2010 Seventh IEEE International Conference and Workshops on Engineering of Autonomic and Autonomous Systems

Improving the Efficiency of Self-Organizing Emergent Systems by an Advisor

Jan-Philipp Steghdfer*, Jorg Denzinger!, Holger Kasinger* and Bernhard Bauer*
*Institute for Software and Systems Engineering
University of Augsburg, Augsburg, Germany
{steghoefer, kasinger, bauer}@informatik.uni-augsburg.de
Department of Computer Science
University of Calgary, Calgary, Canada
denzinge @cpsc.ucalgary.ca

Abstract—Self-organizing emergent systems, also referred to
as Decentralized Autonomic Computing systems, are commonly
known for their scalability, robustness, flexibility, and adaptiv-
ity rather than their efficiency. However, certain application
scenarios, in particular in industrial settings, require a high
degree of efficiency from these systems as well, in order
to keep operational expenditures and energy use small. In
this paper, we therefore present the concept of an advisor,
designed to improve the efficiency of self-organizing emergent
multi-agent systems solving industrial problems with recurring
tasks. The advisor autonomously identifies the recurring tasks
at runtime and provides the agents with advice for better
solutions in the future, if indicated. The advisor does not limit
the self-organizing behavior of the underlying system, i.e. all
problem-solving decisions are still locally made by the agents.
Experiments with instances of dynamic pickup and delivery
problems show that the advisor concept can achieve substantial
efficiency improvements, even if the recurring tasks change
over time.

Keywords-decentralized autonomic computing; control; self-
adaptive; software architecture;

I. INTRODUCTION

Self-management, as the essence of Autonomic Comput-
ing (AC), is considered to be one of the crucial means of
computer systems to adapt to changing conditions at runtime
automatically [1]. Because today’s computer systems are
composed of an increasing number of distributed elements',
whose actions and interactions cannot be monitored and
controlled by a single element anymore, in recent years,
sclf-management solutions started to shift from priorly quite
centralized architectures (see e.g. [2]) to more and more
decentralized architectures [3]. In Decentralized Autonomic
Computing (DAC) systems [4], also referred to as self-
organizing emergent systems [5], the desired self-managing
behavior along with the required self-* properties emerge
on the macroscopic system or application level solely from
the local behavior of the system elements on the lower
microscopic level. In contrast to the traditional exogenous
self-management approaches advocated by AC, where an

ISystem elements can be autonomous software entities such as agents
as well as autonomous real-world entities with computing and networking
capabilities such as servers, mobile devices, robots, or modern cars

63

additional subsystem implements a control loop to adapt
the structure or behavior of the system, in such endogenous
self-management approaches the system elements thus adapt
their structure or behavior to changing conditions themselves
and cooperatively realize a system adaptation [6].

By taking inspirations from fields such as biology or
physics (see e.g. [7], [8], [9]), for instance, research in
the field of self-organizing emergent systems thus in recent
years focused to a great extent on the identification of
decentralized coordination mechanisms that achieve a de-
sired self-managing and problem-solving behavior. However,
experiences with these systems confirmed that the price for
such scalable, robust, flexible, and adaptive solutions is a
loss of performance, in particular efficiency, which is very
detrimental to these systems. For instance, consider a self-
organizing emergent multi-agent system (MAS) solution to
dynamic pickup and delivery problems® (PDPs), as e. g. pro-
posed in [11] or [12]. *Suboptimal’ respectively inefficient
local decisions by the autonomous vehicles will not only lead
to longer routes and hence higher operational expenditures,
but also to higher energy use and pollutive CO5 emissions
regarding the environment.

In this paper we therefore present the general concept of
an advisor, able to improve the efficiency of arbitrary self-
organizing emergent MASs at runtime. Although this so-
called efficiency improvement advisor (EIA) is a dedicated
agent, which is added to the basic MAS and implements a
control loop, in contrast to existing solutions it takes into ac-
count the low observability and poor controllability of self-
organizing emergent systems, considers their openness and
autonomy, and preserves the basic self-organizing emergent
behavior. As a result, the approach maintains all beneficial
properties of the systems mentioned above. The EIA collects
the local history of the other agents and, based on the
aggregated global history, autonomously detects recurring
task patterns the system had and potentially will have to
fulfill, but which are currently solved far from optimal.
Based on a global optimization function, which in particular

2In a dynamic PDP [10], a previously unknown set of goods has to be
transported between a set of origins and a set of destinations by a set of
vehicles using an appropriate transportation network.

incorporates the energy use, the EIA calculates the optimal
solution for these task patterns and provides the agents with
advice in form of exception rules that the agents can add
to their own problem solving behavior. Because as a result
all problem solving decisions are still locally made by the
agents, the latter will continue to work, even if the EIA fails.
By this approach we obtain the benefits of a central control
but avoid its associated problems such as a single point of
failure or a bottleneck.

The rest of this paper is organized as follows: Section II
discusses the general challenges for achieving optimality in
self-organizing emergent MASs in more detail. Section III
formally describes the general concept of the EIA, whereas
Section IV presents an instantiation of this general concept
to the domain of PDPs. Section V presents and evaluates
the efficiency improvements that we could achieve by means
of the EIA in experiments with a self-organizing emergent
MAS solution to dynamic PDP instances. Section VI reviews
related work, whereas Section VII finally presents some
concluding remarks.

II. IMPROVING THE EFFICIENCY OF SELF-ORGANIZING
EMERGENT MULTI-AGENT SYSTEMS

More and more real-world application scenarios require
to solve highly dynamic, complex, and often unpredictable
problem instances, such as e.g. transportation scenarios. A
key problem is the fact that the problem instances, in more
detail the tasks that have to be fulfilled, change dynamically.
Therefore, solving such instances by self-organizing emer-
gent MASs optimally requires on the one hand as optimal
local agent decisions as possible and on the other hand
appropriate system adaptations preferably maintaining a high
degree of autonomy.

