Mooop — A Hybrid Integration of OWL and Java

Christoph Frenzel!, Bijan Parsia?, Ulrike Sattler?, and Bernhard Bauer!

! Institute of Computer Science, University of Augsburg, Germany
{christoph.frenzel, bernhard.bauer}@informatik.uni-augsburg.de
2 School of Computer Science, The University of Manchester, UK
{bparsia, sattler}@cs.man.ac.uk

Abstract. Java is a widespread object-oriented programming language
for implementing information systems because it provides means to ex-
press various domains of interest. Nevertheless, some fields like Health
Care and Life Sciences are so complex that Java is not suited for their
design. In comparison, the Web Ontology Language (OWL) provides
various powerful modelling constructs and is used to formulate large,
well-established ontologies of these domains. OWL cannot, however, be
used alone to build applications. Therefore, an integration of both lan-
guages, which leverages the advantages of each, is desirable, yet not easy
to accomplish. We present Mooop (Merging OWL and Object-Oriented
Programming), an approach for the hybrid integration of OWL ontolo-
gies into Java systems. It introduces hybrid objects, which represent both
an OWL and Java entity. We have developed a prototype of Mooop and
evaluated it in a case study.

Keywords: Hybrid integration, Ontologies, OWL, Object-oriented pro-
gramming, Java, Ontology-based applications.

1 Motivation

Object-oriented programming languages (OOPLs) like Java are a widely adopted
technology for implementing ever bigger and more complex object-oriented (OO)
information systems. They provide means for the expression of the structure, i.e.,
possible entities and their features, and the behaviour, i.e., possible modifications
of the entities at run-time, of complex problem domains. Nevertheless, some
problem fields, e.g., Health Care and Life Sciences, are so complex that OOPLs
are not suited to design them. For instance, anatomical models are often charac-
terised by a vast number of concepts with complex constraints and are laborious
to express in Java. In comparison, the Web Ontology Language (OWL) provides
expressive modelling constructs which have been used by domain experts to for-
mulate large ontologies of these domains, e.g., GALEN! and SNOMED CTZ2.
Additionally, OWL allows reasoning, i.e., the inference of implicit from explicit
knowledge. However, OWL does not allow to implement dynamic behaviour and,
thus, it alone cannot be used to build applications.

! http://www.opengalen.org/index.html
2 http://www.ihtsdo.org/snomed-ct/

438

Ontology-based applications leverage the advantages of both paradigms by
combining them. They are characterised by a complex OWL ontology and a
sophisticated OOPL-expressed behaviour which regularly conducts reasoning in
order to derive new knowledge form the ontology. Examples are the Patient
Chronicle Model [13], and the context-aware application framework [15]. In com-
parison to typical semantic web applications like the FOAFMap [12], ontology-
based applications require a tight integration of OWL and the OOPL. However,
such integration is not easy to accomplish because differences in their semantics
induce an impedance mismatch that needs to be taken into account [9].

This paper presents our novel approach for the integration of OWL ontologies
into OO systems: Mooop (Merging OWL and Object-Oriented Programming).
We introduce hybrid objects which are entities present in both the OWL ontology
and the OO system. Additionally, we provide a flexible mechanism for linking
both paradigms. In this way, Mooop creates a coherent hybrid model. This paper
is based on [3] which provides more detailed information on Mooop.

Although the Mooop concept is not language specific, in this paper, we con-
centrate on the mainstream OOPL Java in order to exemplify the concepts.
Furthermore, we use OWL 2 and the syntax introduced in [5].

2 Java and OWL

Java is a strongly typed, class-based OOPL [4]. Its basic elements are ob-
jects which exchange messages. Objects have a fixed and unique object iden-
tifier (OID), a structure defined by a collection of attributes and corresponding
values, and a behaviour defined by a collection of methods. An object is created
by instantiating a class which determines the structure and behaviour of the
object. Java allows single inheritance, i.e., a class can inherit the structure and
behaviour of at most one other class and, thus, can become a subclass. This
allows the subclass to extend or overwrite the superclass. The type of an object
is defined at compile-time and cannot change at run-time. Furthermore, it is for-
bidden to call an undefined method of an object. The methods are implemented
in an imperative, Turing complete language. Java offers dynamic binding based
on single dispatch which enables polymorphism.

