2011 Eighth IEEE International Conference and Workshops on Engineering of Autonomic and Autonomous Systems

Pro-active Advice to Improve the Efficiency of Self-Organizing Emergent Systems

Torsten Steiner*, Jorg Denzinger!, Holger Kasinger* and Bernhard Bauer*
*Institute for Software and Systems Engineering
University of Augsburg, Augsburg, Germany
{steiner, kasinger, bauer} @informatik.uni-augsburg.de
TDepartment of Computer Science
University of Calgary, Calgary, Canada
denzinge@cpsc.ucalgary.ca

Abstract—An advisor autonomously improves the efficiency
of self-organizing emergent multi-agent systems at runtime. It
identifies tasks that the system has to perform recurringly. If
the system performs these tasks inefficiently, the advisor will
create so-called exception rules for the agents that enable them
to perform these tasks more efficiently in the future. In contrast
to the previously presented concept of ignore rules, a type of
exception rule which only keeps the agents from doing certain
tasks, in this paper we present the concept of pro-active rules.
This type of exception rule allows the advised agents to already
prepare for tasks before they are even announced to the system.
Our experimental evaluation shows that a combination of these
two rule types for the domain of dynamic pickup and delivery
problems utilizes the advantages of both, improves previously
badly handled problem instances, and additionally offers slight
improvements for randomly created instances.

Keywords-decentralized autonomic computing; control; self-
adaptive; software architecture

I. INTRODUCTION

Self-organizing emergent systems [10], which often also
are called Decentralized Autonomic Computing (DAC) sys-
tems [5], exhibit several desired properties, like scalability,
robustness, flexibility and adaptability to the environment as
well as to the given problem. However, the efficiency with
which a self-organizing emergent system solves a problem
respectively performs its tasks is not a property that has been
focused on very much. This is not totally surprising, since
many of the application problems that are of interest for the
use of such systems are of a dynamic nature. Thus, for these
problems seems to be no hope to produce optimal solutions,
since this would require to be able to ”look into the future”
in some sense. Nevertheless, especially for applications that
involve physically embodied agents as the components of the
self-organizing emergent system, efficiency (e. g. in terms of
required agents, solution costs, ...) is of high importance,
since the cost of adding additional agents is definitely not
neglectable.

Recently, in [16] we presented a concept to improve
the efficiency of a self-organizing emergent system while
maintaining the beneficial properties mentioned in the first
paragraph. This concept is a so-called efficiency improvement
advisor (EIA). The EIA uses learning techniques to identify

97

recurring tasks the self-organizing emergent system has to
perform, standard optimization techniques to create nearly
optimal solutions for these recurring tasks, and the concept
of exception rules that are given to the agents of the system
as a form of advice. This advice helps the system in future
situations to solve the recurring tasks more optimal. The ad-
visor performs its work mostly off-line from the base system
and only communicates with the other agents when they are
ready and/or in range. This is why the whole system retains
the basic beneficial properties, while having a substantially
improved efficiency compared to the performance of the base
system.

The exception rules (i.e. the type of advice) we have
presented in [16] were of the type of so-called ignore rules,
i.e. a rule suggests to an agent to ignore a particular task.
Ignore rules represent a rather small influence on an agent
and, as [8] has shown, have a rather low potential for
being abused. But, as pointed out in [12], there are several
inefficiencies in a self-organizing emergent system for which
ignore rules are ineffective.

In this paper, we present the concept of so-called pro-
active exception rules that allow for a stronger influence
of the EIA on the other agents. As the name suggests, a
pro-active rule tries to get an agent to start working on a
task before the task is announced to the system. Obviously,
this is only possible, if a task consists of several steps to
be performed by an agent, while performing the first step
does not commit the agent to having to perform the other
steps. But many problems of interest for self-organizing
emergent systems, especially involving physically embodied
agents, do have some kind of preparation steps in their tasks,
thus allowing for pro-active advice. Examples include set-
up times for machines in manufacturing plants or having to
drive to a location to pickup loads.

Similar as in [16] and [8], in this paper we use pickup
and delivery problems (PDP) [14] as application domain for
the experimental evaluation, which allows for a comparison
of the results. These results show that pro-active exception
rules indeed can deal with problem instances for which
ignore rules are not capable to improve the behavior of
the basic self-organizing emergent system. But in certain

cases they can be exploited to worsen the behavior of the
base system. A combination of both ignore and pro-active
rule types not only provides promising results for selected
problem instances, for which only one of the individual types
is very good, it also improves slightly the performance on
randomly created scenarios. As such pro-active exception
rules add to the tools available to the developers of self-
organizing emergent systems that can be used to fulfill the
specific requirements of an application domain and the task
profiles particular users have.

The rest of this paper is organized as follows: Section II
provides basic definitions that are used throughout this paper.
This includes the definition for the kind of problems that an
EIA can be used for, which are dynamic task fulfillment
problems with recurring tasks. Section III briefly recalls the
concept of an EIA from [16] as well as the assumptions
that have to be fulfilled in order to make good use of
an EIA. Section IV presents the concept of pro-active
exception rules (also in combination with ignore rules) and
the concept of revoking already published rules. Section V
instantiates the concepts from Section III and Section IV
for the application domain of PDP. Section VI presents
our experimental comparison of pro-active rules with ignore
rules and the combination of both. We conclude with a look
at related work in Section VII and at possible future work
in Section VIII.

II. BASIC DEFINITIONS

A rather generic definition of an agent Ag is a 4-tuple .Ag
= {Sit,Act,Dat,[a4}, where Sit is the set of all situations
that Ag can find itself in, Act is the set of Ag’s actions,
Dat is the set of all possible values of the agent’s internal
data areas (i.e. Ag’s knowledge and memory), and f4, :
Sitx Act — Act is Ag’s decision function. f 4, defines how
Ag decides on an action in its current situation and given its
current knowledge from Dat. A multi-agent system (MAS)
is a group of agents A = {Agi,....,Agy} that are acting in a
shared environment Env. If all agents in A have the same
sets Sit, Dat, and Act and the same f.44, they are called
homogeneous, else they are heterogeneous.

