Applying Data-flow Analysis to Models
A Novel Approach for Model Analysis

Christian Saad, Bernhard Bauer
Programming Distributed Systems Lab, University of Augsburg, Germany
{saad, bauer } @informatik.uni-augsburg.de

Keywords: data-flow analysis, semantic analysis, MOF,
meta modeling, business processes

Abstract

Using modeling techniques, the structure of an application
domain can be captured in an easy and highly expressive way.
However, while the use of meta models for the definition of
modeling languages is a common and well-understood activ-
ity, extracting information about behavioral properties as well
as the validation of static semantics is still a challenge.

In this paper we present a novel approach for model analysis
that addresses these issues by applying the method of data-
flow analysis to the modeling domain. By approximating the
dynamic behavior of a model, this allows for an abstract in-
terpretation of its runtime characteristics.

1. INTRODUCTION AND MOTIVATION

Today, meta modeling is a well established method to for-
mally describe the structure of an application domain, e.g. the
internal layout of software systems. This is facilitated by stan-
dards like the widely supported Unified Modeling Language
(UML) or the Meta-Object Facility (MOF).

The importance of models raises the question of how to
validate their correctness, an issue that is currently not solved
satisfactorily by the UML and similar modeling languages.
Aside from the abstract syntax given by a meta model,
there are often additional restrictions known as static seman-
tics which cannot be expressed using syntactical expressions
alone. The Object Constraint Language (OCL) is intended to
enable the definition of such well-formedness rules but due to
its static nature, it is not capable of validating dynamic prop-
erties that are highly dependent on the context in which the
elements appear, e.g. correct nesting of parallel paths in ac-
tivities. Extracting knowledge about the dynamic properties
would also allow to perform an abstract interpretation of a
model, e.g. to determine valid execution paths in a workflow.

The approach presented in this paper overcomes the lim-
itations of purely static methods like OCL by performing a
dynamic flow analysis on models, thus offering a powerful
and generically applicable method for model validation and
simulation. Its basis is the well-understood data-flow analysis
(DFA) technique used commonly in compiler construction to
derive optimizations from a program’s control flow graph.

In this paper we present an extended and updated definition
of the concept of using DFA for model analysis introduced in

© ACM 2010. This is the author's version of the work. It is posted
here for your personal use. Not for redistribution. The definitive
Version of Record was published in: Proceedings of the 2010 Spring
Simulation Multiconference - SpringSim '10, Orlando, Florida, April
11-15, 2010

https://doi.org/10.1145/1878537.1878788

[1] along with use cases to demonstrate its applicability. The
paper is structured as follows: The principles of model-based
data-flow analysis, its definition and an evaluation algorithm,
are described in Section 2.. In Section 3., several use cases are
presented which have already been implemented or are cur-
rently under evaluation. Section 4. contains an overview of
related work, before we give a summary of the concepts de-
scribed in this paper and an outlook on future developments.

2. APPLYING DATA-FLOW ANALYSIS TO
MODELS

In [1], we have shown that data-flow techniques, stemming
from the field of compiler construction, can be adopted for
the modeling domain since both areas share the underlying
principle of using multiple abstraction layers to define pro-
gramming and modeling languages respectively.

To stay consistent with the notion that everything is a
model, it is desirable that the flow equations themselves are
defined through means of a meta model (described in section
2.1.). The definition is inspired by attribute grammars, a tech-
nique for static analysis of syntax trees in which the grammat-
ical symbols are annotated with semantic attributes. While
attribute grammars in their original form are too restrictive
and difficult to integrate into the modeling domain, the basic
concept forms a valid basis for enriching meta models with
data-flow definitions which are therefore called attributions.