OWL [16] is a modelling language based on Description Logic (DL) [1] for cap-
turing knowledge in an ontology. It distinguishes between a concept level (TBox)
and an instance level (ABox). The former defines OWL classes and OWL prop-
erties, and the latter OWL individuals. OWL allows the definition of atomic
and complex classes. The latter are combinations of atomic classes and property
restrictions. Both class types can be used in a subclass or equivalent class defini-
tion. A property is a first class citizen of an ontology and can be a subproperty
or equivalent property of another property. OWL distinguishes between object
properties and data properties. An OWL individual can have several explicit
and implicit types, i.e., atomic or complex classes. In summary, OWL is very
expressive concerning the structural features of a domain. In contrast to that,
OWL cannot express any behaviour at all, and, thus, cannot be used alone to
implement applications.

439

An important feature of OWL is reasoning, i.e., the inference of implicit knowl-
edge from explicit knowledge, through reasoning services, e.g., consistency check-
ing and classification. This enables post-coordination [6, p. 91]: not all concepts
of the real world are modelled in the ontology as atomic classes, but the user
of the system defines the concepts at run-time as anonymous complex classes.
For instance, an OWL individual can have the types Allergy and JcausedBy.Nuts
simultaneously, thus, defining a not explicitly modelled nut allergy. In order to
use post-coordination, the possibilities for defining complex classes at run-time
should be restricted in a domain specific manner: it should only be possible to
create reasonable concepts. This is called sanctioning [2].

3 Existing Integration Approaches

There are numerous existing approaches for integrating OWL into Java or similar
OOPLs. Based on [13], we distinguish direct, indirect, and hybrid integration.

The direct integration represents OWL classes as Java classes and OWL in-
dividuals as Java objects. Hence, this approach offers the developers a domain-
specific application programming interface (API) and type-safety which eases
the application development. However, this comes at the price of limited reason-
ing capabilities: since Java classes cannot dynamically change their attributes
at run-time, it is not possible to represent new, inferred OWL properties at
run-time. Representatives of this category are So(m)mer [14] and Jastor [7].

The indirect integration utilises Java classes to represent the metaclasses of
OWL, e.g., OWLClass or OWLIndividual. The OWL ontology is represented by
instances of these Java classes, i.e., an object can represent, e.g., an OWL class,
OWL property, or OWL individual. On the one hand, this provides run-time flex-
ibility allowing a sophisticated reasoning. For instance, if a new OWL property
instance is inferred then a new instance of the metaclass OWLPropertyInstance
has to be created and linked with other objects. On the other hand, the develop-
ment of complex software is complicated because of the generic, domain-neutral
API. This approach is used by OWL API [10] and Jena [8].

The idea of the hybrid integration is to integrate a few top level concepts,
i.e., very important core concepts, directly, and the vast number of specialised
concepts indirectly [13]. Hence, a Java class can represent either an OWL meta-
class or an OWL class, and a Java object can represent either an OWL class,
an OWL property, or an OWL individual. In this way, it combines a domain-
specific API and type-safety with great run-time flexibility. The disadvantage of
the approach is a complexity overhead [13]. Representatives of this category are
the Core Model-Builder [13] and TwoUse [11].

In order to exemplify the hybrid integration, Fig. 1 depicts a possible Java
class model for a hybrid integration of the following ontology:

Pizza C dhasName.String ' FhasTopping. Topping
Topping C JhasName.String
PricedPizza C Pizza 'l dhasPrice.Integer .

440

«OWL API» «OWL API» «OWL API»
OWLClass OWLObjectProperty OWLDataProperty
name : String name : String name : String
* \«OWL API» 1/\«OWL API» 1/)\ «OWL API»
type «OWL API» type type
«OWL» «OWL» «OWL» object «OWL API»
Toppi toppings Pi Properties
opping 1zza OWLObject
«OWL» name : String * «OWL» name : String * | PropertyAssertion

* «OWL API»
«OWL API» OWLData
dataProperties PropertyAssertion

Fig. 1. Java class model for the hybrid integration of the example ontology

All directly integrated concepts are stereotyped with OWL and metaclasses
for the indirect integration are stereotyped with OWL APIL3 Pizza and Topping
are directly integrated top level OWL classes and have the directly integrated
property name. Pizza has also indirect properties and types. The OWL class
PricedPizza is integrated indirectly and, hence, is represented as an instance of
OWLClass at run-time.