The general structure of the kind of problems we are
interested in solving using a set of agents A consists of tasks
out of a given set 7' that are announced at some time within
a given time interval T'ime, usually not all at the same time,
to some or all agents in A. We call a sequence of such tasks
a run instance. There is usually a whole sequence of run
instances that A has to solve allowing for tasks to reoccur
in different run instances in this sequence. In this paper, we
require a task to require at least two actions to be performed
by an agent in order to fulfill the task.

More precisely, a run instance is a sequence of task-time
pairs

((talvtl): (ta27t2)7) (tamytm))

98

with la; € T, {; € Tvme and {; < {;+1. A sequence of run
instances of length £ is then

(((tan, tn), (tagl, t21), ey (taml,tml)),
((talk, tlk), (tazk, tgk), (tamk R tmk)))

A solution sol compiled from the emergent responses of
the agents in A for a run instance is then

sol = ((taf, Agi, t1), (tay, Agy, t5). ..., (tay,, Agp,. t7,))

where ta;, € {tay,..,tan}, taj # ta’; for all i # j, Ag; €
A, t; <t g,) € Time. A tuple (ta), Agj,t}) means task
La} was started by Ag] at time (}. Since we assume that a task
requires at least two actions by an agent Ag;, we identify
the first (or preparation) action of a task ¢ta by prep(ta) and
all other actions to perform ta by rest(ta). Please note, if
we have heterogeneous agents, it is possible that not every
agent can perform every task.

In order to be able to talk about efficiency of A in solving
a run instance, we need to be able to associate with each
solution sol a quality measure qual(sol). The nearer the
solution produced by A comes to an optimal quality the more
efficient A is. Quality measures are naturally dependent on
the particular application problem A was created for, but
even for a particular application there usually are still several
possible measures so that in the end the users have to decide
on how qual is defined. For real dynamic problems (i.e. we
have at least one ¢ such that ¢; < ¢;;1 in a run instance) it is
usually not possible for A to produce an optimal solution,
except if solving the static variant of the problem is very
easy.

III. THE EFFICIENCY IMPROVEMENT ADVISOR

The EIA is an additional agent (Agg4) that is added to
A. By recalling our definition of an agent, the components
of Agg consist of a Sitg; 4 that contains the information
currently received by Agpsa from any of the agents in
A. Datgra contains all the information previously sent by
agents in A and all the intermediate results Agprra created
while doing its work. fag,;, goes through several actions
(forming Actgra), which are depicted in the functional
architecture of an EIA (see Figure 1) and described in more
detail in the following:

1) receive(Agi,((s}, d},a}),...,(sf,df,ag))) collects the lo-
cal history H; for each Ag;, when Ag; is able to
communicate, while A performs a run instance. H;
= ((s}, dl, al),...(s?, d?2, a?)), with st e Sit,

dt € Dat;, ak € Act;, is the history of Ag; since

the sequence of run instances started.
transform(H,,...,H,) creates the global history

GHist out of the received histories from all

agents. GHist essentially contains the sequence of

run instances (riy,...,7%) = ((tair, L11)s...(t@m,1s

t’m11))""’((ta'1ka tlk)v"'v(tamkka tmkk)) A has solved

2)

Advisor
Extract Optimize
recurring tasks solution of
Transform — from global — recurring f— Derive
local agent histories history tasks rules from
into global history optimal solution
Data model

(advisor states, agent knowledge,

Receive environment knowledge, rule sets, Send
local agent intermediate results, ...) derived rules
histories to agents
4 T

histories rules

I
Basic MAS

Figure 1. Functional architecture of EIA

so far and the solution sol; for each run instance 77,
that A created for it (emergent solution).
extract(G Hist) extracts from this history, more pre-
cisely the sequence of run instances (rii,...,réx), a
sequence of recurring tasks (ta{ec,...,ta;ec).
Optimize(tarl’ec,...,ta;ec) computes the optimal solu-
tion opt”*¢ = ((ta]®c, Agll’"ec, t’{ec),...,(ta;ec, Ag;fec,
tree). Ag/ec € A, 7 € Time, if tal*c,...tal*
were the only tasks A had to perform and they would
be all known at the beginning of Time. It then
compares qual(opt™©) with the quality qual(last)
of the last emergent solution last for the tasks
(ta{ec,...,ta;“) A has created. If

qual(last)/qual (opt™©©) > qualthresh,
the work of Agpra is done until new information
arrives, since A performs well.
derive(aptre“,(ta’l”e‘,...,ta;"'“),GHist,la,st) otherwise
creates for each agent Ag; a set R; of exception rules,
where R; can also be empty.
send(Ag;,R;) communicates the set R; of exception
rules to an agent Ag; the next time communication
with Ag; is possible.

3)

4)

5)

6)

For many of these actions, there are several possibilities
how they can be realized for a concrete application problem.
Since the EIA has been discussed in detail in [16], we will
focus our discussion on details for the different actions that
are of importance for the exception rules.

The actions receive and transform are not of any rele-
vance for how exception rules are created, except for the
fact that a task that never has been observed by any of the
agents obviously will not find its way into the sequence
of run instances that is the result of transform. How to
find the recurring tasks can be achieved in many different
ways. One requirement that influences the exception rules is
that in practice we should not require that a task is really
occuring in exactly the same way in every run instance.
Slight variations of the task itself should be allowed and

99

also very few run instances in which the task (or variations)
does not occur. This is achieved by defining an application
dependent similarity measure sim : T x T — R*' and
having a threshold value (minocc) for how often a task (or
a sufficiently similar task) has to occur in the last k£ run
instances to be considered as being recurring. Using only
the last k£ run instances allows for the recurring tasks to
change over time.

The method to realize extract in [16], which we also use
in this paper, uses a clustering algorithm, more precisely
Sequential Leader Clustering (see [7]). By using sim and
another threshold factor, the tasks of all last £ run instances
are put into clusters (each cluster representing groups of
tasks that are within this similarity threshold) and all clusters
with more than minocc x k elements represent a recurring
task (or several). The clustering algorithm also provides for
each cluster a representant that can be used by extension
rules to refer to this recurring task.