In order to make ’optimal’ local decisions on its own, an
agent would have to be in possession of an abundance of
relevant information, including information about the current
and future state of the system environment, in particular
the problem-relevant tasks, the environment topology (e. g.
networks, machines, customers, ...), and the current and
future intended behavior of other agents. This would not
only force the agents to quickly gather real-time information
from a large number of (possibly unknown) entities, but also
to be able to “look into the future”, such that a dynamically
appearing task can be assigned to the best agent (with respect
to global optimality of the solution), while other tasks are
already executed by the agents.

Because this would be a very complex endeavor, in the
literature, hybrid solution approaches very often can be
found that consist of one or more additional hierarchy levels,
e. g. defined on physical or organizational boundaries (see
[13], [14], for instance). Thercby, an agent on a higher
level is in charge of optimizing respectively adapting the
agents on the lower level, usually by implementing a control
loop. However, when considering the engineering of hybrid

64

solutions for self-organizing emergent MASs, the following
additional challenges and constraints have to be respected:

1) Consider the openness and autonomy of the underlying
system: A higher level agent has to autonomously
adapt the behavior or structure of a basically open
MAS depending on current, past, and future situations,
which were potentially unexpected and unforeseeable
at design time. This process should not limit the
autonomy of the underlying system, i.c. all problem
solving decisions must still be made locally by the
agents on the lower level themselves.

Take into account the low observability and poor
controllability: A higher level agent will neither be
able to observe all (inter)actions of lower level agents,
if ever, nor be able to gather all relevant information
at the time of occurrence, just because of the nature of
self-organization and emergence [15]. Thus, the higher
level agent will not be able to optimally adapt or
influence the behavior, intention, or upcoming action
of any lower level agent yielding immediate effects.
Preserve the basic self-organizing and emergent be-
havior: A higher level agent may neither limit the
basic system’s self-organizing and emergent problem-
solving behavior, nor limit its scalability, robustness,
flexibility, or adaptivity. This implicates that the higher
level agent may not act as a central controller and
thus as a bottleneck and single point of failure. Con-
sequently, if the higher level agent crashes, the agents
on the lower level still have to function properly.

2)

3)

Although there naturally exist a couple of hybrid solution
approaches in various fields (see Section VI), they very often
either take over central control in certain situations, assume
to be able to observe and control the underlying MAS at
every point in time, do not preserve the basic beneficial
properties, or are unable to “look into the future”.

II1. EFFICIENCY IMPROVEMENT ADVISOR APPROACH

In this section, we formally describe our concept of an
advisor as an appropriate higher level agent, which respects
the just mentioned challenges and constraints and is to some
extent able to “look into the future”. We first introduce the
general formal scheme, which we will instantiate in order to
describe the participating autonomous agents on the lower
level, as well as provide basic notations about the general
problem setting these agents are supposed to solve.

A. Basic Definitions

A very generic definition of an agent Ag is as a 4-tuple
Ag = (Sit, Act, Dat, [aq), where Sit is the set of situations
the agent can face (i.e. its possible view of the environment),
Act is the sct of actions Ag can perform, Dat the set of
possible values of the agent’s internal data arcas and fa :
Sit x Dat — Act the agent’s decision function, describing
how Ag selects an action based on its current situation and

the current value of its internal data areas (i. e. its perceptions
of the world and its current knowledge status). This assumes
that there is an action for every combination of activities the
agent can do. If f44 is not much influenced by the value
of Dat, Ag is called reactive. A MAS is then a group of
agents A = {Agi, ..., Ag,} that share an environment Env.
The agents in A might be heterogeneous, i.e. they may all
have different sets of situations, actions, internal data area
values, and also different decision [unctions.

The general structure of problems that have to be solved
by a set of agents A we focus on consists of tasks out of a
set T that are announced to A at some times within a given
time interval Téme to form a run instance for the system A.
Usually, there will be a sequence of run instances that A has
to solve. For instance, a run instance could be all the tasks
A has to solve at a particular day, whereas a sequence of run
instances are the tasks to solve over several days. Naturally,
a task for a concrete application will be described by a sct
of features, but for the general description generic tasks and
the time of their announcement are enough.

Formally, we describe a run instance as a sequence ((ta1,
t1), (tas, to), ..., (tam, tm)), with ta; € T, t; € Time and
t; < t;+1. A sequence of run instances of length £ is then
described as ((tCLH, tn), (tagl, tgl), ey (tamll, tm11)), ey
((taik, tik), (task, tag), - .., (t@my ks tm,k))- A solution sol
generated by A for a run instance is again a sequence sol =
((ta}. Agh. t)). (tah, Agh. th). ... (tal,. Ag),. t},)) where
ta, € {tay,... tan}, ta, # ta; for all i # j, Ag. € A,
th <ti . t, € Time. A tuple (ta], Ag/, t;) means that task
ta; will be started by Ag, at time ¢},

Please note that {ty,...,t,} and {t}....,t,,} do not
have to be related in any way, i.e. tasks do not have to
be immediately started by one of the agents when they
are announced. This, at least theoretically, allows for the
possibility that the agents in A can be more than purely
reactive. Also, solving fa] might require a sequence of
actions by Ag;. Depending on the application there might
be additional restrictions, for example, because sometimes
not every agent can perform every task, we require that Ag}
can indeed perform ta;.

As mentioned, users or operators of a self-organizing
emergent system A associate with a solution sol a quality
qual(sol), which is naturally dependent on the particular
application that the agents in A have been created for.
Apparently, A is expected to produce a solution that is of
optimal quality. Under some circumstances engineering an
A that produces optimal solutions is easy, but under many
circumstances it is difficult (e. g. for NP-complete problems)
or even impossible. In particular if a task ta can arrive at
any point in time within T'ime, then the requirement that
all tasks need to be started within 7%me (which often is
accompanied by the additional requirement that all tasks
also need to be fulfilled within T%me) will often lead to
suboptimal solutions.

65

Consequently, in this paper we are interested in self-
organizing emergent MASs that solve dynamic run instances
for which at least some of the tasks are announced to the
agents later than other tasks, i.e. there is at least one ¢; such
that t; < ?;4+1 (and usually there are more than just one such
t;). Since the agents do not know at the beginning of the
interval T'%me what all tasks will be, it is in most cases
impossible for the agents to solve the whole (dynamically
developing) run instance optimally.

