
12   International Journal of Enterprise Information Systems, 6(1), 12-28, January-March 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Keywords:	 Ontologies, Requirements Specification, Semantic Data Model, Semiotics, Structural 
Modeling

1 Motivation

Not only normal software development, but also 
the upcoming research area semantic-based soft-
ware development (de Cesare, 2007) typically 
has an iterative software development process 
starting with the requirements engineering and 
requirements analysis phase. Before beginning 
with the development of software, the needs of 
the customer must be clarified and summarized 
into requirements specifications. These require-
ments contain all (or nearly most) of the details 

about the software product to be developed and 
are normally described in natural language. 
Some companies have therefore defined style-
guides. However, most of the used terms are 
not defined in a concrete way which leads to 
misinterpretation and incomprehension, i.e. the 
semantics are not defined clearly. Sometimes 
glossaries are used to describe the expressions, 
but even those can be interpreted differently by 
various readers/writers. Missing or not clearly 
defined requirements lead to change requests 
for the software product once it is tested or, 
in the worst case, when it is used by the cus-
tomers. The customers might have thought of 

Linguistics-Based Modeling 
Methods and Ontologies in 
Requirements Engineering

Florian Lautenbacher, University of Augsburg, Germany

Bernhard Bauer, University of Augsburg, Germany

Tanja Sieber, University of Miskolc, Hungary

Alejandro Cabral, Oracle Strategic Program, Argentina

Abstract
Developing new software based on requirements specifications created by business analysts often leads to 
misunderstanding and lack of comprehension, because of the different backgrounds of the people involved. 
If requirements specifications instead have a clearly defined structure and comprehensive semantics, this 
obstacle can be resolved. Therefore, we propose to structure the requirements specifications using existing 
linguistics-based modeling methods and annotate the used terms with ontologies to enhance the understand-
ing and reuse of these documents during the software engineering process.

DOI: 10.4018/jeis.2010120202



International Journal of Enterprise Information Systems, 6(1), 12-28, January-March 2010   13

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

something different, but their requirement has 
not been described properly in the requirements 
specification. Therefore, it is critical to specify 
the requirements as precisely as possible in the 
first place to avoid unnecessary changes to the 
finished product afterwards and to build the 
product on time and in budget.

As stated in Rupp (2006), software (S) is a 
combination of documentation (D) and code (C), 
i.e S=D+C. The documentation should not only 
cover the source code and its comments itself, 
but also the description of using the product 
afterwards (software documentation), any kind 
of technical specification and documentations, 
like functional and non-functional aspects, 
UML diagrams or database descriptions, etc. In 
document engineering, which is concerned with 
these issues, internal and external document 
engineering can be distinguished. The former 
refers to the documentation produced during the 
whole software development process, while the 
latter refers to the documentation produced for 
the system’s users after the product is released 
(Rueping, 2003). Requirements specifications 
can be seen as a typical example of internal 
documents, whereas user manuals are typical 
external document examples. There are some 
linguistics-based modeling methods that are 
widely used in external document engineering, 
which could also be used for internal document 
engineering, e.g. for gathering requirements. 
Using these modeling methods, the structure 
of documents and their underlying dependen-
cies can already be reflected in the modeled 
segmentation of the documents, making it easier 
to be derived and annotated with semantic data 
afterwards. This semantic annotation is based 
on ontologies and can be used to describe the 
meaning of the constructs in a way that comput-
ers can not only read but also interpret.

We will therefore show how the semantics 
of requirements specifications can be gathered 
using linguistics-based modeling methods and 
that an annotation of these documents with on-
tologies can foster reuse and personalization.

This article is structured as follows: in 
the next section we describe the challenges 
of current documents and the difference of 

understanding some data between sender and 
recipient. Additionally, we describe our defini-
tion of data and how the communication between 
different persons takes place. Afterwards, we 
show how different linguistics-based modeling 
methods can be used to clarify the underly-
ing meaning of terms. We evaluate several 
linguistics-based modeling methods and show 
a summary of our evaluation. We then use an 
example to clarify the usage of the modeling 
methods as well as introduce the process and 
benefits of semantic annotation through the us-
age of ontologies. Subsequently, we show some 
related work before we conclude describing the 
benefits of using linguistics-based modeling 
methods and ontologies.