The action optimize normally should not have any influ-
ence on exception rules, but this is only true if optimize is
really able to provide an optimal solution for the recurring
tasks, as was the case in [16]. Unfortunately, for many
interesting problems, finding the optimum for the static
variant of the problem is infeasible, so that only very small
instances can be solved in a timely manner. Therefore the
advisor can also make use of approximation algorithms for
the problem, such as for example evolutionary methods
or simmulated annealing. Unfortunately, this may cause
some problems when comparing experiments with different
exception rules, since in different experiments the advisor
will often use different solutions to adapt the self-organizing
emergent system to.

Since this paper is about different types of exception rules
we will discuss the action derive in detail in the next section.
Moreover, we will also discuss the need for eliminating
exception rules that were communicated to the agent before,
which is included into the action send. This means that R;
now is the complete set of rules that Ag; should use.

For using an EIA as described above, several requirements
have to be met. First, in order to be able to receive the
necessary data from the agents in A, the agents need to be
able to transmit their local histories to the advisor, preferably
at least once during or after a run instance. In theory, an
EIA also works if such a transmission is only done after
several run instances. However, this means as a consequence
that any advice will reach the agents only after several run
instances as well (after the advice has been determined),
which will endanger gains, if the recurring tasks change
often. The second requirement is that the agents in A,
respectively their decision functions, can be modified to
accept and work with exception rules. Usually, these two
requirements are not difficult to fulfill.

A third requirement, at first glance, seems to be harder
to fulfill: a sequence of run instances must have a large

enough set of recurring tasks, as defined previously in this
section. Fortunately, this requirement is fulfilled by a lot of
applications for a lot of users. For example, many transport
companies have a rather large number of daily recurring
tasks that provide them with a good bottom line, which is
enriched by additional tasks that have to be fulfilled only
once or very few times.

IV. PRO-ACTIVE RULES FOR THE ADVISOR

In this section, we first use the ignore rules from [16] to
present an example for how exceptions rules can be created
and then used by the agents in A. Then we present the
necessary modifications to allow for the use of pro-active
exception rules. Finally, we address the issue of having the
EIA try out rules and delete them if they are not successful.
This is an issue with pro-active rules as well as with the
combination of ignore and pro-active rules.

A. Ignore Exception Rules

As stated in the last section, in order for the advisor
to work, the agents in A have to be able to work with
exception rules. The idea behind an ignore rule is that it
should detract the agent from performing a particular task
(and its variations defined using sim) at least for some time.
The hope is that due to such a detraction another agent will
perform this particular task and that this results in a better
overall emergent solution (at least for the set of recurring
tasks).

In general, an ignore rule for an agent Ag; € A has
the form condiy(s,d) — —as,, with s € Sit;, d € Dat;
and ay, € Act; (with a4, indicating the action to start
performing task ta). Essentially, every agent architecture
can be modified to use such an exception rule by simply
creating a variant fffgi of Ag;’s decision function f44, in
the following manner:

fi\ggi (s,d) = { 57‘?% (-

This can be extended to a set of ignore rules by simply
having the action a’ not being equal to any of the actions’
starting tasks for which the condition of an ignore rule
is true in the current situation, given the current values
of the internal data areas of Ag;. a’ should be the action
that Ag; would select if its original choice (in f4g4,) is not
available, to keep as much of the basic decision making of
the agent preserved as possible. This also means that f 4,
is naturally able to do any non-recurring task that comes up
while ignoring a task ta.

An obvious way to realize cond,g is to use the task ta that
is supposed to be ignored. Usually, only some parts of the
task description are used and cond;g will already be true, if
a currently active task is similar enough to the task for which
the condition was created (at least with regard to the parts of
the description that are used in the condition). cond;q will

if condiy (s, d) = false
with @’ # asq, else

100

also contain any conditions on how long an agent should
ignore the task.

Exception rules in general are created by Aggr4 by com-
paring the optimal solution opt™° = (({ai, Ag;, t%),...,(taé,
Ag},, té)) for the recurring tasks with the computed emergent
solution last = ((ta?, Ag?, t%),...,(tai, Agg,tf,)) for these
recurring tasks. Agpra always targets the first j with either
taj # taj or Agj # Ag? which represents the first
assignment of a task to an agent that deviates from the
optimal solution. The ignore rule approach creates an ignore
rule for Ag? of the form condiy(s',d’) — “ay2. Agpia
looks up in GHist the triple (s,d,a,,2) and, as already
stated, abstracts s and d such that tasks in the whole cluster
of tai will activate the rule.

B. Pro-Active Rules

Pro-active rules advice agents to start tasks before any
agent in A even knows (for sure) that a task will have to be
performed. If the rules are adequate, there will be obvious
efficiency gains: for instance, if efficiency is measured in
terms of the distance traveled in a transportation scenario,
the agents will travel less far, since they will know where
to go next and will not be detracted by other tasks or go
back to a depot. In contrast, if efficiency is measured in
terms of needed time in a dynamic job-shop scheduling
scenario, the agents will use less time, since they can already
prepare for the next upcoming job. Naturally, if the rules are
inadequate, the effort put into performing the prep-part of
the task is wasted and preparing for another task might even
become more expensive, which reduces the efficiency. Also,
non-recurring tasks represent a bigger danger for reducing
the efficiency, since using pro-active rules can result in the
agents ignoring these tasks for some time, which was not
the case for a system using ignore rules. As a consequence,
the particular application and the profile of the tasks have
much influence, whether pro-active rules should be applied
or not.

A pro-active rule for an agent Ag; € A has the form
condproq(s,d) — prep(ta), with s € Sit;, d € Dat; and
ta € T'. Having only one such rule at a time, the modification
of fag, would be analogous to the case of an ignore rule.
But since pro-active rules require an agent to perform a
particular action, we need to deal with the cases where we
have several rules with their conditions being fulfilled at a
time (and suggesting different actions). This requires the use
of a conflict resolution function cr; : 2% — Act;, where R;
is the (current) set of exception rules of Ag;. If in a situation
s an agent has as current value of its Dat; d, then Rf’d is
the set of all exception rules in I?; with fulfilled conditions.
Thus, the modified decision function f;(q" is defined as
(s.d) :{ fag:(s,d), if RS =10

fC;L'C
Agi eri(RS%), else

Note that this general function allows the use of both
pro-active and ignore rules (hence the superscript “exc”). In
general, it should be the goal of the EIA to create exception
rules so that a conflict resolution function is not necessary,
that is having |R; 4| < 1. But due to solving dynamic
problems including non-recurring tasks we can never rule
out that the conditions of more than one rule are fulfilled.
An obvious choice for cr; is using the FIFO principle, i.e.
the agent continues “working” on the task suggested by
a rule until the task is either fulfilled or an explicit time
span associated with a rule has gone by. Only then the next
triggered exception rule (timewise) will be worked on.