Hybrid integration is the most powerful integration approach [13]. Because
of its numerous features, it is especially suited for the development of ontology-
based applications. However, in order to match a wide range of requirements, the
integration semantics has to be adaptable to the needs of a specific application.
Integration semantics refers to the interpretation of the OWL model within
Java. For example, it should be possible to implement a specific sanctioning
mechanism which determines the structure of a Java object representing an
OWL entity. Assume an OWL class Pizza with Pizza C JhasPrice.integer, then
the sanctioning mechanism can define that a Java class representing the Pizza has
a single-valued attribute price of type Integer. However, OWL would also allow
Pizza individuals without an asserted price or with several prices. Obviously, such
mechanisms are domain specific and difficult to generalise.

Current hybrid integration frameworks are limited in their applicability.
TwoUse is actually a model-driven development framework allowing the design
of a hybrid model. It allows only OWL classes to be integrated indirectly. There-
fore, it is not possible to infer new properties of an OWL individual at run-time.
The Core Model-Builder is, to the best of our knowledge, currently the most
sophisticated framework for the hybrid integration of an OWL ontology into
Java and offers a lot of features like hiding of OWL concepts, dynamic con-
straints on indirectly integrated attributes, and complex sanctioning. However,
the adaptation of the integration is very complex since the integration seman-
tics is spread all over the framework and, hence, numerous classes have to be
changed.

3 This convention will be used throughout this paper.

441

4 The Mooop Integration Approach

The Mooop integration approach was developed with the aim to create a powerful
hybrid integration framework targeting ontology-based applications. Thereby, we
focused on the ability to adapt the integration semantics to the requirements of a
particular application. In this way, Mooop overcomes the shortcomings of current
hybrid integration approaches. In order to accomplish these goals, Mooop splits
the integration into the three layers shown in Fig. 2:

The OwlFrame indirectly integrates an OWL individual into Java for the do-
main neutral representation of knowledge from an OWL ontology.

The Mapping is an adaptable link between the OWL ontology and the Owl-
Frame and determines the integration semantics.

The Binding defines the hybrid integration of the OwlFrame into the target
Java application. It enables the definition of hybrid classes, which repre-
sent OWL classes in Java, through Java annotations. Their instances, called
hybrid objects, are present in both the OWL ontology and the Java model.

Mooop
A
4 R
Java Hybrid - N)
Application |Classes <—Binding——= OwlFrame Mapping OWL Ontology

Fig. 2. The three conceptual layers of Mooop: OwlFrame, mapping, and binding

4.1 OwlFrame

Figure 3 depicts the OwlFrame as an indirectly integrated OWL individual.
Notice that the association between OwlFrames and OWL individuals is in-
jective. Since an OWL individual can have multiple types, an OwlFrame can
also be associated to several type OWLClass objects, which indirectly integrate
atomic and complex OWL classes. This enables complex post-coordination be-
cause it allows multiple typing using complex OWL classes. There are two dif-
ferent types of properties of an OwlFrame: Owl0ObjectPropertyInstance ob-
jects represent values for an OWL object property, i.e., OWL individuals, and
OwlDataPropertylInstance objects represent values for an OWL data property,
i.e., OWL literals.

Mooop distinguishes between asserted types and properties which express
explicit knowledge about an OWL individual, and inferred types and properties
which represent implicit knowledge. Thereby, the inferred information is read-
only. The bound types of an OwlFrame are utilised by the mapping and binding
for offering type safety (see Sect. 4.2). The method classify() triggers the
classification of the assigned OWL individual by a reasoner. The classification
result, i.e., inferred knowledge, will usually be represented as inferred types and
properties.

442

«OWL API» «OWL API» «OWL API»
OWLClass OWLObjectProperty OWLDataProperty
M * 1/\type 1/\type

bound| asserted | inferred
Types| Types Types OwlObject OwlData
{readOnly} Propertylnstance Propertylnstance
< T T ———- Mapping values: OwlIFrame [*] values: OWL literal [*]
mapping ‘ \
1 w V
7

assertedProperties

T
I
OwlFrame : 1 - OwlPropertylnstance
. » —| singleValued: bool
classi |—— singleValued: boolean
il 1 : N inferredProperties
Il — | {readOnly}
1assignedOwlindividual
«OWL API»
OWLIndividual

Fig. 3. The structure of the OwlFrame

In order to exemplify the OwlFrame’s structure, Fig. 4 depicts a representation
of an OWL individual pizza. Notice that this is just one possibility since the
actual property values and types of an OwlFrame depend on the mapping. The
pizza is defined by the following ontology:

pizza € Pizza
mozzarella € Mozzarella
tomato € Tomato
(pizza, mozzarella) € hasTopping
(pizza, tomato) € hasTopping
PizzaMargherita = Pizza M JhasTopping.Mozzarella M JhasTopping. Tomato .