One of the major differences in comparison to the origi-
nal DFA approach is that the flow graph which describes the
actual data flow is not known beforehand but created during
the execution. Data-flow equations may access semantic at-
tributes located at arbitrary model elements, thereby superim-
posing an input dependency graph on the model’s structure.
The evaluation algorithm presented in section 2.2. is able to
handle these dynamic dependency relationships in a way that
significantly reduces the amount of execution steps, compa-
rable to the worklist algorithm commonly employed for eval-
uating traditional DFA in compiler construction.

2.1. A Meta Model For Data-Flow Analysis

In accordance to the procedure commonly employed for
attribute grammars, attributes are given a data type and an
initial value. These attribute definitions can then be assigned
to meta model classes (the M2 layer in the MOF terminology)
by creating occurrences which link the attribute to the class

as well as to a semantic rule (the data-flow equation) which is
responsible for calculating the attribute’s instance layer result.

El Attribution
‘u AfiributionCollection attributions = 1d : Estring
o

— 5 = name : EString
| 0..* | = description : EString
= version : EString
[|

I ¢
deﬁnedFor\\l

N 0 attrExtensions 0¥ attrDefinitions
N L2 o
. . 4 E AttrDefinition
AttrExtension 5 :
‘Li— definedBy © id : EString
= description : EString
1 = dataType : ElavaClass<?>

[

H MetaClass

f containedIn

L

0..*| attributes

‘i,j AttrOccurrencel

——

calculatedBy |
d;l

B AttrSemanticRule
= rule : EString
= ruleType : SemanticRuleType

/

EH AttrConstraint
= violationID : EString

‘U AttrAssEgnmenI 0.1
= e
B startValueRule

Figure 1. Refined attribution meta model (AttrMM)

The complete attribution meta model A#trMM is shown in
Figure 1: Attributions are contained in the top-level element
AttributionCollection and consist of a set of AttributeDefini-
tions and AttributeExtensions. AttributeDefinitions are given
an identifier id along with a dataType and a single AftrSe-
manticRule of the type AttrAssignment which is responsible
for returning the initialization value for this attribute. An Az-
tributeExtension serves as a container for linking multiple
occurrences of defined attributes (AftrOccurrences) to a tar-
get meta model class. Each AftrOccurrence contains exactly
one semantic rule which calculates the iteration value for in-
stances of this occurrence. Semantic rules can be of the type
AttrAssignment which returns a result value of the specified
dataType or AttrConstraint which evaluates to a boolean. In
the latter case, “false” indicates an error in the model identi-
fied by the given violationID.

The attribution meta model is designed to only introduce
dependencies in one direction thus allowing the target meta
model to remain unaware of any attributes assigned to its
classes. This is an important feature since most existing tools
and algorithms (such as model transformations) do not toler-
ate modifications of the meta language, e.g. the integration of
language elements for attributes into MOF. It also simplifies
storage and versioning of attributions.

In order to evaluate an attribution for a model the defined
attributes have to be instantiated with respect to the meta
model’s generalization hierarchy. This is accomplished by

collecting all AttributeExtensions connected to the specific
class type and the super types of a model element. An at-
tribute instance (with a slot to hold the evaluation result) is
then created for each AttrOccurrence contained in one of the
AttributeExtensions. This inheritance semantics ensures that
any attribute connected to class C is implicitly available at
model elements which are instances of subclasses of C. Using
the most specific occurrence provides support for redefinition
at subtypes - a common feature in the domain of modeling -
i.e. if two AttrOccurrences Oc¢ and O¢; of the same Attribut-
eDefinition O were assigned to classes C1 and C2 and C2 is a
subclass of C1, then O¢; overrides O¢y at all instances of C2.
Unlike our previous definition in [1], the input relation-
ships between attribute occurrences are not explicitly mod-
eled anymore since this not only complicates the definition of
an attribution but may also introduce unnecessary dependen-
cies on the instance layer. Therefore, the evaluation algorithm
presented in the next section was extended to analyze depen-
dencies dynamically during execution of the semantic rules.