To create a pro-active rule, Aggpra again looks for the
first index j in which the optimal solution opt™®¢ is different
from the emergent one [ast. But this time a rule for Agjl-
is created, which has as action prep(ta;). With regard to
the issue how to trigger a pro-active rule there are two
general categories: task-triggered and time-triggered. A task
triggered pro-active rule uses a task as the trigger, which
is usually the recurring task an agent performed before the
task the rule tries to prepare the agent for. As in the case
of ignore rules, the condition will use only parts of the task
description (depending on the application) and will also use
sim and a threshold to allow for sufficiently similar tasks (or
an approximation on the used parts) to be the trigger. A time
triggered pro-active rule, as the name suggests, uses a set
time to trigger the rule. This time reflects the time necessary
to perform the preparation of the task and the variation of
the occurence of the task from G Hist!. For both kinds of
triggers, the condition includes a maximum time limit for the
rule being active, to avoid having the agent essentially taken
out of the run instance in case that the particular recurring
task is not appearing in the particular run instance.

Naturally, Aggpra can be allowed to use both ignore
and pro-active rules. Given the greater potential dangers
in using pro-active rules, we suggest to prefer ignore rules
whenever possible and only to use pro-active rules if the
ignore rules are not able to achieve the necessary effects in
the agents in A. As our experiments in Section VI show,
this way of combining the two types of exception rules is
very successful.

C. Deleting Rules

With the possibility to use pro-active rules comes the
need for the Aggra to instruct agents to delete rules that it
communicated to them before. The main reason is that the
set of recurring tasks can naturally change and such a change
might mean that the task that a pro-active rule is supposed to
prepare for is not a recurring task anymore, while the trigger
task is still there, respectively a time trigger is used. Without
deleting this rule, the rule would still be triggered frequently,

'This can be rather difficult if the announcement times for tasks vary a
lot.

101

resulting in quite some inefficiency. Also, a rule created by
the EIA might not have the intended effect, which often can
only be observed after the rule has been given to an agent
and Aggs4 needs then to be able to delete the rule. Deleting
rules becomes also very important, if Agg;a is allowed to
use both types of rules, because trying out one type and not
deleting it when trying out the other type creates additional
problems for the conflict resolution function (FIFO would
obviously not work anymore).

Fortunately, it is not too difficult for Aggra to deal with
the problems above. For each rule that is active in an agent
in A, Aggra needs to remember the recurring task the rule
was created for. For each task, there should be at most one
pro-active rule. If Agpsa creates a pro-active rule for a task
for which already another pro-active rule exists, this other
rule gets deleted. Also, if a task is not recurring anymore,
any exception rule for it gets deleted.

V. INSTANTIATION FOR PDP

In this section, we instantiate the concepts from the last
two sections for an application domain, namely dynamic
pickup and delivery problems (PDP), similar as in [16].
We will first describe PDP as instance of dynamic task
fulfillment, then present the instantiation of the advisor with
ignore rules from [16] using digital infochemical coordi-
nation (DIC, see [11]) as basic decentralized coordination
model We will focus, again, mainly on what is important
for creating and using exception rules. Then we instantiate
pro-active exception rules to this application domain.

A. Pickup and Delivery Problems

The general pickup and delivery problem (see [14]) is a
well-known problem class with many instantiations (see €. g.
[1], [2]). Formally, a task ta of a dynamic PDP consists
of a pickup location lp;cxyup, a delivery location lgeiyery
and the needed transportation capacity ncap. The capacity
is mirrored on the agent side by a transportation capacity
cap 44. Most real-world problems require solving dynamic
instances of this basic problem. Many of these instantiations
fulfill the conditions necessary for using an advisor. Since
the basic problem requires agents to move to a location,
pickup goods that have to be transported to another location,
move to this other location, and drop of the goods, PDP also
fulfills the necessary requirement for pro-active exception
rules. This is having the action of moving to the pickup
location as the prep-action for such a task.

With regard to efficiency, i.e. qual, there are several
possibilities. In this paper, we define as qual the sum of
the traveled distances by all agents (for performing all tasks
in the run instance), including moving out of and getting
back to the depot. This definition of qual is the same as in
[8], which allows us to use the testing approach presented
there for the evaluations.

B. Using EIA for DIC for PDP

The self-organizing emergent system that is the basis
for our evaluations uses digital infochemical coordination
(see [11]), a generalization of pheromone-based coordination
(see [3]), as underlying decentralized coordination approach.
The system achieves coordination between the transportation
agents in A using digital infochemicals that are propagated
through Env. An Ag; accesses all the infochemicals at its
current location and bases its decisions purely on this local
view of the environment.

Tasks are introduced into the environment by creating
two so-called emitter agents, a pickup agent at lpchup
and a delivery agent at ljeisvery. Both agents emit so-
called synomones, a specific type of infochemical. These
synomones are propagated through the environment and a
location receiving them stores their existence and intensity.
A synomone on a location evaporates after a certain time, so
that an emitter agent repeats the synomone emission from
time to time until it has been served by a transportation
agent. The intensity and direction of a synomone emitted
from ek gives a transportation agent hints on the emitters
location as well as ncap, while the synomone emitted from
laetivery gives hints on the delivery location.