2 Challenges of Semantic 
Requirements Engineering

In this section we introduce the basics of lin-
guistics such as the Speech act theory, before we 
introduce models for the description of data and 
the process of communication that are required 
for understanding the problems in Requirements 
Engineering and possible solutions.

Speech Act Theory

John Langshaw Austin developed his Speech 
Act theory in such a way that today, more than 
45 years later, we find it useful to conduct our 
research on semantics in requirements engi-
neering with reference to the theory. In Austin 
(1962) he introduced an informal description 
of the idea of an illocutionary act that can be 
captured by emphasing that when we use lan-
guage as more than a mere way to state things 
as true/false, we actually do the action being 
pronounced or denoted. A good example is when 
a minister joins two people in marriage saying: 
“I pronounce you husband and wife”.

To further explain this theory, Austin de-
clared three types of speech acts:

•	 Locutionary acts: Saying something (the 
locution) with a certain meaning but not 



14   International Journal of Enterprise Information Systems, 6(1), 12-28, January-March 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

necessarily building a speech. It may be a 
word, sentence or sound. There are three 
different kinds of locutionary acts: It is at 
one level the production of certain noises 
and as such it is called the phonetic act; 
through the production of those noises 
the speaker produces words in syntactic 
arrangements and this act is called phatic 
act. Finally, through the production of 
words in syntactic arrangements, with 
certain intentions and in certain contexts, 
it conveys certain messages and is in this 
respect dubbed rhetic act.

•	 Illocutionary acts: The performance 
of an act in saying something, or basi-
cally the speaker’s intent. John Searle 
developed further this category in 1969 
(Searle, 1969) and identified five illocu-
tionary points: assertives (true or false 
statements), directives (statements with 
a certain intent), commisives (statements 
which commit the speaker to a course of 
action), expressives (express the sincer-
ity of the speech act) and declaratives 
(statements that connote a change of the 
world referred by representing as already 
changed).

•	 Perlocutionary acts: These acts have a 
direct effect on sensitive perception, feel-
ings or actions of both the speaker and 
the receiver. These acts basically seek to 
change a state of mind, an idea or feeling 
towards a representation.

Austin’s analysis and contribution through 
his Speech Act theory went beyond the refer-
encial theories during his time and considered 
the context in which language was actually 
used. He was the first to consider the context 
and the listener as a part of the communication 
equation, relying on the concept of convention 
to depict an illocution-perlocution distinction. 
For Austin, illocutionary acts are based on the 
existence of convention, while perlocutionary 
acts are not. By this, Austin opens a window 
to another dilemma: meaning, though he fails 

to further develop his Speech Act in this area, 
thus allowing others to criticize his work:

Grice (1967), Austin’s Oxford colleague, 
developed his own theory on meaning and 
distinguished natural from non-natural mean-
ing, in terms of whether or not there exists a 
natural connection between an utterance and 
what is actually meant by it. Logically, non-
natural meaning refers to those cases where 
this natural connection does not exist. In other 
words the meaning of any utterance consists 
in its intentional use by the speaker to accom-
plish his or her desire to get the listener to do 
something by revealing to him/her the actual 
intention the speaker has, and this cannot be 
solely based on the convention concept that 
Austin explained.

Similar to Grice’s analysis Strawson 
(1969) criticizes Austin’s theory as well, as he 
describes Speech Acts as not really dependent 
on conventions working as connections between 
utterances and meanings. He explains that a 
person can act without actually using an existing 
convention all the time in order to accomplish 
or perform an act by uttering something. Both 
Grice and Strawson acknowledge the pres-
ence of a deeper concept than the one Austin 
introduced when naming conventions: they 
both refer to intention. Strawson additionally 
rejects the illocution-perlocution distinction that 
Austin based on the existence of convention as 
a context identifier and integrator.

All this analysis though could not be com-
plete without Wittgenstein’s referential theory 
on meaning, where he presents the idea that 
language cannot consist of or be a linguistic rule 
of the signifier and the signified. If that were 
the case, there would be a space where another 
rule connects the statement of the rule with what 
it really signifies. Wittgenstein (1973) declares 
the true importance of context to determine the 
meaning. In order to really understand what an 
utterance means, the context needs to be present, 
considered and integrated with the language 
that is being used.

