Specification and Refinement of
Domain-Specific ECA Policies

Raphael Romeikat and Bernhard Bauer

University of Augsburg, Institute of Computer Science, Augsburg, Germany
{romeikat,bauer}@ds-lab.org

Abstract. Policy-based management is a flexible approach for the man-
agement of complex systems as policies make context-sensitive and auto-
mated decisions. For the effective development of policies it is desired to
specify policies at a high level of abstraction initially, and to refine them
until they are represented in a machine-executable way. We present an
approach for the specification and the automated refinement of domain-
specific event-condition-action (ECA) policies. Domain-specific policies
use domain-specific concepts within their event, condition, and action
parts. The approach is generic as it can be applied to any domain and
supports a flexible number of abstraction layers. It is applied to the
network management domain and demonstrated with policies for signal
quality management in a mobile network.

1 Introduction

Policies represent a promising technique for realizing autonomic capabilities
within managed objects as they allow for a high level of automation and abstrac-
tion. Policy-based management has gained attention in research and industry as
a management paradigm as it allows administrators to adapt the behavior of a
system without changing source code or considering technical details. A system
can continuously be adjusted to externally imposed constraints by changing the
determining policies [1]. A well-known application area is network management,
where policies are widely used for performing configuration processes. The us-
age of policy-based systems for the management of mobile networks was recently
considered in [2-7].

The event-condition-action (ECA) model is a common way to specify policies.
ECA policies represent reaction rules that specify the reactive behavior of a
system. An ECA policy correlates a set of events, a set of conditions, and a
set of actions to specify the reaction to a certain situation. The conditions are
evaluated on the occurrence of an event and determine whether the policy is
applicable or not in that particular situation. The actions are only executed
if the conditions are met. Multiple policy frameworks share this model as for
example Ponder2 [8].

Policy-based management is a layered approach where policies exist at dif-
ferent levels of abstraction. For simple systems it might be sufficient to have
one or two abstraction levels only, one with a business view and another one



198

with a technical view. For larger systems or systems in a complex domain it is
reasonable to introduce additional levels between the business and the technical
level in order to allow for domain and policy representation at intermediate ab-
straction levels. Strassner defines a flexible number of abstraction layers as the
Policy Continuum [2]. The idea is to specify and manage policies at cach level
in a domain-specific terminology, and to refine them from a business level down
to a technical level.

The process of providing a lower-level representation of a higher-level policy
is called policy refinement. Policy refinement is a non-trivial task as different
abstraction levels must be passed. Refinement is usually performed manually
by passing policies from one level down to the next one and re-writing them
with the means of the lower level. To address this we present a generic approach
for the specification and automated refinement of domain-specific ECA policies.
Automated refinement at runtime allows to control the actual system behavior
by changing high-level models instead of their implementation.

This paper is structured as follows. Section 2 provides a scenario from the
network management domain that is used as running example. Section 3 de-
scribes how domain-specific policies are modeled at a high level. The refinement
of those policies is described in section 4. Related work is discussed in section 5.
The paper concludes with a summary and future work in section 6.

2 Example Scenario

The signal quality of wireless connections in a communication system is subject
to frequent fluctuations. There are various reasons for such fluctuations such as
position changes of cell phones or changing weather conditions which impact
the transmission. One possibility to react to fluctuating signal quality is adjust-
ing transmission power (TXP) as power proportionally influences signal quality
between an antenna and a cell phone.

The scenario now raises two objectives, amongst others. On the one hand,
transmission power should be rather high in order to ensure good signal quality
and to avoid connection losses. On the other hand, transmission power should
be rather low in order to avoid unnecessary power consumption. As transmission
power also influences the coverage area of the cells, a too high or too low setting
can result in an undesired state of the network [7]. Therefore, a good tradeoff
between transmission power and signal quality is desired.

