /FJ. j(s). From
the above set of equations, it follows immediately the con-
servation of probability, i.e., P{(#)+ P,(¢#)=1. Thus, the set
(33) reduces to a single integrodifferential equation for, say,
the population P(¢). This equation can be conveniently
written as

d — ! ! ! ! !
0= [lar e Py =)

+f0dt’ kan(t"). (34)

Then, after solution of Eq. (34), the evolution of P,(¢) fol-
lows immediately.

Up to now, the formal results that we have obtained are
exact. We have only assumed the convergence of the series
(28) and a specific family of initial conditions for the densi-
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ties p;i(x,t). The result (33) is important. The populations
on the donor and acceptor diabatic curves satisfy first order
integrodifferential equations with a convolution structure.
The convolution kernels, k;;(¢), are rather complicated. The
next important task is to analyze under which conditions can
the solutions of Eq. (33) be properly approximated by a
single exponential time evolution.

IV. VALIDITY CONDITIONS FOR THE RATE REGIME

In kinetics, the time evolution of the populations on the
donor, P(t), and acceptor, P,(¢), diabatic curves is usually
given by

Pi(t)=P;(®)+[P;(0)—P;()]e ", (35)

where I' is the total rate constant. In this section we analyze
the conditions under which this rate description of the time
evolution of the populations can be obtained from the Zus-
man equations. The starting point is the integrodifferential
equation (34). In this equation one can distinguish two dif-
ferent clear-cut time scales. The first one, 7,, is associated
with the relaxation time of the kernels k;;(¢). As all the time
dependence of k;;(¢) is through the diagonal and off-
diagonal Green functions, 7, depends mainly on the relax-
ation times of these Green functions. The second one is
given by 7,=[k,;(0)+%k»(0)]" ! and, as we will see below,
it is associated with the relaxation time of the populations. In
general, 7, depends on the relaxation times of the Green
functions and also on the characteristic tunneling time scale
fi/A. In the next section, we will obtain approximate expres-
sions for 7, .

In order to study the validity conditions for the rate re-
gime, it is convenient to express Eq. (34) in dimensionless
form as

d Y/
d_Ypl(Y;g):_JO dy' [k (y")+ k(") P(Y—=0y";0)

Yi¢
+J0 dy' kyp(y'). (36)

Here we have introduced the dimensionless quantities
Y=t/1y, y'=t'lr,, {=71,/7, and K;i(v")
=T,T) kjj( 7.v'), and we have indicated explicitly the de-
pendence of P(Y;{) on the parameter {. Notice that the
dimensionless integration variable y’ has been chosen so that
the contributions of the integrand for values of y’ much
larger than unity can be safely neglected.

Let us assume that we are in a regime in which 7,
< 7,. To find the leading-order approximation to the solution
of Eq. (36) as {—0+, i.e., P (Y;0)=lim;_ P (Y;{), we
take the limit {—0+ in Eq. (36) while keeping Y # 0 fixed.
The result is

d 0
ﬁPI(Y;O):_fO dy' [k1(y")+ Kkn(y')1P(Y;0)

+fo dy' ky(y')=—P(Y;0)+ P (=),

(37)
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where we have taken into account that the values of the
integrand for y’ much larger than unity are negligible. The
solution of Eq. (37) is P,(Y;0)=Ce Y+ P (%), C being
an unknown constant of integration. This constant is deter-
mined by making use of the initial condition, i.e.,
limy_ o P,(Y;0)=C+ P,()=P,(0). Therefore, after go-
ing back to the original variable #, we find that the leading-
order approximation to the solution of Eq. (36) as {—0+ is
given by Eq. (35) with j=1 and =7, ' . From the conser-
vation of probability, it follows immediately that, in this
limit, the population P,(¢) is also of the form (35).

In conclusion, we have proved that, when 7,<7,, the
values of the populations obtained from the Zusman equa-
tions can be properly approximated by the rate expression
(35) with total rate

I'=%11(0)+kx(0). (38)

Notice that, when 7,<7,, Eq. (35) describes properly the
relaxation of the populations for all the relevant time scales
associated with P;(#), even for short times. When the con-
dition 7,< 7, is violated, then the discrepancies between the
predictions of Eq. (35) and those of the Zusman equations
might be relevant at all times, as we will see later, when we
compare with numerical solution of Zusman equation (see
Sec. VI).

V. ANALYTICAL EXPRESSIONS
FOR THE LONG-TIME POPULATIONS
AND THE TOTAL RATE CONSTANT

From now on, we will assume that a rate description of
the time evolution of the populations is appropriate. In that
case, the parameters P;(>) and I" can be expressed in terms
of the diagonal matrix &(0), according to Eqs. (32) and (38).
The evaluation of this matrix entails the summation of the
series (28). In order to do so, one has to resort to approxi-
mations. The nature of the approximations is dictated by the
relative values of the tunneling frequency and the character-
istic frequencies of the solvent dynamics.