All these categories created by Austin and 
afterwards developed by Searle, Grice, Straw-



International Journal of Enterprise Information Systems, 6(1), 12-28, January-March 2010   15

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

son and Wittgenstein apply to languages as we 
see them: understanding that by language we 
imply a system of communication consisting 
of sounds, words or characters used by two 
sources/ destinations to exchange information. 
In the case of a written exchange we can speak 
about a scribal act instead of a phonetic act, but 
the spirit behind the Speech Act theory remains 
the same, which makes it quite interesting for 
documentation engineering purposes and hence-
forth also for requirements engineering.

Illocutionary acts are performed with inten-
tions. They are communicatively successful if 
the speaker’s/writer’s illocutionary intention is 
recognized by the hearer/reader. Illocutionary 
acts are all intentional and are generally per-
formed with the primary intention of achieving 
some perlocutionary effect.

By sending certain data in the form of 
words or written commands we issue not just an 
order or perlocutionary act. The content of the 
statement is imbued with a certain meaning. In 
spoken languages this meaning can be implied 
by the tone/intonation used to communicate, or 
by different signs the speaker can send. Even 
if these are not used, a certain meaning can 
be transmitted if the speaker and the hearer 
know each other. The use of different codes 
and contexts help quite a bit: it is by them that 
a speaker constructs a statement, sends it as 
a message with an identified meaning, then a 
hearer receives it and using the codes already 
learned and identifying the context used to 
create this message, re-constructs the message 
received, imbuing it with another meaning 
that is analog to the one originally sent by the 
other source. In written documents this is much 
more difficult since the future reader is mostly 
not known and therefore the meaning must be 
made explicit in other ways. The challenges for 
written documents can be explained by using a 
semantic data model.

Semantic Data Model

When specifying requirements, these are 
summarized in some kind of requirements 
specification in a document containing data. But 

the term data is often used without any exact 
terminological definition. There are different 
definitions for this term and henceforth it is not 
used in a uniform way in papers and lectures. 
Therefore, we introduce our understanding of 
data following a semantic data model in order 
to describe the problems that occur between 
somebody who specifies the requirements 
(sender) and the person who reads the require-
ments specification (receiver).

According to the semantic data model 
introduced in Sieber and Kammerer (2006), 
data penetrates through various levels: it can 
have different forms (such as ‘13’ and ‘13’), 
different kinds of representation (e.g. arabic 
numbers vs. roman numbers vs. textual descrip-
tion) and different semantics (for example the 
number ‘13’ can describe the age of a person 
or the number of a house).

At the level of form all data are called •	
data instances, where a data instance it-
self is a semiotic entity in terms of Peirce. 
That is, it can appear as icon, index or 
symbol. The semantic data model bridges 
the existing gap between the understand-
ing of data and the semiotics.
At the level of representatives data appear •	
in an abstract form and are then called 
data representatives.
At the level of meaning data appear again •	
in a more abstract version and are then 
called data items. These data items can 
even be split into smaller meaningful 
components (complex data items) or are 
not dividable (atomic data items).

Figure 1 shows the semantic data model 
in a graphical way: there are several data 
instances for ‘13’ which belong to different 
data representatives and all to the atomic data 
item house number which might be part of the 
complex data item address.

Sender-Recipient Model

If someone wants to specify the house number 
as a data item, then it can happen that some-



16   International Journal of Enterprise Information Systems, 6(1), 12-28, January-March 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

body else sees the concrete data instances, but 
understands something different by it. Hence-
forth, it does not happen at the same level of 
knowledge. Data instances are the only part of 
the semantic data model which appear outside 
of a human being in a concrete form (as icon, 
index or symbol), all other levels of abstraction 
are intra-personal. Following this understand-
ing of data the consequence is that meaning or 
semantics is also to be understood as something 
intra-personal and we are captured in our lingual 
possibilities to talk about it.

Every communication based on data in-
stances between two parties has to consider 
that each person has a different background 
and different knowledge (compare Figure 2) 
and will derive from a data instance maybe dif-
ferent meanings. Therefore, the data instances 
have to be specified in a way the recipient can 
understand what they are meant for. If the sender 
wants to specify the number of a house and the 
recipient only recognizes the data instance ‘13’, 

then he might think of it as the age of a person 
(compare Figure 3).

Semantic Communication Model

To describe what actually happens when a mes-
sage is exchanged between different persons, 
we developed a semantic communication model 
considering existing communication models 
such as Shannon and Weaver (1964), Berlo 
(1960), Bühler (1965), Schramm (1954) or 
Flensburg (2007).