2.2. Attribution Evaluation

The evaluation algorithm is responsible for executing the
rules in a valid order ensuring that required input arguments
are available at the time of execution. In the case of cyclic
dependencies, it may be necessary to (re)evaluate attribute
instances until results have become available at all partic-
ipant objects and a stable set of final values (fix-point) is
reached. The worklist algorithm, commonly employed for
solving DFA equations (cf. [2]), is not applicable here since
it depends on knowing the output relationships in order to up-
date the set of depending variables after each execution.

Since in our case dependencies are not available until the
execution of a rule, another approach was chosen: From the
set of attribute instances to be evaluated, an instance is cho-
sen nondeterministically and its associated semantic rule is
invoked. If another attribute instance is requested as input,
this dependency is recorded and the corresponding rule is in-
voked recursively. Cyclic dependencies (back edges) are re-
placed by virtual nodes which derive their value from the Az-
trDefinition’s init rule. This results in a directed acyclic graph
with designated root and leaf nodes - referred to as depen-
dency chain - representing the input/output relationships be-
tween the attribute instances. The process is repeated until all
attributes in the evaluation set are part of a dependency chain.

After completing the initial building phase, values at vir-
tual nodes are compared against their referenced nodes. If
they differ, the virtual node is updated with the value at its
reference node and the corresponding branch is reevaluated
in a bottom-up fashion until all values are stable. Note that
dependency chains may change during the evaluation phase
if new dependencies are introduced which were hitherto con-
cealed, e.g. by an ”if” clause in the semantic rule.

This algorithms greatly reduces the amount of required in-
vocations although there arc possibilitics for optimization,

e.g. through isolated computation of cycles or parallelization.

2.3. Model Analysis Framework

To verify the feasibility of this approach the Model Analy-
sis Framework (MAF, http://code.google.com/p/
model-analysis—framework/) project was created. It
serves as a highly parametrizable and modular research plat-
form for improving the related definitions and algorithms as
well as allowing to do performance tests under realistic set-
tings (but is also suited for productive use). All involved
(meta) models, including the internal AttrMM meta model,
are handled using the Eclipse Modeling Framework (EMF).
Support for other modeling standards can be implemented
through an adapter interface.

Semantic rules can be defined either in an enhanced ver-
sion of either OCL or Imperative OCL (based on Eclipse
OCL and Eclipse M2M) or Java. In both cases, attribute val-
ues located at other model elements can be requested through
helper methods which trigger the evaluator module of the
framework whose responsibility is to satisfy this dependency.

In the following section, an example use case that has been
realized using MAF can be seen.

3. USE CASES
3.1. Analysis of Control-Flow Graphs

In this section we will show how to determine some basic
properties for control-flow graphs (CFG) using a simple CFG
meta model (cf. Figure 2(a)) along with a corresponding in-
stantiated model (cf. Figure 2(b)).

B cfg

nodes T edges
0. {

inods [Hedge]
= name : EString 0..1 source outgoing 0..*| = name : EString

0..1target incoming0..*

‘ [startnode [endnode

(a) A simple control-flow graph meta model

® 8 e

(b) An example control-flow graph model
Figure 2. Control-flow graph example

The analysis is performed by the following attributes as-
signed to the class node and written in an extended OCL syn-
tax which allows to request values of semantic attributes:

is_reachable: self.incoming.source.is_reachable()—includes(true)
is_live: self.outgoing.target.is_live()—includes(true)

all_predecessors: self.incoming.source.name—
union(self.incoming.source.all_predecessors())—asSet()

circle_id: let self_pred : Set(String) =
self.all_predecessors()—including(self.name) in
if (self.incoming.source.all_predecessors()—asSet()=self_pred)
then self_pred—hashCode() else 0 endif)

circle_nodes: if (not(self.circle_id() = 0))
then self.incoming.source— collect(predNode : node |
if (predNode.circle_id()=self.circle_id())
then predNode.circle_nodes() else Set{ } endif)
—flatten()—asSet()—including(self.name)
else Set{} endif

The value of the constraint is_reachable indicates whether
the associated node lies on a direct path from the start node
("false” for X). The start node itself overwrites this rule to al-
ways return “true”’. Accordingly, is_live checks the liveness,
i.e. if the end node can be reached (“false” for Y).