A. The nonadiabatic limit

If the characteristic tunneling frequency A/A is very
small relative to the relaxation frequencies associated with
the Green functions, then tunneling becomes the limiting
step mechanism of the rate process. In this nonadiabatic re-

gime, the matrix elements of k(0) can be approximated as

k;;(0)

F;(0)~ k=A% lim 2= =F{)(0). (39)
A—0 A

After inserting the expressions (17) and (23), with s =0, into
Eq. (29) and integrating over x;, we find

OAZAY2 e
kA= h; fo dt Re{N(1)exp[R;(1)]}, (40)
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aexp[ (1 —a)t/(27)]

Casado-Pascual et al.

Ny(1)= — (41)
{(a+ D2A;+(a—1)2]+(a— D[2A;—(a+1)/2]exp[ —2at/7]}
)\1)\2(A1_A2+1X) € 47')\%)\%
Ri()=1 2 7 I O oy 23
BN+ A AN (NN
[i(ZAj-l—l)(—l)j_l-l-)(]asinh(at/r) 2Aj[2i(—l)j_l-i—)(][cosh(at/r)—l] @)
4Ajacosh(at/7)+[4Aj+a2—l]sinh(at/r) 4Ajacosh(at/7)+[4Aj+a2—l]sinh(at/r) ’

and the dimensionless parameters A ;, x, and a are defined in
Egs. (A12)—(A14). The remaining time integral in Eq. (40)
can be calculated by a numerical quadrature. The expressions
for the long-time populations and the rate constant in the
nonadiabatic limit, Pj(-NA)(OO) and 'y, , are obtained by re-
placing ;;(0) with £} in Egs. (32) and (38). To the best of
our knowledge, Eqgs. (40)—(42) have never been derived pre-
viously in the literature. These expressions for the nonadia-
batic parameters are one of the main results in this paper.
They constitute a generalization of the typical golden rule
rate expressions to the case of diabatic parabolas with differ-
ent curvatures. Notice that we are not assuming that the tun-
neling transitions are exactly localized at the crossing points
of the parabolas as it is assumed in the so-called contact
approximation.'>'® Actually, our expressions reflect the de-
localization induced by the solvent dynamics. This delocal-
ization might be important. As we have previously shown,'®
detailed comparison of the results obtained with the rate for-
mulas, with and without the contact approximation, and the
results of the numerical solution of the Zusman equations
indicates that the rate expressions with the contact approxi-
mation become invalid for large values of the energy
bias, €.

For the case of equal curvatures, A\;=\,=\, Eq. (40)
reduces to the known result®’

(;)_Az ° 2NkpT7* gt
kXA ﬁ dt exp 72 l—e =
T (—1)e
_ _ T s 7Y
X cos 7 (1—e ")+ 7 t (43)

In this case, the time integral can be evaluated explicitly in
terms of the complete [I'(x)] and incomplete [I'(x,y)]

Gamma functions®® as

AT

kggzﬁRe{ebb*af[r(a_,)—r(a_,,b)]}, (44)

where we have introduced the dimensionless parameters a;
=7[2NkgT7/h—(—1)Yiey)/h and b=7N[2kgT7/h+i]/h.
By the relation y(a,x)=I'(a)—TI(a,x)=a 'x%e *M(1,1
+a,x),27 where M(a,b,c) is the Kummer’s function, our
Eq. (44) is equivalent to Eq. (3.13) in Ref. 19.

It should be noticed that, as Frantsuzov'® has pointed
out, Eq. (43) can lead to nonphysical predictions, such as
violation of the detailed balance and negative values for the
rates in strongly polar solvents with large reorganization en-

ergies. As we discuss in Sec. VI, in the case of different
reorganization energies and €,> €., we have also observed
deviations between the values of the long-time populations
predicted by Egs. (32) and (40)—(42) and those expected
from statistical thermodynamical considerations in the semi-
classical limit. These anomalous results, which are intrinsic
to the Zusman equations, can be used as a numerical crite-
rion in order to test the validity of the Zusman description of
ET reactions.