Therefore, we relate the Sender-Recipient 
model with the semantic data model and com-
bine them using messages. In principal, each 
person has a different background and knowl-
edge. Each time a document (e.g. a requirements 
specification) is written, the background and 
knowledge of the target recipients have to be 
considered in order to enable the recipient to 
understand the document. In spoken language 
this is quite easy since the recipients are (nor-

Figure 1. Semantic data model (according to Sieber & Kovács, 2005) for the data item “house 
number”



International Journal of Enterprise Information Systems, 6(1), 12-28, January-March 2010   17

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

mally) known, but in written documents the 
future readers are unknown and their expected 
specific attributes are estimated by intentional 
group analysis. A message (cf. Figure 4) con-
sists of data instances that are either on an 
objectlevel, describing the message itself, or 
at a metalevel, adding additional data to the 
data instances on objectlevel (such as filetype, 
creation date, target audience, etc.). A message 
is transmitted from the sender to the receiver. 
Both parties may have a different background 
and knowledge. Therefore, the message must 

be structured in a way that allows for an easy 
abstraction process. Linguistics-based model-
ing methods are one way to achieve such a 
structure of documents and will be introduced 
and explored in the following sections.

According to Shannon and Weaver (1964) 
there is always the problem of noise when 
transmitting messages (and can be extended to 
semantic noise according to Berlo (1960)). This 
semantic noise needs to be reduced drastically 
in order to allow for a faultless interpretation 
of the data instances.

Figure 2. Sender-Recipient model of Sieber & Kovács (2005)

Figure 3. Sender-Recipient model for the data instance “13”



18   International Journal of Enterprise Information Systems, 6(1), 12-28, January-March 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

3 Linguistics-Based 
Modeling Methods

Requirements specifications are most of the 
times simple text files. In order to cover the 
intended semantics when writing them (accord-
ing to the Speech Act theory), it is necessary to 
describe the constructs in a way in which the 
reader can capture the purpose of the words 
used by the writer. In addition it is possible 
to rely on existing text files of an ontology or 
one can start one step earlier and use existing 
linguistics-based modeling methods to ensure 
capturing the semantics into the future docu-
ments. Modeling methods are mostly used for 
creating structures in technical documentation 
and for information structuring.

Using natural language processing tech-
niques would be another possibility. But as 
they are very time-consuming, we focus on 
the usage of modeling methods and ontolo-
gies instead. The most prominent modeling 
methods that are used in the context of external 
technical documentation for that purpose are 
the functional-positional segmentation method, 
the function design™ method, information map-
ping™, information structuring in XML/SGML 
(Lobin, 2000) and DITA. In the following we 
give a more detailed overview about the method 
of functional positional segmentation, the func-
tion design™ method as well as DITA, before 
we compare them.

The Functional-Positional 
Segmentation Method

Wiegand (1989) described the process of how 
a structural analysis of dictionary articles can 
be performed. He developed a segmentation 
method consisting of the method of functional 
segmentation and the method of functional-
positional segmentation. The functional seg-
mentation (e.g. of dictionary articles) includes 
the identification of functional text elements 
which is also interesting for modeling all 
kinds of documents and henceforth also for 
requirements specifications. The requirements 
specification should already exist in order to 
apply the functional-positional segmentation 
method.

Functional segmentation determines ty-
pographical and non-typographical structure 
pointers that assist the user in perceiving the 
structure of the article and of parts of an article 
that belong together. Typical typographical 
structure pointers are the font type and the font 
styles. Examples for non-typographical structure 
pointers are punctuation marks, brackets and ar-
rows. Exhaustive functional text-segmentation 
is described as the incremental segmentation of 
a dictionary article by considering statements 
and structure pointers together with a presenta-
tion as whole-part relationships in a formally 
defined description language. This leads to a 
segmentation of the text in which all elements 

Figure 4. Semantic communication model (Sieber & Lautenbacher, 2007)



International Journal of Enterprise Information Systems, 6(1), 12-28, January-March 2010   19

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

are defined and can be associated to be part of 
a bigger context (Figure 5).

On the other hand, the functional-positional 
segmentation does not only force the segmenta-
tion of the text, but also includes the position 
of all text segments in a linear order. The 
determined hierarchical structure of articles 
can then be presented as a tree-like partitive 
structure graph.