4.2 Mapping

The mapping links the OWL ontology and the OwlFrame, thereby determining
the integration semantics. As shown in Fig. 3, an OwlFrame is associated with
exactly one mapping which defines all structural features of an OwlFrame as well
as their manipulations, e.g., the addition and deletion of types or property values.
Furthermore, the mapping controls the reasoning process of an OwlFrame, and
the life cycle of the assigned OWL individual, i.e., the creation, loading, and
deletion. From a technical point of view, the mapping is the implementation of
a specific interface, whose methods are called by the OwlFrame at run-time in
order to access the ontology. The implementation, however, can be customised
and, thus, adapted to the application’s requirements.

The bound types can be seen as a set of special asserted types which offer
type safety for hybrid objects. Thus, a special kind of type safety, strong type

443

:OWlLClass :OWLClass :OWLObjectProperty
name = "Pizza" name = "PizzaMargherita" name = "hasTopping"
A
type type
assertedTypes inferredTypes :OwlObject |
7| Propertylnstance :OwlObject
i Propertylnstance
assertedProperties /‘ Propertyinstance
e assertedProperties values values
:OwlFrame :OwlFrame
T T
assignedOwlIndividual assignedOwlIndividual assignedOwlIndividual
:OWLIndividual :OWLIndividual :OWLIndividual
name = "pizza" name = "mozzarella" name = "tomato"

Fig. 4. The object model of an OwlFrame representing the OWL individual pizza

safety, can ensure that the asserted types of an OwlFrame are only subclasses or
superclasses of the bound types. For instance, an OwlFrame o with the bound
type Pizza cannot be asserted to be of type Vehicle if Vehicle is neither a sub-
class nor superclass of Pizza. In this way, it is guaranteed that an OwlFrame is
specialised by its types in a reasonable manner. However, this logic can easily
be changed as well.

The properties and property values of an OwlFrame are very likely to be cus-
tomised, e.g., for implementing a specific sanctioning mechanism. For instance,
assume the following OWL ontology:

Pizza C JhasTopping. T 1 JhasBase. T
pizza € Pizza

(pizza, mozzarella) € hasTopping .

The mapping can define that an OwlFrame representing pizza has an asserted
property of type hasTopping with the value mozzarella, and an inferred property
of type hasBase with the value null. Hence, the asserted and inferred properties
together strictly conform to the definition of the OWL class Pizza.

4.3 Binding

The binding allows the definition of a hybrid integration by binding a Java class
C to a specific OWL class O and attributes of C to information contained in
an OwlFrame, e.g., the property values or the types of the OwlFrame. For in-
stance, a Java class Pizza can be bound to the OWL class Pizza and the Java
attribute price can be bound to the values of the OWL property hasPrice. The
class C is a hybrid class and its instances are hybrid objects. Thereby, hybrid
refers to their presence in both the OWL ontology and Java. Figure 5 depicts
the relation between hybrid classes, which are stereotyped with HybridClass, and

444

«OWL API» bound
OWLClass |~ [«HybridClass»
ModelClass S :ModelCl t-bound=| :OwlFrame
OwlFrame _ «<boundAttribute» attribute instance of
w Igound : } T

boundTypes [*] . 1 1 assignedOwlIndividual
assertedTypes [*] This is a hybrid class Il\ This is a hybrid object
inferredTypes [*] :OWLIndividual

assertedPropperties [*]
inferredProperties [*]

classify()

Design-time | Run-time

Fig.5. A hybrid class is bound to an OWL class, its attributes are bound to features
of the OwlFrame, and a hybrid object is bound to an OwlFrame object

hybrid objects. One can think of a hybrid class as the definition of a domain
specific view on the information contained in an OwlFrame.

Upon instantiation of a hybrid class C which is bound to the OWL class O,
the resulting hybrid object ¢ is bound to an OwlFrame o. Thereby, O is added
to the bound types of o. Furthermore, if C is a subclass of D which is bound to
the OWL class P, then P is also added to the bound types of o. At run-time,
several hybrid objects can be bound to the same OwlFrame object. For instance,
assume an OwlFrame o that has the OWL classes O; and O as types, and the
Java classes C; and Co which are bound to O; and Os, respectively. Then it is
possible that a hybrid object of the Java class C; is bound to o while, at the same
time, a hybrid object of the Java class Co is bound to o. As a result, both hybrid
objects bound to the same OwlFrame share the same ontological information.