For an Ag; to decide what to do, it computes a utility
for each task it ”smells” and then chooses the task with
the highest utility. The utility is influenced by the intensity
of an infochemical as well as by the agent’s current status.
For example, if it has already picked up the goods for a
certain task, it gives priority to delivering it. Additionally,
other infochemical types influence the utility computation:
a pickup agent emits so-called allelochemicals, another type
of infochemical, as soon as an Ag; served it. This indicates
to an Ag; that the task execution has already started, which
prevents it from being unnecessarily attracted to this task
by unevaporated synomones. In this case, it will not give
any utility to this task anymore. Also, transportation agents
emit pheromones indicating the task they currently intend to
perform. These pheromones are — in contrast to synomones
— only propagated in a very small area, but other agents
crossing such a pheromone trail then know not to choose
the task for themselves. After an Ag; has selected a task it
moves directly towards the synomone emitter representing
it.

Adding an advisor to this base system is not very difficult.
Since the synomones from the emitter agents contain all
the necessary information about a task, the histories of the
transportation agents are sufficient for creating the actions
receive and transform that identify the run instances. The
similarity measure used for the clustering in extract is
defined by

= - Ed(lpickup,ly lpz'ckup,2)+
a - Ed(ldelivery,h ldelivery,2)+
B - |ncapr — ncaps|

sim(tai, tas)

102

where Ed is the Euclidean distance of the locations and «
and (are weighting parameters.

The static variant of our dynamic PDP is unfortunately
already a hard problem to solve. Since our experiments
required the optimization of many instances of this static
variant, we decided not to use the immature optimizer
used in [16], but an approximation method using a genetic
algorithm, which uses or-tree-based search to make sure that
the genetic operators only create solutions that fulfill the
hard constraints of the PDP (this is the same approximation
method as used in [8]). While this allows us to limit the time
needed for the optimization, it unfortunately introduces an
additional random element into our experimental evaluation
(see Section VI). The quality of the emergent solution is
computed by using the direct distances between the emitter
agents for the recurring tasks.

The instantiation of derive for PDP for ignore rules
makes use of the fact that the utility evaluation performed
by an agent is very similar to a rule-based system. each
infochemical comes with a “rule” describing its contribution
to the utility of the task it was created for and the conflict
resolution adds up the contributions of all triggered rules.
Therefore, ignoring a particular task can be achieved by
setting its utility to 0, overriding all other infochemical-
based rules for the task. This also automatically achieves that
the agent will go after the next-best task. In [16], derive used
for cond;4 an abstracted synomone ab containing the pickup
location and the required capacity of the task representing
the cluster associated with a recurring task (by extract).
Consequently, cond;,’s task part was fulfilled, if a task ta
was within a given threshold synthresh for the function
distsyy with

diStsyn (ab7 ta) - Ed(lpickup,ah lpickup,ta)+

B - [ncapay, — neapia |+

The second part of cond;4 requires that the first activation
of the rule (in the current run instance) was less than a given
number of time units ago.

C. Pro-Active Rules for PDP

As already stated in Section IV-B, there are two differ-
ent general types for how to trigger pro-active exception
rules, time-triggered and task-triggered. In our preliminary
experiments, task-triggers clearly outperformed time-triggers
by being much more flexible (respectively time-triggers
essentially destroyed the flexibility of the basic system), so
that here we will concentrate on task-triggered pro-active
rules. The obvious problem of how to create a trigger for
the first recurring task of a run instance was solved by having
an artificial begin task synomone emitted by the depot at the
start of each run instance.

The general idea of a task-triggered pro-active rule for our
system solving PDP is to create a rule that sends an agent to
the pickup location for a task taq,4 that the EIA wants it to

perform (instead of what its decision function is suggesting).
And this rule will be triggered by the recurring task tasriq
this agent performed in the optimal solution before the
task the agent should now perform (or by the begin task),
respectively by having fulfilled this trigger task. While this
seems to be rather straightforward, there are a few problems
in the details. For example, the time period between a trigger
task and the targeted task can vary a lot for the different
recurring tasks the EIA identifies. They can even vary for
the same task pair between run instances. So, just sending
the agent to the pickup location and then having it follow its
”standard” decision function can result in the agent going
away again, if the task fa;q.q is not announced within a
short time after arriving there. Providing an additional time
span to stay at that location runs the opposite risk: the agent
might not be "freed” soon enough to prevent other agents
from fulfilling ta;,,q. Our solution is to provide the agent
with an additional time limit and a target synomone abyqrq
describing the task taqrg it is supposed to do.

So, formally, for PDP a pro-active rule for ta;qrq4 con-
sists of two subrules: condproa1 (s, d) — prep(taterg) and
condproa2(s,d) — Qrest(tagary)s WHEre Gresi(iaya,,) 1 the
first action to take to fulfill rest(tatqrq), i-e. picking up
the goods. As described above, condproq1 (s, d) is fulfilled,
if the abstracted synomone agrig to tasr;g Or a synomone
sufficiently similar to it has been perceived by the agent
in this run instance (which can be determined looking
at s and d) and this has happened within a given time
limit (the so-called timeout). The condition cond,;q2(s, d)
consists of condy,eq1 (s, d) being fulfilled and the abstracted
synomone abyq,4 to the target task ta,,,q being perceived (or
a sufficiently similar synomone). These rules are integrated
into the utility computation of an agent by boosting the
infochemicals associated with them above the maximum
utility a task can achieve otherwise. The EIA creates the
abstracted synomones for these rules the same way it creates
the abstracted synomone for an ignore rule and then uses
distsyy, for similarity (also as described for ignore rules).

As already suggested in the last section, the EIA tries first
to improve the emergent solution by creating an ignore rule
and only if there is no change in the emergent solution after
adding this ignore rule it deletes the ignore rule and tries
a pro-active rule. On the agent side, if there are two pro-
active rules with their conditions fulfilled (which can happen,
if tasks are announced in very short intervals), the conflict
resolution function chooses the one that was triggered first
(which is also most probably the one that the agent is already
working on).

VI. EXPERIMENTAL EVALUATION

In order to evaluate the usefulness as well as the risks
of pro-active exception rules, in this section we report
on several experiments, in which we compare variants of
the system described in the last section by using only

103

ignore rules, only pro-active rules, and using both. The
first experimental series is aimed at showing the potential
of the three variants. It reports on problem instances for
which the variants achieve very good improvements. For
finding such instances, we have used the learning approach
of [8], which we will briefly explain in the first subsection.
Since this approach was available, we also used it to find
problem instances for which the different variants have
certain problems with, which is our second experiment
series. Finally, in the third experiment series we report on
various problem instances that were created randomly to also
provide a picture of the average performance of the three
exception rule variants.