The Function Design Method

The function design™ method (Muthig & 
Schäflein-Armbruster, 1999) is a universal and 
flexible technology for structuring technical 
documentation. It has been developed on the 
basis of theoretical thoughts upon the Speech 
Act: each spoken sentence contains informa-
tion and serves a communicative function. 
Nevertheless, there is no clear 1:1 correlation 
between a sentence and its communicative 
function. Most of the times the meaning of a 
sentence is transported using meta-spoken ways 
such as pronounciation as described previously. 
This must be achieved differently in printed 
documents.

Based on that, the goal of the function 
design™ theory is that each sentence of a text 
needs to have a unique identifiable function. 
The function design™ method can be divided 
into macro and micro levels: on the macro level 
the kind of document is classified and on the 
micro level this document is further segmented 
into sequence patterns, functional entities and 
tags. Therefore, the developer must put himself 
in the position of the recipient of a text, for 

example the reader of a warning. The reader 
of a warning needs answers such as “what is 
the danger?”; “how big is the danger?”; “how 
can I avoid the danger?”; etc.

The intentions and existing knowledge of 
the target group must be kept in mind during 
the whole specification process. The created 
document should answer the questions a pos-
sible reader may have. Therefore, the data items 
in the document can be captured in functional 
entities such as warning, notices, preconditions 
etc. These functional entities must answer the 
questions that a potential reader might be think-
ing of (for example, “what do I need to consider 
when doing some task?”). Each functional entity 
is described with the following data items:

name and (optional) abbreviation•	
purpose•	
sequential order•	
inner structure and formulation•	
layout and design•	

Basic functional entities can be grouped 
into structural patterns which have a common 
purpose or function. This fosters reuse of data 
in the function design.

The function design™ method needs to be 
applied while creating a new document (unlike 
Wiegand’s method where an existing document 
is a precondition). The functional entities need 
to have the same form in the whole document. 
For example, a deletion action of customer 
records can simply be written in plain text 
such as “If you want to delete the records of 
a customer, make sure that there are no open 

Figure 5. Functional-positional segmentation after Wiegand without tree structure



20   International Journal of Enterprise Information Systems, 6(1), 12-28, January-March 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

invoices and orders and that you have created a 
backup as there won’t be a recovery afterwards 
and deleting the records might lead to issues 
in booking operations afterwards.” or it can be 
presented in Figure 6.

DITA

The Darwin Information Typing Architecture 
(DITA) (OASIS, 2007) is an information ar-
chitecture based on XML especially developed 
for the area of technical documentation. DITA 
defines a set of information types that can be 
created and managed related to specific top-
ics. DITA allows the authoring, producing and 
delivering of technical information and speci-
fies basic elements such as topics and maps. A 
topic is an information entity including a title 
and content that is short enough to be specific 
to a single subject, but long enough to be self-
understandable without additional references. 

Maps are documents that help to organize 
relationships to other topics.

One focus in DITA is laid on specializa-
tion (that was the reason for refering to Charles 
Darwin who was investigating inheritance dur-
ing his studies about the theory of evolution). 
Inheritance and specialization allow defining 
new information whereas existing design is 
reused as much as possible. Figure 7 shows 
the same example as in the preceeding sections 
modeled in DITA.

Comparison of Different 
Linguistics-Based 
Modeling Methods

As there are some more linguistics-based mod-
eling methods (e.g. Ament, 2003; Ley, 2007; 
Lobin, 2000) as described in the previous sec-
tions, we evaluated them according to several 
criteria. These criteria were divided into five 
sections: structure and documentation of the 

Figure 6. Function design method example

Figure 7. Example written in DITA



International Journal of Enterprise Information Systems, 6(1), 12-28, January-March 2010   21

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

modeling method, experiences when applying 
the modeling method to an example, evalua-
tion of the result after applying the modeling 
method, how can the instances be personalized 
and how can they be reused in another context. 
The questions in the evaluation were developed 
similarly to other evaluation approaches such 
as Hevner et al. (2004), Hong et al. (1993) and 
Moodey & Shanks (1994). The results are only 
summarized here, the detailed evaluation can be 
found in Sieber and Lautenbacher (2007).