In order to manage the behavior of the communication system we introduce
a policy-based approach. Two ECA policies lowQuality and highQuality are re-
sponsible for adjusting the transmission power of the antenna. From a conceptual
point of view the transmission power of an antenna can be increcased and de-
creased. Changes in the signal quality are indicated by an event that contains
the International Mobile Equipment Identity (IMEI) as unique identifier of the
respective cell phone and the old and new value of the signal quality. The two
policies are triggered whenever that event occurs and in their conditions they



199

check the values of signal quality enclosed in the event. If the signal quality falls
below a critical value, the lowQuality policy increases the transmission power of
the antenna. The other way round, the highQuality policy decrease the trans-
mission power if the signal quality goes beyond a critical value.

The behavior of the communication system can then be adjusted at runtime
via the policies. The accepted range of signal quality between the two critical
values is specified in the policies conditions. Changing those critical values is
possible at any time and has an immediate effect on the transmission power and
signal quality.

3 Policy Specification

Different models are used at different abstraction layers in order to specify
domain-specific policies as illustrated in figure 1. The domain model allows do-
main experts to specify domain-specific concepts that are available in a system.
The policy model allows policy experts to specify policies that are used to man-
age a system. The linking model allows policy and domain experts to link the
policy model to the domain model in order to use the domain-specific concepts
within the policies. Those models can also be regarded as parts of one large
model. For each of them a metamodel exists that defines the structure of the
model. Two layers 7 and 7 are shown exemplarily in figure 1 with layer ¢ providing
a higher level and layer j providing a lower level of abstraction.

Domain Linking Policy
Metamodel Metamodel Metamodel
Domain Linking Policy
Model; Model; Model;

Layer i

Domain Linking Policy
Model; Model Model;

Layer j

Fig. 1. Policy specification

3.1 Domain Modeling

Different expert groups are involved in the management of a system such as
business managers or system administrators. Depending on their focus and their
background, members of an expert group have a particular view on the system
and they use special terminology to describe their knowledge. The domain rep-
resents a common understanding of those expert groups and covers the context
of a system.



200

Any relevant information about the domain is covered by the domain model.
The domain model covers the domain-specific concepts across all abstraction
layers and specifies which domain-specific concepts are available. Its purpose is
to specify domain knowledge independently from any policies, which will later
control a system in that domain. Thus it represents the basis for building policies,
which will then use domain concepts in their event, condition, and action parts.
The domain model offers a particular view at any layer, which only contains the
part of the domain model that is relevant at the respective layer. Figure 3 shows
the domain model of the example scenario with two layers. The domain model is
an instance of the domain metamodel, which allows to specify domain models in
a way that is more expressive than just a domain-specific vocabulary and close to
the structure of an ontology. For this purpose, the metamodel represents domain-
specific knowledge as shown in figure 2. It represents the abstract syntax of the
domain, i.e. it defines the structure of the domain model.

Layer
number | 1 *
1.x

Relationship Concept 01 Operation
name * 2| name - name

RelationshipEnd
name 1 Property Parameter

navigable name name
multiplicity

Fig. 2. Domain metamodel

signalQuality : Concept cellPhone : Concept increasePower : Operation
decreasePower : Operation
sqCellPhonelmei : Property cplmei : Property
sqOldValue : Property
sqNewValue : Property
Layer 1
intensityChange : Concept device : Concept changeTXP : Operation
icDeviceld : Property dld : Property atChangeValue : Parameter
icOldValue : Property
icNewValue : Property
Layer 2

Fig. 3. Domain model

3.2 Policy Modeling

In the same way as expert groups have a particular view onto the domain, they
also have a particular view onto the policies that control a system in that domain.
A business expert e.g. uses a different terminology to express a policy than a



201

system administrator does for the same policy. Also, a business policy might be
represented by several technical policies at a lower abstraction layer.

Any information about the policies is covered by the policy model. The policy
model offers a particular view at any layer, which only contains the part of the
policy model that is relevant at the respective layer. Figure 5 shows an excerpt of
the policy model at the first layer of the example scenario. The policy model is an
instance of the policy metamodel, which contains the essential aspects required
to specify basic ECA policies. It is shown in figure 4 and represents the abstract
syntax of policies, i.e. it defines the structure of the policy model.