A. Automatic Testing of Self-Adaptive Systems

Getting an idea of the potential, but also dangers, of a self-
organizing emergent system for a particular application is
anything but trivial: while it is naturally easy to evaluate such
systems on given test instances, one of the reasons we are
interested in this type of system is that they offer the ability
to solve problem instances the developers and potential users
have not thought about (hence the name self-organizing). It
is even more interesting to get an idea what are instances
for which the system is not working well. [8] presented a
way to find such instances using Machine Learning.

The general idea is to use an evolutionary learning ap-
proach in order to create PDP run instances that fulfill
some intended conditions for the behavior of the self-
organizing emergent system. To do this, we start with a set
of randomly created run instances (25 in our experiments),
called individuals. Each individual is evaluated by having the
self-organizing emergent system with the advisor perform
the run instance repeatedly. This way, the advisor can adapt
the whole system to this run instance. In the case of our
system (see Section V), we use the qualities of the emergent
solution to the run instance rs before the adaptation by the
advisor qual(solpefore(rs)), after the complete adaptation
qual(solqfier(rs)) and the (nearly) optimal solution for the
run instance qual(opt(rs)) to create a fitness value for the
individual. The way how the three values are combined
depends on what the intended condition for this testing is
(see later).

Then evolutionary operators are applied to selected in-
dividuals from the current set of individuals creating new
individuals. Finally, the worst individuals of the current set
are replaced by the new individuals. This is repeated for a
given number of iterations (100 in our experiments). The
used operators are rather standard: on the one hand side
changing a task or an announcement time in an individual
as a single-point mutation and on the other side choosing the
tasks randomly from the tasks of two “parent” individuals

as a crossover. The parents for these operators are selected
using tournament selection. This means that randomly a
certain number of individuals are selected that then are pitted
against each other in a tournament, where the individual
fitness determines the winners.

In the next subsection, we are interested in two types
of run instances: first, run instances, for which the advised
system with the particular variant of exception rules creates
large improvements (compared to the base system), which
provides an idea of the potential the variant has. Second, run
instances, for which the advised system creates bad results
(again, compared to the base system), which provides an idea
of the potential risks the variant can cause. This requires two
different fitness measures. The fitness measure fit,, for the
potential of an individual rs is defined by

5 - theo(rs) + 500 - adapt™ (rs)
qual(opt(rs))

f’itpot (75) =

where theo(rs) = qual(solpeore(rs)) — qual(opt(rs))
indicates how much potential for improvement the individ-
uval has and adapt™(rs) = max[0, qual(solpe fore(rs)) —
qual(solqfier(rs))] indicates how much improvement the
advisor achieved. By maximizing this fitness measure we
get individuals that are very good for the particular variant
of exception rules. Note that having theo(rs), even with
such a small weighting factor, helps in the beginning of the
search to guide the learner towards individuals that allow
for improvement.

The fitness measure fit, ;s for the danger potential of an
individual is defined by

5. theo(rs) + 10 - pract(rs) 4+ 500 - adapt ™ (rs)

fitdang(rs) = qual (opt(rs))

as

where theo(rs) is
max|0, qual(solgpier (1))

before, pract(rs)
qual(opt(rs))] indicates
how far away the adapted emergent solution is
from the optimal one and adapt + —(rs)
max|0, qual(solgpter (15)) — qual(solpe fore(rs))] indicates
how much worse the emergent solution got after adaptation.
Again, the major factor is adapt™, with the other factors
helping to steer the evolutionary algorithm (EA) initially in
the right direction. The EA tries to maximize this fitness
measure.

B. Evaluating Potential and Risks

The experiments in this subsection aim at evaluating both
the potential and the dangers that the different exception
rules for the advisor offer, using the testing approach from
the previous subsection. The environment for the transporta-
tion agents is a 10 x 10 grid with the depot in the middle.
Initial experiments showed that already with 2 agents and 4

2[8] uses additional operators that are targeted at sequences of run
instances. But since we are only interested in a single run instance, they
are not necessary in our experiments.

104

[Exp. [[base || ig [proa | both |
9dig,1 53.84 25.80 | 31.54 | 26.38
gdig 2 69.74 31.46 | 45.60 | 24.10
9dig,3 62.87 3438 | 58.21 | 34.38
9dig,a 81.36 35.56 | 55.36 | 28.73
9dig,5 61.21 29.56 | 57.45 | 31.96
9gdproa,1 42.38 28.73 | 17.66 | 14.24
9dproa,2 72.08 || 57.07 | 3473 | 26.47
9dproa,3 67.84 64.38 | 24.14 | 22.45
9dproa,a 64.91 6491 | 3346 | 26.63
9dproa,s 55.11 35.80 | 23.31 | 21.31
gdpoth.1 67.01 45.70 | 30.53 | 27.80
9dpoth,2 80.08 51.11 | 45.60 | 34.63
9dpoth.3 57.36 4570 | 58.21 | 28.38
9dpotn.a 71.50 52.24 | 5536 | 30.97
9dboth,5 71.25 71.25 | 5745 | 29.31

Table I

RESULTS FOR THE EVALUATION OF THE POTENTIAL

recurring tasks we are able to find run instances that allow
us to evaluate the differences between the different variants
of the system. Due to the use of the GA as optimizer, we
performed five simulation runs for each of the run instances
and report in Tables I and II on the average distance (in
grid fields) travelled by the agents. Since our goal with these
experiments is to find the best and the worst behavior, we
did not use any non-recurring tasks and also did not make
use of any similarity. The timeout for the pro-active rules
was 5 time units.

Table I shows that for each of the 3 variants (only ignore
rules, only proactive rules and both) we have run instances,
where the variant substantially improves the basic self-
organizing emergent system (indicated by base). But the
variant using both rule types is better than the ignore variant
in two of the examples created for the ignore variant (gd;)
and is as good for one of those examples. Even more, the
both-variant is better than the pro-active variant in all of
the examples created for the pro-active variant (gdproq)-
Finally, the both-variant produces the best results when used
for the examples created for it (gdpon). The gdproq, and
gdpotn, €xamples also show that just using pro-active rules
can produce better results than ignore rules.