The expressions for the nonadiabatic rate constants
(40)—(42) [or Eq. (43) in the case of equal curvatures] sim-
plify considerably if one makes use of the contact approxi-
mation. Within this approximation, one assumes that the
electronic transitions take place precisely at the crossing
points, so that, the function K(x,0) in Eq. (29) can be ap-
proximated by

2

- T
K(x,0)=—7=d[V1(x) = Va(x)]. (45)
Then, the nonadiabatic rate constant, for €,<<e€,, can be ex-
pressed as'>!®
2 2
T Nr—€
kgg:_\/ exp| — -R2 &)
4 NkpTh,(1—€y/€.)| 4N, (€)kgT
(A~ &)’
J’_ e —
exp 4)\_(60)kBT ’ (46)

A, €9
KR = /=2 ex (——)k(”, 47)
NA )\1 p kBT NA (

where we have defined the auxiliary, bias-dependent quanti-
ties

[NEV(1—€p/€)N N\, ]

N.(€)= 4N,

(48)

This contact approximation plays an essential role in Tang’s
analysis of the Zusman equations.'® In the case of equal cur-
vatures, the nonadiabatic rate constants in Egs. (46) and (47)
reduce to the celebrated Marcus—Levich—Dogonadze rate’
and, therefore, they can be considered as its natural generali-
zation to the case of different curvatures.

B. The consecutive step approximation

In order to go beyond the nonadiabatic limit, we need to
evaluate the series in Eq. (28). We will do this by extending
the consecutive step approximation®™*' to the case of differ-
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ent reorganization energies for the forward and backward
reactions. In this approximation, the terms of the series are
simplified after disentangling the dynamical effects associ-
ated with diffusion from those relying on tunneling. We will
assume that the function J(x,0|x") in Eq. (26) varies in x"
with a characteristic scale much larger than the width of the
interval around x’ where G, (x",0|x") differs appreciably
from zero. Then, according to Egs. (22) and (25), one can
approximate

J_(x,0|x')~g(x).7(x,0|x’)l?(x’,0). (49)

With this simplified expression for 4 1(x,0[x"), the exact ex-

pression in Eq. (30) for the terms £™(0) in the series expan-
sion can be approximated by

1?(")(0)~(—1)"*1ch dx, Jf dx, K(x,,0)g(x,)

n

><112 TR (x;-1,0)g(x;— ) T(x;—1,00x)]  (50)
J=

for n=2. Henceforth, we will assume that there are two
crossing points, i.e., €y<€,.. Then, as it can be checked by
numerical integration of Eq. (23) with s=0, the function
K (x,0) shows peaks of similar heights and widths centered at
the crossing points, at least when they are well separated.
Assuming that the characteristic scale of variation of the
functions J(x,0|x") and g(x) are also much larger than the
widths of those peaks, we finally obtain that, for n=2, the

matrices £™(0) can be well approximated by
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where
V(n)_ _ )n 12 E I"
J1= =1 ]n7 1
n
x]] T EP(0)J(xF_ 0xF)]. (52)
=2 -

In the above expression, xj’-" represents the coordinate of the
jth crossing point given by Eq. (9), and the coefficients

_ gz(x;-k)
2 (x) +ga(x3)

gl(x;'k)
g1 (xP)+g1(x3)

ri= (53)

denote the equilibrium weights of the two crossing points
contributions. Then, according to Eq. (28), we find that

k(0)~vE™(0), (54)

where v is the result of summing up the series

oo

p=> ", (55)
n=1
with »("'=1. In Appendix B we carry out the summation of
this series explicitly [cf. Eq (B7)]. The traces appearing in
Eq. (B7) (the coefficients =, ,) can be expressed in terms of
the nonadiabatic rate constants, k%&, as

k(")

(56)

T RP(0)T(x*,0|x*)]= 2 oy
n=1

Here, according to Egs. (26) and (A18), we have defined the

E™(0)~ v EP(0), (51)  coefficients kgl)m as
|
_ 2 )2
exp N[ ityn—26) B Yi=Ym)
= lim Jy(xF slxk)=7, | d Gk W - 1 (57)
——:= lim X7 ,8|x,,)=1; z — _ ,
k%) 50+ ! 0 (1—e 22)]/2
T
where we have expressed the time integral in dimensionless (0)~ k8§A

units, and we have introduced the dimensionless coordinates
of the crossing points y;=x/x,. The coefficients k%? arise
m
from the diffusional dynamics along the diabatic surfaces.
The diagonal terms kg/)z can be expressed through the gener-

alized hypergeometric functions,?® 2Fy(a,bse,d;z), as?h18

2E(J) 3 EW
—— =72+ ——F,| 1,1;5,2; ——
kg) T/ n kBT 2479 9 72a skBT (58)
i1

where E/ U ) are the activation energies measured from the
bottom of the diabatic potential V;(x) to the crossing point
xf, ie. E(’)—V(x,*)+eo 2

Finally, taking into account Egs. (54), (56), and (B7), we
can conclude that, in the consecutive step approximation
(CSA), the matrix elements of &(0) can be approximated as

n=11[=1 m=1
— Im k(l)
2 2 k(n) 2 k(,,) 2 "NA
H 1+, NA] |:2 NA]
! 172
= = (n) = (n)
=1 n=1 kD” n=1 lez
(59)

The expressions for the long-time populations and the rate
constant in the consecutive step approximation, P_§.CSA)(OC)
and I' g, , are obtained by replacing & ;(0) with k(c’g A 1n Eqgs.
(32) and (38). Notice that the equilibrium populations in the
consecutive step approximation coincide with those obtained
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within the nonadiabatic limit, namely, P}CSA)(OO)
= PN®)(o0). This can be easily seen after substitution of Eq.
(59) into Eq. (32).