To calculate the transitive predecessor set, all_predecessors
merges the values of incoming all_predecessors attributes and
adds the names of the direct predecessor nodes.

Result

Object Class | Attribute Value | Time |
endnode endnode cirde_nodes | [06:35:37:207
nodel node drde_nodes] 06:35:37:207

node2 node
node3a node

drde_nodes | [node3a, node3b, node4, node?] | 06:35:37:207
crde_nodes | [node3a, node3b, node4, node?] | 06:35:37:207

node3b node drde_nodes [node3a, node3b, node4, node?] | 06:35:37:207

node4 node crde_nodes | [node3a, node3b, noded, nede?] | 06:35:37:207
node5 node drde_nodes [] 06:35:37:207
nodefal node drde_nodes [nodetaZ, nodesai] 06:35:37: 207
nodeda2 node drde_nodes | [node6a2, nodedal] 06:35:37:207
nodesbl node drde_nodes] 06:35:37:207
nodesb2 node drde_nodes [06:35:37:207
node? node drde_nades] 06:35:37:207
nodeX node drde_nodes [] 06:35:37:207
node’f node drde_nades [] 06:35:37:207
startnode startnode | drde_nodes [] 06:35:37:207

Figure 3. Evaluation result: Nodes that are part of cycles

The attribute circle_id compares all_predecessors values at
preceding nodes to the value at the local node in order to iden-
tify cycles in the CFG. If the sets are identical, circle_id re-
turns an ID calculated from the cyclic elements’ hash codes.

Finally, circle_nodes accesses circle_id to determine the
nodes which are part of detected cyclic flows by creating a set
of predecessor nodes with identical circle_id. The final values
for this attribute can be seen in Figure 3.

Calculating circle_nodes with all dependencies requires
220-310 rule executions using an unoptimized evaluation al-
gorithm and ca. 100 executions using the dependency chain
method. Once the OCL environment has been initialized,
overall execution takes about 50ms on a standard desktop
computer. Implementing the rules in Java leads to more ver-
bose definitions but reduces the time required to about 30ms.

3.2. Business Process Analysis

A common requirement for many algorithms dealing with
business processes is the decomposition of the process graph
into a hierarchical representation of single-entry-single-exit
(SESE) components.

(1,0

1.0) . @9 o 30N

2,1)J (2,0) 7 (1.0
(2.0 ' > \ (20 f @1 JL 1 :
,—/ N (10 @0
(a0 (/—b (1,0) @1 J
— > A
I~ 4’\ / \A/ %)
>\ 1 1,0 0 1.0) »
@1 @1 @1
N\
.1 \) »(\ //(1.1)

an
Figure 4. Decomposition of (business) processes [3]

The authors of [3] describe an algorithm based on to-
ken flow analysis, i.e. tokens which are created and merged
at gateways and propagated along the flow direction as can
be seen in Figure 3.2.. Tokens originating from the same
node converge and are removed (indicated by curly brack-
cts). SESE components can be identified by similar token la-
belings (determining the substructure of cycles requires some
additional handling).

The creation, propagation and merging of tokens can be
easily realized (65 lines of Java code in two rules and reuse of
the attributes defined in Section 3.2.) using the generic DFA
approach as opposed to a proprietary implementation.

Using the method described in [4], the soundness of a busi-
ness process (i.c. the absence of local deadlocks and lack
of synchronization) can be validated in linear time. This is
achieved by traversing the resulting SESE tree and applying
heuristics to categorize each component according to its inter-
nal structure. It is possible to already perform this evaluation
during the process decomposition by integrating it into the
DFA implementation of the algorithm presented above.