B. Architectural Overview

Based on these definitions and notations, our approach to
improve the efficiency of a self-organizing emergent system
A = {Agy, ..., Agn} over a sequence of run instances is
to add a dedicated higher level agent Agpy 4, the efficiency
improvement advisor, to A (see Figure 1) that collects the
local histories of all agents, creates a global view of the
history of A (and the environment around A as far as
possible), identifies sequences of recurring tasks, calculates
the optimal solution of these task sequences, creates advice
for the individual agents, allowing them to better deal with
the task they did not solve very well, and makes this
advice available in form of so-called exception rules?. This
approach requires the following conditions to be fulfilled:

o Bach agent is able to transmit a history of its local

behavior to the advisor at least once during or after a
run instance

« Each agent’s decision function can be extended to deal

with exception rules (stored in its internal data area)

o A sequence of run instances must have a (sub)set of

similar tasks in (nearly) each instance of the sequence

While the first two conditions usually are achieved easily,
the third condition seems very restrictive at a first glance.
But in everyday life, there are many problems that fulfill
this condition, e.g., transportation companies usually have
daily recurring tasks together with one-of-a-kind tasks. In
the following, we explain the functional architecture of an
Agprra along with its actions more precisely.

C. Functional Overview

Due to the advisory role, Sitg;4 contains information
about the communication with members of A. Datgy rep-
resents the data received from the Ag; and the intermediate
results by Aggra’s actions towards creating advice for the
Ag;s. Tts decision function frra creates the following steps
represented by the indicated actions out of Actgr At

3Agpra not necessarily has to be a new agent, it can also be a role
of one of the Ag; or all agents in A can share performing the actions
of Agrra. However, this requires extensive communication between the
Ag; and might require more computing power in an Ag; than is possible
in a particular application. A stationary agent with lots of computing power
and occasional communication with the Ag;s is a reasonable extension to
many existing systems for the kind of problems we are interested in, which
is why we present our approach in this manner.

4These steps also implicitly define what Sitpra and Datpra have to
contain.

Advisor

Extract Optimize
recurring tasks solution of
Transform from global — recurring Derive
local agent histories history | | tasks rules from

into global history optimal solution

Data model
(advisor states, agent knowledge,
environment knowledge, rule sets,
intermediate results, ...)

Send
derived rules

Receive
local agent

histories to agents
T
S |
| histories rules ¥
Basic MAS
Figure 1. Functional advisor architecture
1) receive(Ag;, (s}, d}, a}),(s9, d¢, a?))) collects

the local history H; for each agent Ag;, if Ag; is able
to communicate, while A performs a run instance. H;
= (s}, d}, a}), ..., (s9, d?, a?)), with st € Sit;,
dé € Dat;, aﬁ € Act;, is the history of Ag; since the
sequence of run instances started.
transform(H,, ..., H,) creates the global history
GHist out of the received histories of all agents.
G Hist essentially contains the sequence of run in-
stances (7‘1',1, e T‘ik) = ((tan, tll)a Cee (tamll,
tmll))’ e ((talkz’ tlk:)a cees (t(llmkk» tmkk)) A has
solved so far and the solution sol; for each run
instance 7i; that A created for it.
extract(G Hist) extracts from this history, more pre-
cisely the sequence of run instances (141, ..., rig), a
sequence of recurring tasks (ta7°c, ..., ta;“).
optimize(ta;*, ..., ta,*) computes the optimal so-
lution opt™© = ((tajcc, Ag/{“, tll’"ec), s (tap©e,
Ag;,’”“, t;;’“‘)), .Ag;rEC € A, t;“fc € Time, if ta]*c,
..., tap® were the only tasks A had to perform
and they would be all known at the beginning of
Time. Tt then compares qual(opt™©) with the quality
qual(last) of the last emergent solution last for the
tasks (tai®, ..., ta;®) A has created. If

qual(last) /qual(opt”©€) > qualthresh,
the work of Agg;a is done until new information
arrives, since A performs well.
derive(opt™®®, (tai®, ..., tay), G Hist, last) other-
wise creates for each agent Ag; a set R; of exception
rules, where R; can also be empty.
send(Ag;,R;) communicates the set R; of exception
rules to an agent Ag; the next time communication
with Ag; is possible.

2)

3)

4)

5)

6)

Apparently, concrete realizations of these actions depend
on the application at hand and on the realization of the
Ag;s, including their coordination principles. However, the

66

actions extract and derive allow for different general ways
of realization, which we discuss further in the next two
subsections. At the end we comment on the other actions.

1) Extracting Recurring Tasks: In principle, there are
several ways to find recurring tasks in a sequence of run
instances. But for many applications, the problem is more
complicated than just finding tasks that occur in each run
instance. Thus, we are not only interested in tasks that are
identical in all run instances but also in tasks for which
similar tasks exist in all (or at least most) of the run
instances. For example, the task of delivering something to
a particular house in a street is usually not very different
from delivering to a neighboring house, so that having one
delivery each day to one of the two houses should put this
task into the sequence of recurring tasks.

More precisely, we assume the existence of an application
dependent similarity measure sim : T x T — R™ that is
used by the action extract. This measure can then be used
to cluster the tasks in 7%y, ..., ri; according to sim, in
order to identify the recurring tasks in these run instances?.
A clustering method that is useful for this problem is
Sequential Leader Clustering (SLC), sce [16], because it
does not require initially stating the number of clusters it
should produce. SLC in its original form works on the tasks
in i1, ..., i, one after the other. If up to task ta in one
of the ri; it has produced the clusters Cy , ..., Cy with
c¢; € C; being the representative of the cluster C;, then
we compute sim(ta, c;) for all clusters. If cluster Cy is
the one with the biggest similarity to ta, then ta is added
to Cy if sim(ta, cq) > clustthresh for a given parameter
clustthresh. If it is added, then it needs to be checked if the
representative for C, has to be changed. The determination
of the representative depends on the description of the task.
If ta is not similar enough to any of the clusters, then a new
cluster C,y1 = {ta} is created.