Layer
number

1.

Event 1. 1. Policy 1 1. Action

hame name name
active

1| ActionInfo
number
0.1

Condition

1 | .name 2%
o IgEvent : Event IgAction : Action
—ActionInfo
5 . number = 1
lowQuality : Policy

BinExpr NegExpr AndExpr OrExpr OpExpr adiive = true
EqExpr GtExpr GeExpr LtExpr LeExpr IqCondition : LtExp Layer 1

Fig. 4. Policy metamodel Fig. 5. Policy model (excerpt)

3.3 Domain-Specific Policy Modeling

Domain and policies have been modeled independently from each other so far.
The domain is specified as the domain model and policies are specified as the
policy model. Now, both models must be combined in order to refer to the
domain within the policies. For this purpose, a third model enables policies to
refer to domain-specific information in their event, condition, and action part.

Any information about how domain-specific information is used within the
policies is covered by the linking model. Tt specifies how the domain and the
policy model are linked to each other. For this purpose, it allows to create links
from the entities in the policy model to the entities in the domain model at the
respective layers. The linking model offers a particular view at any layer, which
only contains the links that are relevant at the respective layer. Figure 7 shows
an excerpt of the linking model at the first layer of the example scenario. The
linking model is an instance of the linking metamodel, which provides means to
create links from the policy model to the domain model as shown in figure 6.
It represents the abstract syntax of the links, i.e. it defines the structure of the
linking model.



202

Action
name

Event Condition

hame
*

1 1

Concept OpExpr - OperationInvoking

BinExpr
name w |

first second

1,1 1

Operation
name

Argument Passing

* | Property Literal Parameter

name value 1 | name 1%

" p -0 "

Layer 1

Fig. 6. Linking Metamodel Fig. 7. Linking model (excerpt)

4 Policy Refinement

The formalization of domain-specific knowledge within the domain model allows
to formalize the refinement of the domain from a higher to a lower layer as
illustrated in figure 8. Refinement of the domain is the basis for the automated
generation of refined policies in that domain.

Domain Linking Policy
Metamodel Metamodel Metamodel
Domain Linking Policy
Model; Model; Model;
\@g — .
Layeri
A 4
Mappings;_; Al H;f'l';l'::?m
> =
O :ED— -
v
Domain Linking Policy
[ Model; Model Model;
Ll

Layer j

Fig. 8. Policy refinement

When going down the abstraction layers the representation of a higher-layer
entity can remain the same at a lower layer or it can change completely. Refine-
ment of the domain means mapping its representation from a higher layer to
another representation at a lower layer. The possible structural changes through
refinement are expressed by a set of mapping patterns. These patterns specify
how the lower-layer representation of entities is derived from their higher-layer



203

Layer i H

Layer j H

Identity Replacement Merge Decision Erasure Appearance

Fig. 9. Mapping patterns

representation. The available patterns are called identity, replacement, merge,
decision, erasure, and appearance and are illustrated in figure 9.

A concrete mapping of one layer to another one is established by instantiation
of the refinement patterns with the relevant entities at the respective layers. An
instantiated pattern is simply called mapping. Figure 10 shows the mappings to
refine the lowQuality policy of the example scenario in a textual syntax. The
mappings once define refinement information within the domain and are then
used for the automated refinement of policies in that domain.

signalQuality — intensityChange (replacement)
sqNewValue — icNewValue (replacement)
increasePower — changeT X P (replacement)
undef — ctChangeV alue (appearance)
increasePower() — changeT X P(0.5) (merge)

Fig. 10. Mappings (excerpt)

The generation of refined policies is divided into two parts as illustrated in
figure 8. First, refinement rules are generated from the mappings. This part is
only performed once after the set of mappings has been specified or modified. A
refinement rule from layer ¢ to layer j represents a model transformation that
takes a policy and a linking model from layer i as input and produces a refined
policy and a refined linking model at layer j as output. The left hand side (LHS)
represents the input and the right hand side (RHS) represents the output of the
transformation. Due to the different semantics of events, conditions, and actions,
the impact of a mapping on a domain-specific policy depends from whether the
entities of that mapping appear in the event, conditon, or action part of the
policy. Therefore, one mapping results in three different refinement rules, one
processing the event part, one the condition part, and one the action part.