As we have previously analyzed,'® if the crossing point
x5 is much higher in energy than x{*, then one can replace in
Eq. (59) r;=1 and r,=0. In this case, expression (59) sim-
plifies considerably to

o

1 1 2 2)°
1 +A§\Jﬁ)/k(Dl)]+k§\1 ﬁ)/k(Dl)]

kCSA

(60)

The above formula has the same structure as the one used in
the literature for equal curvatures.?%?! Equation (59) and its
simplified version, Eq. (60), describe in a unified way the
different rate regimes, ranging from nonadiabatic to solvent
controlled adiabatic reactions, depending upon the relative
values of the system parameters characterizing tunneling and
diffusion.

The derivation of Eq. (59) is one of the main results of
this paper, and as far as we know, it has never been obtained
before. A few years ago, Tang'® arrived to an expression
somewhat similar to Eq. (59). A detailed comparison of our
work and that of Tang reveals, nonetheless, some important
differences. First, Tang neglects the off-diagonal diffusion
terms, kgzz, present in our Eq. (59). Second, the nonadia-

batic rate constants appearing in Tang’s expression are the
ones obtained within the contact approximation [cf. Egs.
(46)—(48)].

VI. COMPARISON WITH NUMERICAL RESULTS
AND DISCUSSION

In this section we shall compare our analytical results
with those provided by numerical integration of the Zusman
equations. The latter has been carried out using the standard
numerical algorithm group routine DO3PCF on a LINUX PC
with an Intel 800 MHz processor. In the numerical proce-
dure, artificial absorbing boundary conditions have been
properly superimposed far away from the reaction region, in
order to model the natural boundary conditions, p;;(x,?)
—0 at x— *= . Such a modeling did not affect the quality of
the numerics, which was controlled by the numerical conser-
vation of the total probability P,(#)+ P,(¢#)=1 on the whole
time scale. Namely, the deviation of the total probability
from unity did not exceed 310”7 for the mesh of 1500
space points and the single time step accuracy parameter of
10~7. We have adjusted both the number of mesh points and
the time accuracy in order to achieve convergence of the
results within the width of the plotted curves. Depending
upon the values of the parameters, the calculation of a relax-
ation curve involving 100 time points took from about sev-
eral seconds to about half an hour. The long-time population,
P (%), and the rate constant, I', have been extracted from
the numerical P,(#) making use of a nonlinear, single-
exponential fitting procedure in GNUPLOT.

The following set of parameter values is kept fixed in the
calculations: A ;=800 cm™ !, \,=200 cm™ !, 7=300 K. The
other parameters, €,, A, and 7, have been varied. Strongly
different values for the reorganization energies \; and A\,
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FIG. 2. Comparison between the numerical results for the evolution of the
donor population, P,(t), (solid lines) and their single-exponential fitting
curves (dashed lines) for two different values of the relaxation time 7. The
parameter values are ;=800 cm™', \,=200 cm™', A=20 cm™!, T
=300 K, (a) 7=0.2 ps and (b) 7=2 ps.

have been chosen on purpose, in order to demonstrate the
quality of our analytical results. In realistic situations, the
difference between the reorganization energies may not be so
dramatically large. For example, it was found in Ref. 10 that
the reaction of primary charge separation in the bacterial
photosynthetic center immersed in a nonpolar lipid mem-
brane occurs with \;~1.45 kcal/mol=507.22 cm™ !, \,
~1.55 kcal/mol=542.20 cm™!. In such a case, we expect
our approximate results to work even better for a similar set
of the remaining parameters.

In Fig. 2 we show two typical numerical evolutions of
P(t) and their corresponding single-exponential fitting
curves for a fixed value A=20 cm ™! and two different values
of the relaxation time (a) 7=0.2 ps and (b) 7=2 ps. Figure
2(a) demonstrates that the evolution is single exponential to a
very good degree. The increase of 7 by one order of magni-
tude [cf. Fig. 2(b)] introduces visible deviations from the
strictly exponential behavior. In the following, we restrict
our analysis to the case A<10 cm™ ! and 7=<2.5 ps in order to
ensure the strictly exponential character of the evolution.