Mooop provides an OWL ontology-based dynamic method dispatch by anno-
tating a method of a hybrid class to be overwritten by another method of that
class if the bound OwlFrame has a specific type. For instance, assume the hybrid
class Offer bound to the OWL class Offer. 0ffer has the method getPrice()
which returns the value for the OWL property hasPrice. However, a SpecialOffer
with SpecialOffer C Offer has an additional discount. Hence, 0ffer has a method
getDiscountedPrice () which calculates a discounted price. Now, getPrice ()
is annotated to be overwritten by getDiscountedPrice() if the hybrid object
has the type SpecialOffer.

The implementation of the binding in the Mooop framework is inspired by the
Java Persistence API (JPA)%. Tt utilises Java annotations to allow a declarative
definition of hybrid classes. The listing in Sec. 5 exemplifies this.

5 Case Study

We have developed a case study to show the feasibility of the Mooop approach:
the pizza configurator which is inspired by The Manchester Pizza Finder®

* http://jcp.org/aboutJava/communityprocess/final/jsr317/index.html
° http://www.co-ode.org/downloads/pizzafinder

445

developed by Matthew Horridge. The pizza configurator offers the possibility
to create a pizza at one’s own option by adding desired pizza toppings to an
initially empty pizza base. Thereby, the system has to ensure that there is at
most one topping of each kind on the pizza. When the user has finished the
customisation, the pizza is classified and its price is calculated: this can cither
be the sum of the prices of the selected toppings or, if it matches a predefined
type of pizza, the price of that pizza type. For example, assume a pizza base
is topped with mozzarella and tomatoes, then the system calculates the price
of the pizza as the price of a pizza Margherita. Furthermore, the user can be
presented additional information about the pizza like its spiciness. While the
structure of this example has already been defined in the famous Pizza Ontol-
ogy®, the behaviour cannot be expressed with the means of OWL but has to be
implemented in Java. Therefore, Mooop will be used to create a coherent hybrid
model integrating both OWL and Java.

As with most hybrid integration approaches, the developer would start the
implementation of the pizza configurator by picking several top level classes from
the OWL ontology and creating hybrid classes for them. In our case the hybrid
class Pizza is bound to the OWL class Pizza, and the hybrid class Topping to
Topping. Afterwards the programmer defines the structure of the classes using
bound attributes: the Java class Pizza gets the attributes toppings which is
bound to the OWL property hasTopping, and price which is bound to hasPrice.
Furthermore, an attribute properties is created in Pizza which contains addi-
tional properties of the bound OwlFrame, e.g., the origin of the pizza, and, thus,
allows an indirect access to them.

The following listing shows an extract from the Pizza class. The method
calculatePrice() sums up the prices of the toppings of a pizza. However,
using the dynamic OWL ontology-based method dispatch, this method is over-
written by the method getPrice() if the pizza is a PricedPizza. Notice that
the implementation of the annotated methods is ignored since the calls of these
methods are intercepted and processed by the binding of Mooop.

@HybridClass("Pizza")
public class Pizza {
@0wlProperty("hasTopping")
public void addTopping(final Topping topping) { }
@0wlProperty(value="hasTopping", valueType=Topping.class)
public Set<Topping> getToppings() {
return null;
}
@0wlDispatch({ @OwlDispatchEntry(owlType="PricedPizza",
methodName="getPrice") })
public Integer calculatePrice() {
/* sum up prices ... */

¥

 http://www.co-ode.org/ontologies/pizza/pizza-latest.owl

446

@Classify
public void classify() { }
@0wlProperty(value="hasPrice", valueType=Integer.class)
protected Integer getPrice() {
return null;
i
@0wlProperty ()
public Map<String, Set<Object>> getProperties() {
return null;

¥

A custom mapping is employed to dynamically create a covering axiom for
a pizza: assume the OwlFrame o with the type Pizza and the toppings Tomato
and Mozzarella. In this case, the custom mapping adds an axiom stating that
the assigned OWL individual of o has only the toppings Tomato and Mozzarella.
This is necessary to enable the reasoner to infer the right type of pizza, here
PizzaMargherita. The custom mapping is implemented by simply extending a
default mapping class and overwriting the methods which define the properties.