Second, refined policies are generated by applying the refinement rules to the
policy and the linking model. This part is be performed every time when a policy
is added, modified, or deleted. In order to generate refined policies the refinement
rules are applied to the policy and the linking model in a particular sequence.
That sequence is determined by a pattern matching algorithm. The algorithm
starts with the highest layer and generates the refined policies at one layer below.
For any refinement rule that applies to those layers it matches the LHS to any



204

combination of entities in the policy and linking model of the highest layer.
Whenever a match is found, it invokes the matching refinement rule, which then
generates the refined policy according to its RHS. This process is repeated until
no more refinement rule can be applied to the highest layer. The intermediate
result is a refined policy and linking model at one layer below. As the algorithm
works on a copy of the policies, the policies of the highest layer remain and
the refined policies are added to the models. The algorithm then processes the
subsequent lower layers one after another in their ordering of abstraction and
finally produces a refined policy and linking model at the lowest abstraction
layer.

Figures 11 and 12 show an excerpt of the refined policy and linking models of
the example scenario. During refinement the policy model remaines the same as
the structure of the policy is not affected by the mappings. However, the linking
model is automatically changed and the policies are now linked to the domain
entities of the lower layer. The event of the lowQuality policy is no more linked
to the signalQuality concept, but to intensityChange one. The policy condition
is no more linked to the sqNew Value property, but to the icNewValue one. These
changes are caused by the respective replacement mappings. The policy action
is no more linked to the increasePower operation, but to the changeTXP one
and a literal value is passed to the ctChange Value parameter of that operation.
This change is caused by the respective appearance and merge mappings.

Condition : LtE
: first : second

value = 50

5 . number = 1
lowQuality : Policy
active = true

IqCondition : LtE = 0.
Layer 2 value = 05 Layer 2

Fig.11. Policy model (excerpt) Fig. 12. Linking model (excerpt)

5 Related Work

The authors of [9] present a model-driven approach to design policies and in-
tegrate them into the software development process. The approach is based on
MDE concepts and uses a UML profile for modeling policies. GPML supports



205

different types of policy and ECA policies are represented by the obligation pol-
icy type. The ability to define a particular vocabulary allows to adapt policies to
different domains. Policies are modeled at a low level of abstraction and cannot
be refined.

The CIM Policy Model [10] by the Distributed Management Task Force
(DMTF) addresses the management of complex multi-vendor environments with
a huge number of heterogeneous devices. Policies are specified in a language-
independent way and abstract from hardware characteristics. A UML profile is
provided for the graphical representation of policies. The CIM Policy Model is a
domain-specific model with a focus on network management. Different abstrac-
tion levels and policy refinement are not supported.

A refinement approach that focuses on policies in the autonomic networking
domain is presented in [4]. Policies represent configuration settings and are used
for automated network and resource configuration. A simple policy language
offers a fixed terminology to specify domain-specific policies. Event-based policies
are not supported. Policies are represented at five levels of a Policy Continuum
and each layer offers a sub-set of that terminology. A wizard provides a graphical
user interface to specify configuration policies on the highest level. Those policies
are automatically refined into concrete configuration commands on a per-device
basis. For this purpose, XSLT transformations replace higher-level objects with
the respective objects at the lower levels.

6 Conclusion

A domain-specific approach for the specification and refinement of ECA policies
was presented in this paper. The usage of models allows to specify policies at a
high level of abstraction initially and avoids the direct implementation of policies
at a technical level. High-level policies are made executable through refinement
into a machine-executable representation. This allows to control the actual sys-
tem behavior at runtime by changing the high-level models. The approach is
novel as it is generic with respect to the domain, to the language, and to the
number of abstraction levels and is nevertheless fully automated. No working
solution has been known yet that realizes policy refinement in an automated
way and that is not specifically tailored to a particular problem or domain.