If C4, ..., C, is the result of the clustering process, then
the next step is to determine all clusters that are big enough
to indicate that they represent recurring tasks. With &k run
instances, these are all clusters C; with |C;| > minoce - k,
with 0 < minocc < 1 a user determined parameter. If C7,
C’; are all clusters fulfilling this condition, then we put
the ¢, € C] with sim(c}, ¢;) is minimal into the set of
recurring tasks. If there are C; with |C}| > (1 4+ minocc) -
k, this indicates that the task represented by this cluster is
usually occurring several times in the run instance. Thus,
Aggrra notonly puts the ¢; € C/ with sim(c}, ¢;) is minimal
into the set of recurring tasks, but also the ¢} € C/\{c}} with
sitm(c}, ¢;) minimal (and so on, if |C}| > (2 +minocc) - k,
etc.)

It should be noted that for applications where the recurring
tasks can change over time, extract should not use all &

50ther techniques from the area of data mining that are able to identify
recurring event sequences in data could be used as well, of course.

run instances from the beginning of A’s work, since most
probably after some time the set of recurring tasks will
become very small or even empty. In such cases, a parameter
kmaz has to be defined, only the run instances riy_y, .,
Tlk—kyan+1s - - -» T4k are used in the clustering, and K, q5 is
used in the conditions using menocc. While a change in the
recurring tasks obviously will not be noticed immediately,
at the latest k,,,, run instances after the change Agpra
will be aware of the change and will create new advice for
the agents in A. Naturally, if new changes happen faster
than k.4, run instances, Aggr4 will not be able to detect
recurring tasks very well and A will have to rely on the
basic decision making of its agents.

2) Deriving Exception Rules: Deriving advice for the
agents in A from opt"™¢ and last depends on what kind
of exception rules the agents in A can handle. In general,
there are two possible aims for exception rules: (1) they
can be used to encourage an agent to take on a certain
task or (2) they can be used to detract an agent from
taking a certain task. In a MAS, this opens a wide spectrum
of possibilities. But for the considered kind of problems,
detraction from a task is the only possibility, since it is not
easily possible to encourage an agent to execute a task that
it cannot know about, because it will only be announced
to it later. A detraction rule should be rather specific about
the circumstances when an agent should follow it, so that
it really is only an exception and, for example, the not-
occurrence of an expected task will not block an agent for
too long, if an exception rule was created to detract this agent
from other tasks in anticipation of the expected task. Specific
circumstances in rules can also allow for not having to come
up with a conflict resolution mechanism for the agents that
deals with determining what to do if several exception rules
are applicable to a situation.

An exception rule for an agent Ag; has the form
condeze(s,d) — —azq, with s € Sit;, d € Dat; and
aq € Act; (with ay, indicating the action to start performing
task ta). The effect of such a rule on Ag;’s behavior can
be described as creating a variant fjalgf, of Ag;’s decision
function f44,. Such an exception rule to detract the agent
from its “normal” action a;, (as indicated by —a,,) creates

’ o i l,dl s
fag, (s, d') = { 57‘:9‘)

The action a’ should be the action that Ag; would take
without knowing that task ta needs to be done. Detracting
an agent from an action is a rather weak form of control,
since the agent is only told what not to do and still needs
to figure out itself what to do. This way preserves the basic
decision making of the agents as much as possible. Note
that cond.,. can be defined so that the agent’s current Dat-
value does not matter, which allows Agpra to give advice
to agents it does not know much about. But including the
Dat-value will allow for better targeting of the exception.

if condezc(s’,d’) = false
with @’ # ayq, else

67

To decide, which exception rule to create for which agent,
Agpra has to compare the two solutions opt™©¢ and last.
If opt™© = ((tal, Agi, t1), ...,(ta}), Agzlj, tzl,)) and last =
((tai, Agi, t1), ... (ta;, Ags, 12)), then Agpra looks for
the first j with ta} + ta? or Ag}- #* Ag?. Since solutions
are sorted according to the t;-values, this is really the first
assignment of a task to an agent for which the agents in A
deviated from the optimal solution for the recurring tasks.

The created exception rule is then for agent AgJQ» and
naturally has the form conde,.(s’,d’) — —a.,2. For de-
termining condezc(s',d'), Agrra looks up in GHist the
triple (s, d, atag) that represents in the history of Ag; the
point when it chooses to do Qtq2- condego(s',d") is then an
abstraction of s and d that is application dependent and tries
to cover not only an activation of ta?, but the whole cluster
from the extract step of which ta? is a member.

For the application we present in Section IV, this excep-
tion rule for Agf was all we created in one working cycle of
Aggrra. However, for certain applications it might be better
to test what the agents in A will do after the exception rule is
communicated. If Agg;4 knows enough about the agents in
A and has enough time, it can simulate which new solution
A would produce for the recurring tasks and if this new
solution last’ is still too bad, the above rule creation steps
can be repeated until the emergent solution of A is good
enough. Then all rules created using the simulation would
be communicated to the real agents in A.

3) Other Actions: The action transform can be very
easily realized if the environment Env is known to Agpra
and the only events happening are the announcement of tasks
and the actions taken by the agents in A. Without a readily
available global view, transform essentially has to create
some kind of environment “map” out of the perceptions of
the Ag; as represented by their local view on the situations
they encountered. In this case, it is also possible that not all
tasks will be observed, simply because no agent might be
in a situation to observe a particular task being announced.
This is one of the reasons why we do not require that a
recurring task has to appear in every run instance.

The action optimize requires Ag ;4 to have an optimiza-
tion system that handles the static optimization problem to
the dynamic problem that A tries to solve. Although this
optimizer does not have to look into the future, the static
optimization problem still can be very difficult to solve.
Then, or if the time between run instances is too short,
only searching for a very good solution for the recurring
task sequence (perhaps combined with a lower qualthresh-
value) instead of the optimal one is more appropriate.