The pizza configurator case study also shows the advantages of Mooop com-
pared to other hybrid integration frameworks: TwoUse allows only a limited
and inflexible integration, since only OWL classes can be integrated indirectly.
Hence, it is not possible to define indirectly integrated OWL properties like the
properties attribute in the class Pizza. Furthermore, it offers no means to
change the integration semantics and, thus, the logic of the custom mapping
of the pizza configurator would have to be mixed up with business logic. The
integration features offered by the Core Model-Builder and Mooop are compa-
rably. Accordingly, the Core Model-Builder allows defining indirectly integrated
properties. However, the adaptation of the integration semantics is much more
complicated since the logic is spread over a lot of classes. Thus, the custom
mapping of the pizza configurator would have called for a complex adaptation
of several classes in the Core Model-Builder framework.

6 Conclusion and Outlook

This paper presents Mooop, an approach for the hybrid integration of OWL
into Java. Thereby, Mooop exploits the strengths of direct and indirect integra-
tion and, thus, is both powerful and easy to use. In contrast to other hybrid
integration approaches, Mooop allows an easy customisation of the integration
by introducing three layers: the OwlFrame is an indirect Java representation of
ontological knowledge, the mapping is a customisable link between an OWL on-
tology and the OwlFrame, and the binding defines the hybrid integration of the
OwlFrame into the target Java application through hybrid classes. Because of
its flexibility, we think that Mooop can facilitate the broad application of OWL
as a knowledge representation language for information systems. We have shown
the advantages of Mooop in a case study.

447

In the future, the development of more sophisticated mappings and bindings
is probably the most pressing issue. For instance, mappings for standard OWL
modelling guidelines can extend the reuse immensely. Another subject which
has not been investigated yet is the storage of the run-time model of a Mooop
system which consists of OWL individuals and Java objects. Furthermore, a
methodology for modelling hybrid models with Mooop is necessary.

The basic idea of Mooop, i.e., the division of the hybrid integration of OWL
and Java into OwlFrame, mapping, and binding, can be generalised into a con-
cept for a generic hybrid integration of any modelling approach, e.g., Topic
Maps’, into Java. It is an interesting future research topic to design, implement,
and evaluate such a general concept.

References

1. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation and Applica-
tions. Cambridge University Press, New York (2003)
2. Bechhofer, S., Goble, C.A.: Using a Description Logic to Drive Query Interfaces.
In: International Workshop on Description Logics (1997)
3. Frenzel, C.: Mooop — A Generic Integration of Object-Oriented and Ontological
Models. Master’s thesis, University of Augsburg (2010)
4. Gosling, J., Joy, B., Steele, G., Bracha, G.: The Java Language Specification, 3rd
edn. Addison-Wesley, Boston (2005)
5. Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From SHZQ and RDF to
OWL: The Making of a Web Ontology Language. J. Web Sem. 1, 7-26 (2003)
6. International Health Terminology Standards Development Organisation:
SNOMED Clinical Terms User Guide. Technical report (2010)
Jastor home page, http://jastor.sourceforge.net/
Jena Semantic Web Framework home page, http://jena.sourceforge.net/
Oren, E., Delbru, R., Gerke, S., Haller, A., Decker, S.: ActiveRDF: Object-Oriented
Semantic Web Programming. In: 16th International Conference on World Wide
Web, pp. 817-824. ACM, New York (2007)
10. OWL API home page, http://owlapi.sourceforge.net/
11. Parreiras, F.S., Staab, S.: Using Ontologies with UML Class-based Modeling: The
TwoUse Approach. J. Data Knowl. Eng. 69, 1194-1207 (2010)
12. Passant, A.: FOAFMap: Web 2.0 meets the Semantic Web. In: 2nd Workshop on
Scripting for the Semantic Web, pp. 67-68 (2006)

13. Puleston, C., Parsia, B., Cunningham, J., Rector, A.L.: Integrating Object-
Oriented and Ontological Representations: A Case Study in Java and OWL.
In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T.W.,
Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 130-145. Springer,
Heidelberg (2008)

14. So(m)mer home page, http://java.net/projects/sommer

15. Springer, T., Turhan, A.Y.: Employing Description Logics in Ambient Intelligence
for Modeling and Reasoning about Complex Situations. J. Ambient Intell. Smart
Environ. 1, 235-259 (2009)

16. W3C OWL Working Group: OWL 2 Web Ontology Language Document Overview.
W3C Recommendation (October 27, 2009)

© o

" http://www.isotopicmaps.org/