In Figs. 3, 4, and 5 we depict the numerical and analyti-
cal results for a fixed value 7=1 ps and three different values
of the tunneling matrix element, A=1, 5, and 10 cm™ !, re-
spectively. In the three figures we find an excellent agree-
ment between the numerics and our analytical theory. In par-
ticular, for weak tunneling, A=1 cm™ !, the transfer is
nonadiabatic and the numerical transfer rate I' is perfectly
reproduced by the nonadiabatic rate expression, Egs. (38)
and (40)—(42), in the whole range of the electronic energy
bias €, [cf. Fig. 3(a)]. When A increases, the nonadiabatic
rate expression starts to fail [cf. Figs. 4(a) and 5(a)], espe-
cially in the vicinity of the decoupling point €,= €, of the
two diabatic energy surfaces (€,~266 cm™ ! for the present
parameters). Here, the adiabatic corrections due to the slug-
gish dynamics of the reaction coordinate become increas-
ingly important as the nonadiabatic tunneling gets drastically
accelerated. However, the numerical results are still pretty
well reproduced by the consecutive step rate given in Egs.
(38), (59), (40)—(42), (53), and (57). This agreement holds
only in the range €,<e€,, since for €,=€,. the consecutive
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FIG. 3. (a) Dependence of the total rate constant (in ns™') on the energy
bias €, (in cm™"). The numerical result is plotted with a solid line, the one
obtained with Tang’s approximation with a dash-dotted line, the nonadia-
batic rate constant, I'ya(€), with a dashed line, and the rate constant ob-
tained, for €,<e,, from the consecutive step approximation, I'cga(€),
with dotted line. (b) Dependence of the long-time population P;(%) on the
energy bias €, (in cm™'). The numerical result is plotted with a solid line,
the long-time population in the nonadiabatic limit with a dashed line, and
the equilibrium result obtained from Eqs. (62) and (64) with a dotted line. In
both panels the parameter values are A; =800 cm™ ', \,=200 cm™!, A=1
em™!, 7=300 K and =1 ps.

step approximation is not well defined. Notice that the rate
values obtained with Tang’s approximation (cf. the last para-
graph in Sec. V B) depicted in Figs. 3(a), 4(a), and 5(a)
significantly deviate from the numerics for €,=200 cm™!.

One should also notice the strong asymmetry of the elec-
tron transfer rate against the inversion of the electronic bias
€y— — €, [cf. Figs. 4(a) and 5(a)]. This is in sharp contrast
with the case of equal curvatures, where I'(—¢€,)=1"(¢)
(see, e.g., Fig. 7 in Ref. 21). Namely, in the present case
I'(ey) increases for positive €, and exhibits a sharp maxi-
mum around €,~¢€,. The origin of this maximum can be
rationalized as follows. For a small A and neglecting the
thermal dispersion of the reaction coordinate velocity v at
the crossing point x*, the probability p(v) of the nonadia-
batic tunneling transition between both curves is given by the
Landau—Zener formula (see, ¢.g., Ref. 8)

ahA?

P(U)=m, (61)

(a) (b)
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FIG. 4. The same as in Fig. 3 but with A=5 cm™!.
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FIG. 5. The same as in Fig. 3 but with A=10 cm™ .

where Fj=de(x)/dx|x:x* are the slopes of the diabatic
curves at the crossing point x*. Even though this formula is
valid only under the assumption that the diabatic curves can
be considered, within the crossing region, as straight lines,”®
it provides a simple qualitative picture. Since F';=F, when
the two crossing points coalesce (cf. Fig. 1), the tunneling
probability (61) exhibits a divergence that is responsible for
the discussed sharp maximum. Averaging over the thermal
distribution of v removes this divergence, but a sharp maxi-
mum remains and its position is shifted towards some
smaller value €,,,,<e€,.. Moreover, it turns out that the ana-
lytical values of I' decay monotonically for negative values
of €, with an increase of |€,| (not shown). This latter result
appears when the difference of the reorganization energies
values is sufficiently large. For a small difference such a
feature does not appear, but the discussed asymmetry is al-
ways present when \; #N\,.

The numerical and analytical dependences of the
asymptotic population P;(%) on the energy bias €, are
shown in Figs. 3(b), 4(b), and 5(b). It is worth noting once
more that the theoretical value of the asymptotic population
does not depend on the adiabatic corrections, as it follows
from Eq. (59). It is determined merely by the values of the
nonadiabatic rate constants k{/). Again, the agreement be-
tween the numerical and the theoretical values of P (%) is
almost perfect! Note that for zero energy bias €,=0 the
asymptotic population of the donor is less than one half,
P1()<1/2, and it remains so for small negative €, [cf.
Figs. 4(b) and 5(b)]. Thus, for such values of €, the electron
transfer occurs against the electronic energy bias. This ef-
fect, however, has nothing to do with a violation of the sec-
ond law of thermodynamics, or a Maxwell demon effect. Its
origin is due to the difference in the entropies of the reaction
coordinate oscillator in the two different diabatic electronic
states. Indeed, the relation between the thermal equilibrium
populations of the two diabatic electronic states in the limit
of very small electronic coupling, A, is given by