Determining the emergent solution created by A for the
recurring tasks is not trivial. There will often be other tasks
mixed in into fulfilling the recurring tasks, or in the last run
instance not all of the recurring tasks might have occurred
(the size of the clusters representing the recurring tasks

can be smaller than k!). The fact that the agents fulfill
other tasks while fulfilling the recurring tasks means that
Agpra cannot determine the quality based on measuring
what really happened. For example, between fulfilling two
tasks of the recurring task set in a transportation domain,
an agent might have to drive to a far off location to fulfill
a not recurring task in a particular run instance. Adding the
traveled distance of this agent between the two recurring
tasks to the travel cost (if this is the quality criterion) would
deteriorate the emergent solution, although in other run
instances the recurring tasks are solved well. But for such an
application a lower bound for the costs that would emerge
can be provided, if there were no additional tasks, namely the
distance the agent has to travel after the first recurring task
to start performing the second one. Such lower bounds are
possible to be determined for many applications and many
quality criteria. If the quality of such a lower bound is far
from the optimum, then advice from Aggy4 will be useful
for many run instances. Given that last and its quality are
already an approximation, the problem of a recurring task
not occurring in the last run instance can now be solved,
too. Agpra determines, which agent fulfills the task in the
emergent solution by going back one more run instance (or
several). This also allows to determine the correct position
of the task in the sequence of tasks the agent performs.

IV. INSTANTIATING THE EIA FOR PDPs

In this section, we first briefly describe PDPs as an
instantiation of the general problem class the EIA approach
aims at. We then describe a self-organizing emergent MAS
solution based on digital infochemical coordination (DIC)
[9] instantiated for PDPs. To improve its efficiency, we
finally instantiate the EIA approach from the last section
to PDPs, in order to be used for the DIC-based solution.

A. Pickup and Delivery Problems

The general PDP [17] is a well-known problem class that
has instantiations such as transportation problems in internal
and external logistics. Many of these instantiations fulfill the
conditions mentioned in the last section, i.e. not all tasks
to perform are known in advance and there are tasks that
appear in many run instances. Additionally, vehicles usually
return to a depot after a run instance, which can be used
to house the EIA. In this paper, we instantiatc the PDP
with time windows (PDPTW), which generalizes PDP to
require delivery within a task dependent time frame. A task
tappp for this problem consists of a location .., Where
goods needs to be picked up, a location ljeiivery Where the
goods have to be dropped off, the needed capacity ncap and
times tsiqrt and tepnq in Time defining the time window in
which both pickup and delivery have to happen, i.e. tappp
= (lpickup’ ldeliver@n ncap, starts tend)' An agent Ag has a
transport capacity cap 4, and has first to perform the pickup
and then the delivery to accomplish a task.

68

Figure 2. A “bad” PDP run instance

B. DIC-based Solution to PDPs

In principle, there are different ways how transport agents
can coordinate their actions in a self-organizing manner to
perform pickup and delivery tasks. DIC, which generalizes
pheromone-based coordination [7], represents an approach
that is applicable for various problems providing a higher
variety of (digital) chemicals to be used for the coordination
of agents, to achieve effects that are beneficial for chemical
emitting agents, receiving agents, or both.

A MAS solution for PDPs based on DIC was already
presented in [11], thus we only briefly describe this solution,
concentrating on the decision making of the agents, which
will be later advised by the EIA. A DIC-based system
achieves coordination between transportation agents Ag,
..., Ag, solely using digital infochemicals that are prop-
agated through the environment the agents are situated in.
For the experiments, this environment is a map organized
in a grid (see e.g. Figure 2) and an Ag; can “access” all
digital infochemicals of the location it is currently situated
on, which provides it with a very local view of the system.
Naturally, arbitrary maps are possible, too.

A task tappp is given to the system by “creating” two
emitter agents in the environment, one at [;cpy, emitting a
so-called synomone (a type of infochemical) that specifies
the location and the transportation requirements, i.e. ncap
and tg4qy¢, and one at lgejipery also specilying the task via
a synomone. In the experiments, the task announcement
was done at tgyq¢. All such synomones are propagated
through the environment and a location receiving them stores
their existence and intensity. The chemical evaporates after
a certain time, which is why an emitter agent repeats the
synomone emission from time to time until it has been
served by a transportation agent.

A transportation agent Ag; “smells” all chemicals at
its current location and computes a utility for each task
represented. In addition to the intensity of a chemical, the
utility is also influenced by the agent’s current status. If it
has e.g. already picked up the goods for a task, it gives
priority to delivering it. Factors such as how close a task’s
teng is arc used as well. Additionally, other infochemical
types influence the utility computation: a pickup agent emits
so-called allelochemicals as soon as an Ag; served it. This
indicates to an Ag; that the task execution at this location
has already started, which prevents it from being unneces-
sarily attracted to this location by unevaporated synomones,
i.e. it will not give any utility to this task anymore. Also,
transportation agents emit pheromones indicating the task
they currently intend to perform. These pheromones are —
in contrast to synomones — only propagated in a very small
area, but other agents crossing such a pheromone trail then
know not to choose the task for themselves. After an Ag;
has computed the utility for all tasks it perceives, it selects
the task with highest utility and moves directly towards the
synomone emitter representing this task.

This DIC-based approach is a typical example for a self-
organizing emergent MAS the EIA is applicable for. The
transportation agents use only local information for the
decision making. The system as a whole is very robust, since
the breakdown of a transportation agent might lower the
global efficiency but does not lead to its breakdown. After
the pheromones of a broken-down agent have evaporated,
the system has adapted to operate with one less agent.