Models in the approach do not only serve specification or documentation pur-
poses, but are essential artifacts of the policy development process that initially
starts with non-executable business policies and results in their technical and
executable representation. The separation of knowledge into different models or
model parts allows for an effective collaboration of domain and policy experts.
The usage of different abstraction layers faciliates the collaboration of business
and technical experts. Mapping patterns allow to generate refined ECA policies
in an automated way and generation of refined policies helps to consolidate de-
velopment effort. The approach is generic as it can be applied to any domain
and any number of abstraction levels. It is also extensible and e.g. allows to in-
tegrate additional mapping patterns in order to cover dependencies that cannot
be addressed with the provided patterns.



206

Tool support is subject to future work. A prototype of a graphical policy
editor has already been developed [11, 12] and is to be developed further. This
involves a modeling the domain, specifying the mappings, and modeling policies
in that domain. The editor should trigger the policy refinement process after a
policy was changed and generate code for existing policy languages.

References

1. Damianou, N., Dulay, N., Lupu, E.C., Sloman, M.: The Ponder Policy Specification
Language. In: Sloman, M., Lobo, J., Lupu, E.C. (eds.) POLICY 2001. LNCS,
vol. 1995, pp. 18-38. Springer, Heidelberg (2001)

2. Strassner, J.: Policy-Based Network Management: Solutions for the Next Genera-
tion. Morgan Kaufmann Publishers, San Francisco (2003)

3. Strassner, J.: DEN-ng: Achieving Business-Driven Network Management. In:
8th Network Operations and Management Symposium, pp. 753-766. IEEE CS,
Los Alamitos (2002)

4. van der Meer, S., Davy, A., Davy, S., Carroll, R., Jennings, B., Strassner, J.:
Autonomic Networking: Prototype Implementation of the Policy Continuum.
In: 1st International Workshop on Broadband Convergence Networks, pp. 1-10
(April 2006)

5. Bandh, T., Sanneck, H., Schmelz, L.C., Carle, G.: Automated Real-time Per-
formance Management in Mobile Networks. In: 1st WoWMoM Workshop on
Autonomic Wireless Access, pp. 1-7. IEEE CS, Los Alamitos (2007)

6. Romeikat, R., Bauer, B., Bandh, T., Carle, G., Sanneck, H., Schmelz, L.-C.:
Policy-driven Workflows for Mobile Network Management Automation. In: 6th
International Wireless Communications and Mobile Computing Conference, pp.
1111-1115. ACM, New York (2010)

7. Bandh, T., Romeikat, R., Sanneck, H.: Policy-based Coordination and Manage-
ment of SON Functions. In: 12th International Symposium on Integrated Network
Management (May 2011) (to be published)

8. Twidle, K., Lupu, E., Dulay, N., Sloman, M.: Ponder2 - A Policy Environment
for Autonomous Pervasive Systems. In: 9th Workshop on Policies for Distributed
Systems and Networks, pp. 245-246. IEEE CS, Los Alamitos (2008)

9. Kaviani, N., Gasevic, D., Milanovic, M., Hatala, M., Mohabbati, B.: Model-Driven
Engineering of a General Policy Modeling Language. In: 9th Workshop on Policies
for Distributed Systems and Networks, pp. 101-104. IEEE CS, Los Alamitos (2008)

10. Distributed Management Task Force: CIM Policy Model White Paper. DSP0108
(June 2003)

11. University of Augsburg: PolicyModeler (August 2009),
http://policymodeler.sf.net

12. Romeikat, R., Sinsel, M., Bauer, B.: Transformation of Graphical ECA Policies
into Executable PonderTalk Code. In: Governatori, G., Hall, J., Paschke, A. (eds.)
RuleML 2009. LNCS, vol. 5858, pp. 193-207. Springer, Heidelberg (2009)