P G,—G
1 1 2) (62)

P(zeq) =exp( - kgT

In Eq. (62), G, represents the free energy of a damped har-
monic oscillator moving on the energy curve V;(x). In the
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FIG. 6. (a) Dependence of the reciprocal of the rate constant I' ™! (in ps) and
(b) of the long-time population P () on the solvent relaxation time 7 (in
ps). The numerical results are indicated with circles and those obtained from
the nonadiabatic expressions with dashed lines. In (a) we have also plotted
with solid line the rate constant obtained from the consecutive step approxi-
mation and with a dash-dotted line the one obtained with Tang’s approxi-
mation. In both panels the parameter values are A; =800 cm™', A, =200
em™ !, A=10 ecm™!, T=300 K, and €,=0.

semiclassical limit, the partition functions of the damped har-
monic oscillator on each curve are given by”

kBT (6j,2 60)
7 X 5

Z\h= (63)
where the exponential factor is due to the vertical shift be-
tween the two minima of the harmonic potentials. Conse-
quently, using the relation G = —kzTInZ, the free energy dif-
ference in the semiclassical limit is

Wy 1 )\2
Gl_Gzzfo_kBT In w_l :EO_EkBT In )\_1 . (64)

where we have taken into account that ;o a)jz- . The term ¢,
on the right-hand side (r.h.s.) of Eq. (64) represents the
change in internal energy, as can be easily checked from the
relation U=kyT?d1nZ/dT between the internal energy, U,
and the partition function. The second term corresponds to
the entropic contribution to the free energy difference,
—T(S;—S;). Thus, a difference in reorganization energies
between the backward and forward reactions yields an addi-
tional term of entropic origin in the free energy difference.

The equilibrium population P{*? as obtained from Egs.
(62) and (64) is also depicted in Figs. 3(b), 4(b), and 5(b).
For €y<e€,, its values practically coincide with the long-time
populations obtained from the numerical and analytical solu-
tions of the Zusman equations. Thus, in this range of param-
eters, the long-time solutions of the Zusman equations are
consistent with the principle of detailed balance in the semi-
classical limit. However, for €,>€,., a significant discrep-
ancy between the predictions of the Zusman equations and
those of Egs. (62) and (64) is observed. This fact may indi-
cate a possible failure of the Zusman equations to describe
properly the long-time populations for €,> €., even for rela-
tively small reorganization energies.

In Fig. 6, we show the dependence of the reciprocal of
the total rate and the long-time population of the donor state
on the solvent relaxation time 7, for a fixed value A=10
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ecm ™! and zero electronic energy bias. As 7 increases, the

reciprocal of the rate constant is proportional to the relax-
ation time, 1/I'ec 7, in agreement with the analytical results.
This indicates the transition to the solvent-controlled adia-
batic regime.® Moreover, the agreement between the numeri-
cal and analytical values of the long-time population is al-
most perfect [cf. Fig. 6(b)]. Note that the corresponding
values of P(°) given by the Zusman equations depend on 7
and slightly deviate from the thermal equilibrium value
P{“=1/3 given by Egs. (62) and (64). This violation of the
principle of detailed balance is very small indeed and the use
of the Zusman equations is well justified. Especially, it is
clearly seen from Fig. 6(b) that P,(%°) approaches the cor-
rect equilibrium value obtained in the semiclassical limit
when 7 increases.

Finally, one should remark that the Zusman equations
are thought to be difficult for numerical analysis. Indeed, in
view of the several different time scales appearing in the
problem, the corresponding system of ordinary linear differ-
ential equations obtained after discretization in space is stiff.
This means that the corresponding minimal, |a,|, and
maximal, | .|, eigenvalues can be drastically different and
the stiffness parameter, €=|a nxl/|@minl, can be large. This
seems to be source of numerical difficulties. For example, we
have observed that the time spent by the NAG numerical
routine to handle the numerical integration depends drasti-
cally on the parameters. In particular, for €,<<0 and the pa-
rameters used, the required computing time grows very
quickly with | €,|, perhaps exponentially. This is the practical
reason why we do not have data in our figures for these
values of €,. However, for €,>¢€. we did not meet any
numerical problem. The agreement between the numerical
and the analytical results is very good. Thus, the deviation
between the long-time populations obtained from the Zus-
man equations and the semiclassical thermodynamical result
for €,> €, is not due to numerical problems. The problem
may be in the Zusman equations themselves, as in the case of
large reorganization energies.'” Nevertheless, these equations
seem to be superior to other approximate semiclassical ap-
proaches for a rather broad range of parameters.”