C. EIA for DIC-based Solutions to PDPs

In order to instantiate the EIA approach for such DIC-
based solutions to PDPs, first the quality of a solution has
to be defined. For PDPs, very often the quality function is
based on a single measure, such as minimizing the travel
costs of the transportation agents. However, we decided to
use a function that combines several measures of interest
for PDPs and that in particular aims to combine energy use
related measures, like travelled distance, with other kinds of
measures. Thus, qual(sol) is defined as

100000
£+ qualgist (sol) + X - qualorder (sol) + p - qualiy (sol)

where k., A and 1 are weight parameters and qual ;¢ (sol)
is the distance traveled by all Ag; according to sol,
qual,yrder(sol) is the penalty accumulated by sol for ful-
filling tasks in a different order than their announcement to
the system, and quals, (sol) is the penalty for sol for all
tasks that are not completed within the time window for the
task. The factor 100000 is used to end up with qual-values
that are larger than 1. For qual,,qer, the difference between
the start times of all pairs of tasks ta; and tas is summed up,
if the start time of ta; is before tay but in sol tas is finished
before ta;. For qualy,, the difference between the finishing

69

time for a task and ?.,q4 is summed up, if the finishing time
is later than t.,q. Obviously, the three measures of interest
are not aligning well with each other, so that many solutions
have rather similar qual-values, which makes improvement
by the EIA even harder, since it is less likely to have a big
difference in quality between the emergent solution and the
optimal solution. Please note that penalizing for tasks not
done in order also favors making decisions based on local
information, favoring the self-organizing system, again. Note
also that for this qual-function higher values represent better
solutions.

The instantiation of the actions receive and transfrom
requires to create a description of the announced tasks only
from the histories of all Ag; and their local perceptions.
Having the run instances available in the form (ri, ...,
rik), recurring tasks can be identified by extract using

= «- Ed(lpick'up,h lpi(;k’u,p,2)+
Q- Ed(ldelivery,l 5 ldelivery,2)+
B - |ncapr — ncapz2|+

v (ltstart,l - tst(m"t,2| + |tend,1 - tend,Zl)

sim(tai, tas)

where E'd is the eucledian distance. The instantiation of
the action optimize requires to create the optimal solution
for the identified recurring tasks. Although the PDP is
rather well researched, we were not able to find an efficient
public-domain optimizer, so we had to implement a simple
branch-and-bound-based optimizer for the proof-of-concept.
This optimizer is not very sophisticated and as a result
the size of problems it could tackle in acceptable time is
limited. However, the experiments in Section V show that the
optimizer was good enough to demonstrate the improvement
abilities of the EIA approach.

To determine the qual-value of the emergent solution,
we compute qualg;s; by using the direct distances between
the emitter agents for the recurring tasks. The qualyrder-
and qualy,,-values are directly available out of the last run
instance containing the particular recurring tasks, but as
mentioned qualy, can be heavily influenced by the non-
recurring tasks of this run instance.

The instantiation of derive has to be able to detract an
agent from a particular task, resp. all similar tasks. For
the DIC-based system, we therefore add exception rules to
the synomone utility computation performed by an agent:
any synomone, which is sufficiently similar to an abstracted
synomone ab given in the condition of an exception rule,
is not considered, resp. its utility is zero. ab consists of
the elements lpickup,abs 1CaPqp and tgqppqp Of the task
that should not be taken by the agent. To determine the
similarity of a synomone representing a concrete task ta; to
the abstracted synomone ab, Agpra computes the value

distsyn (ab, ta1) Ed(lpi,;kup,ab, Upickup,1)+
[ncapay — necapy |+
|t5ta'rt,ab - tstm"t,l|

If the distance to the abstract synomone dist g, is below
a given threshold synthresh, then the associated exception

rule will be applied. Each exception rule is only applied for
a limited time, which prevents tasks being ignored for too
long, if the agent the EIA designated to serve the ignored
task fails or is busy with servicing other tasks.

V. EXPERIMENTAL EVALUATION

To evaluate the usefulness of the EIA approach, we have
performed several experiments with the instantiation de-
scribed in the last section. Creating experimental sequences
of run instances that allow an appropriate evaluation is not a
straightforward task, since the evaluation requires sequences
that on the one hand include some recurring tasks, but on
the other hand also have enough randomness to allow the
argument that the approach will work for many problem
instances.

To test the capabilities of the EIA approach, we thus have
created two kinds of scenarios: those crafted to not being
solved well by the underlying DIC-based system (starting
with “craft-...”, see Table I) and those with a randomly
created sequence of intended recurring tasks (starting with
“rand-...”). The creation of all sequences of run instances
in these scenarios started with a sequence of tasks that
forms the set of recurring tasks the EIA should identify.
Each of these tasks (or a slight modification of it within
stm) is included in each run instance of a sequence with a
given probability (95%, except for the craft-4-I-. .. scenarios,
where the probability was 100%). Then some randomly
created tasks were added to each of the instances, whose
number was chosen randomly from between 10 to 30 percent
of the number of intended recurring tasks. The length of the
sequence of run instances that forms a scenario in Table I
depends on the number of intended recurring tasks (indicated
by the Arab number in the name), namely 10 run instances
for scenarios with 4 recurring tasks, 20 run instances for 6
recurring tasks, and 40 run instances for 8 recurring tasks.
Scenarios with 4 and 6 recurring tasks are situated on a
11x11 grid, scenarios with 8 recurring tasks on a 21x21
grid. All scenarios engage two transportation agents.

Figure 2 exemplarily illustrates the crafted sequence of
recurring tasks for craft-4-I-...scenarios. The grid node
numbered with 0 is the depot for the transportation agents.
The basic set of tasks are ta; = (4,6,20,25,0), tas
(3,5,20,25,0), tas = (2,7,20,50,0) and tas = (1,7,20,50,0)
where a t.,,q value of 0 indicates that no time window is set.
The figure displays grid field numbers instead of coordinates
to make it easier to envision the tasks on the grid. The
underlying system solves these four tasks (if no other tasks
are there) by having both agents go to the lower right corner
to perform tasks ta; and tas and then both agents move to
the upper left corner to do the other two tasks, getting quite
some late delivery penalties (if we enforce the given time
windows). A better strategy would have only one agent go
down into the lower right corner performing ta; and tao,
while the other agent waits in the depot until tas and tay are

70

Table 1
RESULTS FOR NOT-CHANGING RECURRING TASKS

[Scenario [woEIA | w/EIA [TImpr. |
craft-4-1 1319.37 | 1415.51 7.29%
craft-4-1-TW 210.94 240.31 13.92%
craft-6-1 704.06 797.63 | 13.29%
craft-6-1-TW 140.46 17041 | 21.32%
rand-6-1 62726 | 73741 | 17.56%
rand-6-11 566.05 | 726.69 | 28.38%
rand-8-1 17796 | 18605 | 7.49%
rand-8-11 1ST.08 | 18541 | 2.39%

Table 1T

RESULTS FOR CHANGING RECURRING TASKS

[Scenario | w/o EIA | w/EIA | Tmpr. |
chang-6-1 836.45 956.74 | 14.38%
chang-6-11 800.74 936.90 | 17.00%
chang-6-111 728.74 874.22 | 19.96%

announced and then performs those two tasks. The crafted
recurring task sequence for the craft-6-...scenarios used a
similar weakness of the reactive DIC-based system.