Looking more closely at the examples, the strength of
pro-active rules is in changing the sequence in which an
agent performs its tasks. While ignore rules achieve that the
“correct” agent performs a task (i.e. the agent that performs
it in the optimal solution), these rules cannot influence the
sequence that the agent chooses to do “its” tasks in. But
by sending an agent to the right task before it tackles a
wrong one, pro-active rules can deal with this problem. If
we only use pro-active rules, there is one additional potential
problem, namely that another agent picks up the task that an
agent should do before the agent gets there. But by giving
this other agent an ignore rule for the task, this problem can
be avoided. This is the reason for the very good performance
of the combined variant.

[Exp. [[base [| ig [proa [both |
bd;g,1 48.63 67.60 48.63 29.31
bd;g 2 44.87 || 65.84 45.17 26.42
bd;g.3 29.31 43.80 53.98 23.31
bd;g.4 46.87 || 68.67 49.94 37.50
bdig,5 45.70 || 60.18 57.60 27.56
bdproa,1 38.87 || 47.92 77.88 29.73
bdproa,2 || 44.73 || 46.33 | 204.15 | 167.28
bdproa,3 29.90 || 29.90 | 175.56 | 114.76
bdproa,a 34.38 || 32.38 | 240.97 | 181.58
bdproa,s 29.31 23.31 | 245.56 | 133.12
bdoorn 1 || 42.04 || 42.04 | 22204 | 238.04
bdyoth, 2 38.87 || 38.87 | 222.38 | 238.28
bdioins || 38.04 || 38.04 | 241.70 | 241.70
bdyporna || 4510 || 45.11 | 8039 | 175.46
bdpoin s || 30.97 || 28.87 | 10951 | 236.97

Table 11

RESULTS FOR THE EVALUATION OF THE RISKS

Table II presents the results of the three variants for
instances specifically created to be solved badly by one
of the variants. The bad examples for ignore rules (bd;,)
show that it is possible to produce worse results than the
basic system. However, compared to the bad instances for
pro-active rules (bd,roq) and for the combination of both
(bdpotr,) the risk is much more limited (definitely smaller
than a factor of 2.0). Using both rules together produces
better results on the bad instances for the single rule types
they were created for. But using pro-active rules, either alone
or in the combination, clearly can be a risk.

Looking more closely at the examples they reveal a weak-
ness of the pro-active rules that is due to the instantiation
of the DIC concept used in the system: the pickup emitter
synomone does not contain any information about where to
deliver the goods. As a result, if two tasks have the same
pickup location, whichever is announced first to the agents
will be performed by an agent send there by a pro-active
rule, even if this rule was created for the other task. The
learning tester from the last subsection was able to exploit
this weakness quite a bit. Note that adding an appropriate
ignore rule is not possible, because also ignore rules cannot
distinguish between the two tasks.

C. Evaluating Random Instances

The experiments in this subsection aim at evaluating the
three variants under “average” conditions. As in [16], this
means that we are looking at sequences of run instances with
recurring tasks together with non-recurring tasks. However,
the recurring tasks have not been selected to be performed
badly by the basic system. Instead, they are created randomly
and are modified between run instances within the similarity
threshold. This means that for a particular sequence of run
instances, there might be no need for the advisor to try to
change the behavior of the transportation agents. Therefore
Table III reports the average of 20 such randomly created
sequences of run instances in the rows labeled ”Av.”. Addi-
tionally, we provide data on the best sequence and the worst

105

one of these 20, each in the form of the improvement over
the basic system. Each sequence of run instances consists
of 30 run instances with k = 5. The different columns
represent different numbers of tasks per run instance. A
column title xRyN means that we have x recurring tasks
and y non-recurring tasks in each of the 20 sequences of
run instances that were used to create the column entries.
Again, the timeout for the pro-active rules was 5.

As Table III shows, using pro-active rules alone results in
improvements, but those improvements are not comparable
to the other two variants. As the experiments in the last
subsection have shown, pro-active rules come with dangers
and this is also shown in Table III by the worst results.
They all are negative, meaning that the advised system was
worse than the basic system. If we compare ignore rules
with the variant using both rule types, we see a slight
improvement of the average by the both-variant in six of
the columns, with one column having an identical value. Of
those columns where the ignore variant is better on average,
we have three columns where the best runs of both variants
have the same improvement. It also has to be pointed out
that the combination variant usually will take longer to adapt
to a set of recurring tasks, given that in every run instance
only one new exception rule is created for the whole system.
So, overall the variant using both exception rules is a slight
improvement.

VII. RELATED WORK

As pointed out in [16], the main difference between the
advisor approach and other related approaches to control the
cooperation of agents in a self-organizing emergent system
(see e.g. [9] for Autonomic Computing, [13] for Organic
Computing, [6] for Autonomous Communication, or [15] for
multi-agent systems) is that the advisor approach does not
require the ability to observe and directly control the agents
at every point in time. In fact, this is why exception rules
are an adequate concept to improve the performance of a
self-organizing emergent system while keeping its beneficial
properties. Thus, all problem solving decisions are still made
by the agents themselves. As a consequence, there exist no
other approaches similar to pro-active exception rules.