VIl. CONCLUDING REMARKS

In this paper, we have considered the extension of the
Zusman equations to ET reactions in condensed media with
different reorganization energies for the forward and back-
ward reactions. The electron transfer process is assumed to
be modeled by a set of partial differential equations describ-
ing the fluctuational relaxation of the reaction coordinate and
the tunneling transitions between the electronic states. Using
projection operator techniques and assuming appropriate ini-
tial conditions for the reduced density operator, we have
proved that the populations of reactants and products satisfy
a generalized master equation. The evaluation of the convo-
lution kernels appearing in this equation entails the summa-
tion of a series whose terms depend on the diagonal and
off-diagonal Green functions in a rather complicated way. A
calculation of these Green functions has been carried out in
the Appendixes. It should be pointed out that, to the best of
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our knowledge, the expression of the off-diagonal Green
function presented in this paper has not appeared previously
in the literature.

From the above-mentioned exact, though formal, results
we have obtained the following relevant information perti-
nent to ET kinetics: (i) We have provided a detailed discus-
sion of the conditions under which the decay of the popula-
tions to their long-time values can be properly described by a
single-exponential function for all the relevant time scales.
Roughly speaking, this simple description is valid whenever
there is a clear-cut separation between the relaxation time of
the populations and those of the Green functions. (ii) We
have obtained explicit expressions for the parameters char-
acterizing the single-exponential decay, i.c., the long-time
values of the populations, P;(>), and the total rate constant,
I'. As these formal expressions are rather complicated, we
have resorted to approximations in order to simplify them.
(iii) We have considered the nonadiabatic limit, i.e., we have
assumed that A is the smallest energetic value involved in the
reaction. In this limit we have provided a novel extension of
the usual Marcus formula to the case of different curvatures.
It should be pointed out that our formula does not rely on the
use of the contact approximation as that proposed by Tang in
Ref. 15. As noted in our previous work,'® the contact ap-
proximation is untenable for some regions of the parameters
space, leading to disagreements with the results obtained by
numerical solution of the Zusman equations.30 (iv) We have
analyzed the kinetics beyond the nonadiabatic limit by using
the consecutive step approximation. In this way, we have
rigorously derived a novel expression for the total rate con-
stant that allows us to describe both the nonadiabatic and the
solvent-controlled adiabatic regimes. This expression is
rather cumbersome but, under well-defined conditions, it can
be cast in a form that constitutes the natural extension to the
two curvatures case of the formula commonly used in the
single curvature situation.”®*! (v) A thorough comparison of
the analytical predictions and the results obtained from the
numerical solution of the Zusman equations has been carried
out.

It should be noticed that, as we mentioned in the Intro-
duction, in this paper we are accepting the validity of the
Zusman equations. In Sec. VI, we have observed that there
are situations where the validity of such a description is
questionable. More precisely, for some parameter values, we
have noticed deviations of the long-time populations pre-
dicted by the Zusman equations and those expected from
statistical thermodynamical considerations in the semiclassi-
cal limit. In strongly polar solvents another kind of non-
physical predictions have been already pointed out by
Frantsuzov.!® Thus, even though the derivation of Zusman
equations from a microscopic point of view has been repeat-
edly carried out in the literature,”* ** the range of parameter
values for which their validity is granted are not sufficiently
well delimited.
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APPENDIX A: GREEN FUNCTIONS FOR THE
HARMONIC POTENTIALS WITH DIFFERENT
CURVATURES

1. The off-diagonal Green function

In this Appendix we evaluate the off-diagonal Green
function by solving the differential equation (11) with initial
condition (12) and boundary conditions (13). After replacing
the potentials (6) in Eq. (11), we obtain

D—+——
dx2 T ox

X0 )\1"‘)\2

(92 X0 (9(}( )\2

(9 !
a_tGod(xat|x )=

i

N—N)x2 2NAox
ﬁ(l 2) + 2

xé X0

X G oq(x,t]x"), (A1)

where 7 is the phenomenological relaxation time of the over-
damped oscillator on the averaged potential curve [ V(x)
+V,(x)]/2 [cf. Eq. (8)]. The solution of Eq. (A1) is obtained
by carrying out the Fourier transform with respect to x, i.e.,

1
x')=—

V2m) e

The equation for the Fourier transform reads

G oalk,t

dx e G (x,t]x"). (A2)

86 k N Dk2+ikx0 i d )\2
(?t Od( ’t|x )_ T )CO &k )\1+)\2
i[N—=Ny & 20N, 3
h\  x3  ok* X0 Ok
—€t Ay }G_ad(k>f|x'), (A3)

which, except for N\;=N\,, is not simpler than Eq. (Al), as
the second-order derivative still appears by contrast to the
case of equal curvatures. Nonetheless, working in Fourier
space is still convenient as further calculations are facilitated
by the use of the initial condition

o eikx'