For all scenarios, we used the following parameter
settings: qualthresh was set to 95%, clustthresh
synthresh = 20, minocc = 0.7, kpar = 20, Kk = 1, A
15, 1 = 0 (except for the ...-TW scenarios, which enforce
the time windows, then we used p = 3), & = 0.3, 8 = 0.1,
and v = 0.3. The time to live for a exception rule was 100.

As shown in Table I, the EIA approach leads to quite some
efficiency improvements for most scenarios. Remember that
a higher qual-value (in columns w/o EIA and w/ EIA)
indicates a better solution. Even some of the scenarios with
a randomly created set of recurring tasks have a two digit
percentage improvement. The two scenarios enforcing the
time windows for the deliveries show higher improvements
than the scenarios not enforcing them, which is a very good
result since a PDPTW is more difficult to solve and therefore
more likely to not being solved well.

Due to lack of space we can not present the detailed
run instance by run instance results, but as expected there
arc often a few run instances where the randomly created
additional tasks had as result that the advised agents were
not as good as the not-advised ones, but the gains in the other
run instances make more than up for this. It should be noted
that we could have used this fact to boost the improvements
by simply having more run instances in a scenario, but we
think that the chosen numbers of runs are sufficient to show
that the EIA approach is successful.

An important aspect of real-life transportation problems
of the kind we are interested in is that the set of recurring
tasks can change over time, e.g., a company might loose a
customer contributing to the recurring task set or new such
customers might be added. The EIA approach is able to
deal with this, demonstrated by the experiments shown in

Table II. Scenario chang-6-1 consists of 20 run instances
using one set of 6 recurring tasks (the instances were
created with additional random tasks and probabilities for
the recurring tasks as described before). Then follow 12 run
instances created using a different randomly created set of 6
recurring tasks, after which follow another 20 run instances
with the first set of recurring tasks. The number 12 was
chosen, because it is just too small to allow for a change in
advice by the EIA. For chang-6-I1, the same sets of recurring
tasks have been used as in chang-6-I, but having 24 instead
of 12 run instances before changing “back”. As one can see
by the improvement between chang-6-I and chang-6-1I1, if the
“change” is for long enough, the EIA will adapt the agents
to it. Finally, chang-6-III has three blocks of run instances
using three different (random) sets of recurring tasks, each
set for 20 run instances. Also for this type of scenario, the
EIA demonstrates its usefulness.

Overall, the experimental evaluation shows that the EIA
approach is able to provide the agents with good advice,
without undermining the important and useful properties of
the underlying self-organizing emergent system necessary to
deal with the dynamic nature of the problem.

VI. RELATED WORK

As mentioned, there exist a couple of related approaches
representing hybrid solutions. The observer/controller (O/C)
approach [18], although being very similar to the EIA,
however, requires to be able to observe and control the
underlying system at every point in time. Similarly, the
management-by-exception approach [19] involves a higher
level agent taking over total control of the agents, if certain
performance conditions are not fulfilled. Both approaches do
not preserve the beneficial properties of the basic system.
The distributed hybrid approach presented in [6], which
rather focuses on self-healing, only uses a set of rigid repair
plans that cover a predefined set of faulty states. Whereas
none of these approaches has the limited ability to “look
into the future”, in [20] a model-based control framework
is presented that uses limited lookahead control (LLC) to
optimize the forecast behavior of the basic system over a
limited prediction horizon. However, the ability to “look into
the future” is based on a fixed stochastic model and does
not regard the actual system history.

Hybrid MAS optimization approaches in the PDP domain
are either based on a predefined stochastic model as well
(e.g. [21]), or do not even incorporate learning (see [13],
[14]) and thus have to permanently control the basic system.
Although learning of behavior is a technique widely applied
in MASs (see [22] for an overview), the emphasis in this
field is on learning complete behaviors, usually for achieving
one specific goal but not many constantly changing goals.
Either all agents are centrally controlled by the learner or
each agent tries to figure out its role on its own.

71

In [23], three levels of behavior in animals and humans are
described and then transferred to artificial systems: reaction,
which deals with predefined, undeliberated responses to
sensory input; routine, the level on which learned behavior
is executed and the consequences of actions are assessed;
and reflection, the level on which a system deliberates about
itself, its past and future behavior. According to this cate-
gorization, the EIA operates on the third level (reflection),
as it analyses the actions of the system and adapts its
constituent parts to increase the system’s efficiency. The
original vision of Autonomic Computing [2] did not directly
refer to these three levels but already mentioned the need for
a system to learn and optimize — albeit referring to these two
requirements as being distinct instead of complementary.
Both activities, however, require self-reflection and a method
to test the consequences of the learned behavior, usually
achieved with simulations on a model of the system [24].
Following the function of dreams in humans, [25] defines a
“dreaming” state for applications in which operations can be
executed and evaluated on the system itself but data modified
by the actions is not persisted. This resembles a simulation
on the real system with current, real data.

In summary, most hybrid optimization and self-reflection
approaches do not have the limited ability to “look into the
future” based on the past situations the basic system had to
cope with. Thus, the higher level agent has always to monitor
and control the basic system centrally. By contrast, due to
its limited ability to “look into the future”, the EIA approach
focuses on an adaptation of the basic system, so that it can
cope with potentially inefficient future situations on its own.
Moreover, because the EIA control loop is decoupled with
regard to execution time, scalability is not a major issue.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented the efficiency improvement ad-
visor approach. The advisor is able to improve the efficiency
of sclf-organizing emergent MAS solutions to dynamic opti-
mization problems containing recurring tasks, by providing a
limited capability to “look into the future”, while preserving
the basic beneficial properties of the underlying system.
The experimental evaluation demonstrated its usefulness in
scenarios that are known to be solved not very well by the
underlying system, even if the recurring tasks were changing
or random.