SESE decomposition also enables the transformation of
graph-oriented BPMN diagrams (Business Process Model-
ing Notation) to block-oriented BPEL code (Business Pro-
cess Execution Language). This is accomplished by perform-
ing a DFA on each recognized component as described in [5]
resulting in a corresponding BPEL mapping. Since the algo-
rithm is defined in the form of a data-flow analysis, its imple-
mentation using model-based DFA is straightforward.

4. CONCLUSIONS AND FUTURE INVES-
TIGATIONS

In this paper we have shown how the well-known method
of data-flow analysis can be adopted for the modeling domain
building upon widely accepted standards like OMG’s Meta-
Obiject Facility and the Object Constraint Language.

To the best of our knowledge, there is currently no com-
parable methodology which implements a generic DFA-
oriented approach for the analysis of models, although data-
flow techniques have been used in the modeling domain:
Aside from the examples given in Section 3.2. it was shown in

[6] that flow-analysis can be used to derive definition/use re-
lationships between actions in state machines. A related tech-
nique can also be found in the generation of instance snap-
shots from meta models as a basis for validation ([7]).

In contrast to static techniques like OCL, flow-analysis al-
lows to analyze (cyclic) information flows in the model graph
based on local propagation and (re)calculation of attribute
values. Aside from validation scenarios, extracting context-
sensitive data enables to analyze dynamic aspects of models,
e.g. valid execution paths in control-flows or the SESE com-
ponents that make up a business process definition. There-
fore, model-based DFA constitutes a generic and versatile
“programming-language” for a wide variety of algorithms
that would otherwise each require a proprietary definition.

The next steps include the exploration of new application
areas, e.g. the extraction of metrics in the area of model-
driven testing and the avoidance of complex OCL constraints
to minimize the impact of meta model refactoring. Also, the
performance of the evaluation algorithm will be improved.

S. REFERENCES

[1] Saad, C., F. Lautenbacher, and B. Bauer, 2009, “An
Attribute-based Approach to the Analysis of Model Char-
acteristics”. Proceedings of the First International Work-
shop on Future Trends of Model-Driven Development in
the context of ICEIS’09.

[2] Aho, A. V., M. S. Lam, R. Sethi, and J. D. Ullman, 2006,
Compilers — Principles, Techniques, & Tools. Addison
Weasley, 2nd edition.

[3] Gotz, M., S. Roser, F. Lautenbacher, and B. Bauer,
September 2009, “Token Analysis of Graph-Oriented Pro-
cess Models”. New Zealand Second International Work-
shop on Dynamic and Declarative Business Processes
(DDBP), in conjunction with the 13th IEEE International
EDOC Conference (EDOC 2009).

[4] Vanhatalo, J., H. Vo6lzer, and F. Leymann, 2007, “Faster
and More Focused Control-Flow Analysis for Business
Process Models Through SESE Decomposition”. In IC-
SOC ’07: Proceedings of the 5th international conference
on Service-Oriented Computing, Springer-Verlag, Berlin,
Heidelberg, 43-55.

[5] Garcia-Baiiuclos, L., 2008, “Pattern Identification and
Classification in the Translation from BPMN to BPEL”.
OTM 08: Proceedings of the OTM 2008 Confederated In-
ternational Conferences, CooplS, DOA, GADA, IS, and
ODBASE 2008 436-444.

[6] Waheed, T., M. Igbal, and Z. Malik, 2008, “Data Flow
Analysis of UML Action Semantics for Executable Mod-
cls”. Lecture Notes in Computer Science, 5095, 79-93.

[7] Gogolla, M. and M. Richters, 2003, “Validation of UML
and OCL Models by Automatic Snapshot Generation”. In
Proceedings of the 6th Int. Conf. Unified Modeling Lan-
guage, Springer, 265-279.