God(k50|x ' ) =

=

Substitution of the ansatz

(A4)

— 1
G, ik t|x")= exp[—a(t,x ) Vk>—b(t,x" Vk—c(t,x’
(A5)
in Egs. (A3) yields the set of differential equations
. 2 4i(Nj—N\
a(t,x')ZD—;a(t,x')—(1—22)a2(t,x’), (A6)
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htx')=— —+M (t.x") |b(t.x")
T xO
4)\ , l)\z.Xo
é(t,x’)Zwpa(l‘,x’)—bz(l,x’)]
X0
2\, l(fo 2)
_ﬁ_xob( — (A8)

which, according to Egs. (A4) and (A5), has to be solved
with the initial conditions a(0x")=c(0x")=0 and b(0x")
= —ix’. After some lengthy calculations and simplifications,
one obtains

a(t,x')=a(t)=D7f (1), (A9)
, o, ‘ 2(x+1i)
b(t,x")=—iax'fo(t)—xoA,|if (1) + o f2(8) |,
(A10)
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fa? 27w |
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where we have introduced the dimensionless parameters
Jp— Al12
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and the functions
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T

at

nr

Notice that the argument of the logarithm in Eq. (All) is a
complex function of the real variable ¢. Thus, for the function
to vary continuously, we have to consider the Riemann sur-
face where the infinite set of branches of the logarithmic
function are defined. At =0, the function starts at the main
branch (i.e., the branch where In1=0) and, as time increases,
it goes over the next branches at each crossing of the cut in
the complex plane. Transforming back to x space, one finds

n

sinh forn=1,2. (A15)

Fa(t)=fo(2)
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x—ib(t,x")7]?
Gnd(x,t|x’)=2—exp u—c(t,x’) .

za) L 4da(n
(A16)

It is not difficult to prove that Re[a(¢)]>0 for > 0,°! so
that the boundary conditions (13) are obviously satisfied.
This result for the off-diagonal Green function generalizes to
the case of diabatic curves with different curvatures the one
given in Ref. 21.

2. The diagonal Green functions

The evaluation of the diagonal Green functions for har-
monic potential curves is straightforward. Substitution of the
potential energies (6) in Eq. (16) yields the linear Fokker—
Planck equation

2

J ()
EGd (x,t|x Dﬁ —j (x zxo)
XGP(x,t|x"), (A17)

where 7; is the phenomenological relaxation time of the
overdamped oscillator on the potential curve V,(x) [cf. Eq.
(7)]). By shifting x, Eq. (A17) is reduced to the forward Kol-
mogorov equation for the Ornstein—Uhlenbeck process.*?
Thus, G(dj)(x,t|x’) is obtained from the transition probability
of the Ornstein— Uhlenbeck process by the substitutions x

—x—08;,xp and x" —x'— 6, %, ie.,

) 1
GY(x,t|x")=
¢ | \/27TD7'j(l—e—2’/7./)
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Xexpy —
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APPENDIX B: EVALUATION OF THE SERIES
IN EQ. (55)

In order to carry out the sum of the series (55), it is
convenient to introduce two new auxiliary series, namely,

o

v, =2 v forj;=1 and 2, (BI)
where
D=
11 rll’ (Bz)
2 2 n
(n)_ _1yn—1 . =
( ) rIIJZEZI ‘/,12:1 r.iz rj”]:2 =ii—1Jdi

(B3)

for n=2. In the above expressions, we have simplified our
= Tr[/?”)(oﬁ(x;j_l,o|x;j)]. Ob-
viously, the series (55) can be obtained from the two series
(B1) by v= Ej —1Vj,-

The terms (B3) obey the recurrence relation

notation by setting =;

9Z:S1:¥1 ¥20z Jequisides Gz



J. Chem. Phys., Vol. 118, No. 1, 1 January 2003

v, (B4)

III

J1:J2

2
W=—r 2:

J2

Summing up the above expression from n=2 to %, one ob-
tains after some rearrangements,

2 R=Ts

Ja=1

(BS)

8 iy Vi, =1

The above expression is a set of two (for j;=1 and 2) linear
equations in v; . Its solution is straightforward, yielding

2 2 —
rj1+r1r221:12m:1(—I)Hm(l—éjl’;) :]’m

g 2 [1+r B, -l B ’
=1 ry= rl”z[*—*l,z]

(B6)

where we have made use of the symmetry Z,,=5,;.
Finally, the sum of the series (55) is

2 2 2 [}
_ z _ 1+r1r221=12m=1(_1)1+m‘:l,m
Ve o VT T - —— - (B7)
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