Future work includes the improvement of the optimizer
allowing for more complex run instances, followed by ap-
plying the approach to other self-organizing MAS solutions
also in other problem domains. Additionally, there are more
possibilities for advice than just telling an agent to ignore a
task, e. g. encouraging an agent to move to a certain area in
anticipation of a task that is likely to appear in the vicinity
without having actually accepted the task yet.

(11

(2]

(3]

(4]

[51

(6]

(7]

[8]

(9]

[10]

[11]

[12]

[13]

REFERENCES

R. Sterritt, M. Parashar, H. Tianfield, and R. Unland, “A
concise introduction to autonomic computing,” Advanced
Engineering Informatics, vol. 19, no. 3, pp. 181-187, 2005.

J. O. Kephart and D. M. Chess, “The vision of autonomic
computing,” IEEE Computer, vol. 36, no. 1, pp. 41-50, 2003.

M. C. Huebscher and J. A. McCann, “A survey of autonomic
computing—degrees, models, and applications,” ACM Com-
puting Surveys, vol. 40, no. 3, pp. 1-28, 2008.

T. De Wolf and T. Holvoet, “A taxonomy for self-* properties
in decentralised autonomic computing,” in Autonomic Com-
puting: Concepts, Infrastructure, and Applications. =~ CRC
Press, 2007, pp. 101-120.

M. Jelasity, O. Babaoglu, and R. Laddaga, “Self-management
through self-organization,” IEEE Intelligent Systems, vol. 21,
no. 2, pp. 8-9, 2006.

D. Weyns, R. Haesevoets, B. V. Eylen, A. Helleboogh,
T. Holvoet, and W. Joosen, “Endogenous versus exogenous
self-management,” in Proceedings of SEAMS 2008, 2008, pp.
41-48.

S. Briickner, “Return from the ant - synthetic ecosystems for
manufacturing control,” PhD thesis, Humboldt-Universitit,
Berlin, 2000.

M. Mamei and F. Zambonelli, “Co-fields: A physically in-
spired approach to motion coordination,” [EEE Pervasive
Computing, vol. 3, no. 2, pp. 52-61, 2004.

H. Kasinger, B. Bauer, and J. Denzinger, “Design pattern for
self-organizing emergent systems based on digital infochem-
icals,” in Proceedings of EASe 2009, 2009, pp. 45-55.

G. Berbeglia, J.-F. Cordeau, and G. Laporte, “Dynamic pickup
and delivery problems,” European Journal of Operational
Research, vol. 202, no. 1, pp. 8-15, 2010.

H. Kasinger, J. Denzinger, and B. Bauer, “Digital semiochem-
ical coordination,” Communications of SIWN, vol. 4, pp. 133—
139, 2008.

D. Weyns, N. Boucké, and T. Holvoet, “A field-based versus
a protocol-based approach for adaptive task assignment,”
Autonomous Agents and Multi-Agent Systems, vol. 17, no. 2,
pp- 288-319, 2008.

K. Fischer, J. P. Miiller, M. Pischel, and D. Schier, “A model
for cooperative transportation scheduling,” in Proceedings of
ICMAS 1995. MIT Press, 1995, pp. 109-116.

72

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

[22]

(23]

[24]

[25]

M. Mes, M. van der Heijden, and A. van Harten, “Com-
parison of agent-based scheduling to look-ahead heuristics
for real-time transportation problems,” European Journal of
Operational Research, vol. 181, no. 1, pp. 59-75, 2007.

G. D. M. Serugendo, M.-P. Gleizes, and A. Karageorgos,
“Self-organisation and emergence in MAS: An overview,”
Informatica, vol. 30, no. 1, pp. 45-54, 2006.

J. A. Hartigan, Clustering Algorithms.
1975.

John Wiley & Sons,

M. W. P. Savelsbergh and M. Sol, “The general pickup and
delivery problem,” Transporatation Science, vol. 29, pp. 17—
29, 1995.

J. Branke, M. Mnif, C. Mller-Schloer, H. Prothmann,
U. Richter, F. Rochner, and H. Schmeck, “Organic computing
- addressing complexity by controlled self-organization,” in
Proceedings of 1SoLA 2006, 2006, pp. 200-206.

R. Schumann, A. D. Lattner, and 1. J. Timm, “Management-
by-exception - a modern approach to managing self-
organizing systems,” Communications of SIWN, vol. 4, pp.
168-172, 2008.

S. Abdelwahed and N. Kandasamy, “A control-based ap-
proach to autonomic performance management in computing
systems,” in Autonomic Computing: Concepts, Infrastructure,
and Applications. CRC Press, 2007, pp. 149-167.

J. Kozlak, J.-C. Créput, V. Hilaire, and A. Koukam, “Multi-
agent approach to dynamic pick-up and delivery problem
with uncertain knowledge about future transport demands,”
Fundamenta Informaticae, vol. 71, no. 1, pp. 27-36, 2006.

L. Panait and S. Luke, “Cooperative multi-agent learning: The
state of the art,” Autonomous Agents and Multi-Agent Systems,
vol. 11, no. 3, pp. 387-434, 2005.

D. Norman, A. Ortony, and D. Russell, “Affect and ma-
chine design: Lessons for the development of autonomous
machines,” IBM Systems Journal, vol. 42, no. 1, pp. 38-44,
2003.

R. Sterritt, “Autonomic computing,” Innovations in systems
and software engineering, vol. 1, no. 1, pp. 79-88, 2005.

A. Butler, M. Ibrahim, K. Rennolls, and L. Bacon, “On the
persistence of computer dreams - an application framework
for robust adaptive deployment,” in Database and Expert
Systems Applications, 2004. Proceedings. 15th International
Workshop on, Aug.-3 Sept. 2004, pp. 716-720.