Admittedly, there are quite a few other approaches derived
from control theory that try to use learning from the past
behavior to predict future states of a system. For example,
the Model Predictive Control (MPC) approach (see [4]) tries
to use a stochastic, linear model (generated out of the history
of the system) to derive a control action by minimizing
a quality function over a set of possible control action
sequences. Unfortunately, the approach does not include
updating the stochastic model, and always takes over total
control of the basic system, which takes away essentially
all flexibility. Moreover, linear models for self-organizing
emergent systems are generally not available. The same

[Rul. T Eval] 4RON | 4RIN | 4R2N | 6RON | 6RIN [6R2N [6R3N]| 8RON [8RIN [8R2N | 8R3N | B8R4N |
ig Av. 14.15% 12.03% 8.91% 17.26% | 10.04% 7.97% 6.68% 12.48% 8.61% 6.74% 5.48% 4.84%
Best 29.33% 18.93% | 15.93% 28.06% | 19.28% | 13.78% | 13.30% 1997% | 19.03% | 12.82% | 12.77% 8.53%
Worst 0% -1.18% 1.72% 9.49% | -0.38% 2.40% 0.44% 0.12% | -1.69% | -2.25% 0.77% 0.86%
proa | Av. 2.05% 2.26% 2.76% 4.81% 3.39% 3.72% 1.45% 1.97% 3.29% 2.37% 1.73% 1.81%
Best 11.61% 13.65% 8.83% 21.98% | 13.50% | 11.42% 7.06% 18.46% | 11.83% 8.42% 8.26% 6.58%
Worst -9.09% | -20.31% | -2.72% | -10.07% | -6.69% | -6.84% -704% | -32.02% | -8.37% | -3.01% | -3.39% | -2.58%
both | Av. 14.17% 11.29% 8.96% 17.26% 9.72% 8.05% 6.64% 11.65% 9.79% 6.43% 5.65% 5.03%
Best 29.33% 18.43% | 16.62% 28.06% | 19.28% | 13.38% | 13.30% 19.50% | 19.03% | 12.82% | 12.36% 8.64%
Worst 0% -1.18% 1.72% 9.29% | -0.35% 2.25% | -1.45% 0.12% | -1.69% | -2.19% 1.95% 1.62%
Table IIT

RESULTS FOR RANDOMLY CREATED SEQUENCES OF RUN INSTANCES; IMPROVEMENTS IN PERCENT OVER BASE SYSTEM

holds for non-linear models, which are used by Nonlinear
MPC approaches.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we presented the concept of pro-active
exception rules for advised self-organizing emergent sys-
tems. By allowing agents to already prepare for anticipated
tasks, pro-active rules offer the potential for substantial
improvements, but also run quite the risk of worsening
the performance of the system. Our experimental evaluation
showed that pro-active rules can deal with efficiency prob-
lems of the basic system due to sequencing issues of agents,
which is beyond the ability of the previously proposed ignore
rules. The combination of ignore and pro-active rules also
has this ability and was slightly better than just ignore rules
even for randomly created problem instances.

The experiments revealed that pro-active rules are an
useful tool for an advisor for certain run instance profiles,
but that more work needs to be done in order to have
the advisor only using them for the right sets of recurring
tasks. Among the possibilities we want to look into in the
future is enabling the advisor to simulate the behavior of
the agents of the base system and run instance scenarios.
This allows for a much faster adaptation and identifying
inappropriate exception rules without consequences in the
real world. Another direction of future work will be applying
the different exception rule types to other environment-
mediated coordination concepts (as suggested in [12]).

REFERENCES

[1] G. Berbeglia, J.-F. Cordeau and G. Laporte: Dynamic Pickup
and Delivery Problems, European Journal of Operational
Research 202, 2010, pp. 8-15.

[2] G. Berbeglia, J.-F. Cordeau, I. Gribkovskaia and G. La-

porte: Static Pickup and Delivery Problems: A Classification

Scheme and Survey, TOP 15, 2007, pp. 1-31.

[3] S. Briickner: Return from the Ant - Synthetic Ecosystems

for Manufacturing Control, PhD thesis, Humboldt-Universitét

Berlin, 2000.

—

[4] E. Camacho and C. Bordons: Model Predictive Control,

Springer, 2004.

(3]

(6]

[7

—

[8

[

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

106

T. De Wolf and T. Holvoet: A Taxonomy for Self-* Prop-
erties in Decentralised Autonomic Computing, In Autonomic
Computing: Concepts, Infrastructure, and Applications, CRC
Press, 2007, pp. 101-120.

S. Dobson, S. Denazis, A. Fernandez, D. Gaiti, E. Ge-
lenbe, F. Massacci, P. Nixon, F. Saffre, N. Schmidt and
F. Zambonelli: A Survey of Autonomic Communications,
ACM Transactions on Autonomous and Adaptive Systems

1(2), 2006, pp. 223-259.

J.A. Hartigan: Clustering Algorithms, John Wiley and Sons,
1975.

J. Hudson, J. Denzinger, H. Kasinger, and B. Bauer: Effi-
ciency Testing of Self-adapting Systems by Learning of Event
Sequences, Proc. ADAPTIVE 2010, Lisbon, 2010, to appear.

IBM: Autonomic Computing Whitepaper: An Architectural
Blueprint for Autonomic Computing, June 2006.

M. Jelasity, O. Babaoglu, and R. Laddaga: Self-Management
through Self-Organization, IEEE Intelligent Systems 21(2),
2006, pp. 8-9.

H. Kasinger, B. Bauer, and J. Denzinger: Design Pattern for
Self-Organizing Emergent Systems Based on Digital Info-
chemicals, Proc. EASe 2009, San Francisco, 2009, pp. 45-55.

H. Kasinger, B. Bauer, J. Denzinger, and T. Holvoet: Adapting
Environment-Mediated Self-Organizing Emergent Systems
by Exception Rules, Proc. SOAR 2010, Washington, 2010,
pp. 35-42.

U. Richter, M. Mnif, J. Branke, C. Miiller-Schloer and
H. Schmeck: Towards a generic observer/controller archi-
tecture for Organic Computing, In C. Hochberger and
R. Liskowsky (eds.): Informatik 2006 - Informatik fiir Men-
schen, Springer, 2006, pp. 112-119.

M.W.P. Savelsbergh and M. Sol: The General Pickup and
Delivery Problem, Transp. Science 30, 1995, pp. 17-29.

R. Schumann, A.D. Lattner and 1J. Timm: Management-
by-Exception — A Modern Approach to Managing Self-
Organizing Systems, In Communications of SIWN(4), 2008,
pp. 168-172.

J.P. Steghofer, J. Denzinger, H. Kasinger, and B. Bauer: Im-
proving the Efficiency of Self-Organizing Emergent Systems
by an Advisor, Proc. EASe 2010, Oxford, 2010, pp. 63-72.