Concerning the comprehensibility of each 
modeling method, the function design™ method 
stands out with 37 of 40 possible evaluation 
points. This is probably due to the teaching of 
the method at universities for 10 years. DITA 
catches up when considering the application 
of the modeling method (92 of 105 possible 
evaluation points) as well as evaluating the 
quality of the results (33 of 50 evaluation 
points). Personalization is not really possible 
with any of the modeling methods (the best 
one had 14 of 40 evaluation points); however, 
DITA assists the user in reuse being nearly 
optimal (66 of 70 evaluation points) through 
a high degree of standardization as well as the 
use of modules that can be reused in different 
contexts. Concluding, DITA came first in this 
evaluation (with 236 of 305 possible evaluation 
points) ahead of function design™ (203) and 
information mapping (192).

4 Applying Linguistics-
Based Modeling Methods 
and Ontologies to 
Requirements Engineering

In this section we demonstrate how linguistics-
based modeling methods can be used in re-
quirements engineering and how the resulting 
specifications can be used as a comprehensive 
human-understandable basis for semantic an-
notation further on.

Applying DITA to an Example of 
a Requirements Specification

First, we introduce an example that describes 
requirements for a typical customer relationship 
management (CRM) system. In this system, 
personal details about customers as well as their 
orders are stored, created, modified and deleted. 
The requirements of the creation process for 
a new customer order (compare Metz et al., 
2003) can be modeled in a textual editor (e.g. 
an Office product with predefined templates) 
as follows:

Name of scenario: Register new customer 
order.

Description: A new customer order is entered 
into the CRM system.

Context: A sales clerk with a non-processed 
customer order.

Main scenario:

1. 	 The sales clerk enters the customer’s ID.
2. 	 The system displays the customer’s 

profile.
3. 	 The sales clerk confirms that the customer’s 

credit rating is sufficient and the order can 
be processed.

4. 	 The system assigns an order ID.
5. 	 The sales clerk registers the desired trade 

items.
	 …

Preconditions: Customer has been stored in 
system, trade items are available in system.

System has initiated an order for the •	
customer
System has documented payment •	
information
System has registered request with the •	
customer
System has logged all failures•	
System has logged transaction date and •	
time



22   International Journal of Enterprise Information Systems, 6(1), 12-28, January-March 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Actors involved: Sales clerk, CRM •	
system

After the requirements have been entered 
in the editor, they can be stored in DITA XML-
format as shown in Figure 8.

Annotating the Example by 
a Requirements Ontology

Linguistics-based modeling methods allow 
a modular access based on the defined func-
tional entities, but they have strong limitations 
regarding automated processing. Therefore, it 
is necessary to describe the used constructs in 
a way machines can ‘understand’ (similar to 
Grice’s description of meaning). That’s where 
the Semantic Web and ontologies come into 
play.

Similar to Bauer and Roser (2006) where 
the usage of ontologies in the context of soft-
ware engineering and development is described, 
annotating the constructs of a requirements 
specification on the basis of a requirements 
ontology can assist the computer to process 
the used vocabulary. Therefore, an ontology 
in the Web Ontology Language (OWL; W3C, 
2004) can be used and new knowledge can be 
gathered through the process of reasoning on 

this ontology. There are many approaches for 
annotating documents (Web pages, videos, etc.) 
as a means to use this data for further processing 
(see Euzenat, 2002; Missikoff et al., 2003). Hav-
ing annotated the requirements with semantic 
data, this knowledge can also be used in further 
parts of the software engineering process as 
well as in document engineering.

An ontology has been defined as “a 
(formal) explicit specification of a (shared) 
conceptualization” (Gruber, 1993). There are 
different kinds of ontologies: Guarino (1997) 
differentiates between application ontologies 
that contain the definitions specific to a par-
ticular application, while reference ontologies 
refer to ontological theories whose focus is to 
clarify the intended meaning of terms used in 
specific domains. Kassal (2008) developed a 
reference ontology for the domain of require-
ments engineering that allows to capture the 
knowledge of all stakeholders at the beginning 
of a project in a formal notation. Therefore, the 
ontology focuses on the stakeholder (together 
with the complementary stakeholder knowl-
edge), but also considers intentions, documents, 
business concepts or influence factors. Figure 9 
shows the ontology with the entailed concepts 
in greater detail.

Figure 8. Customer creation requirements in DITA



International Journal of Enterprise Information Systems, 6(1), 12-28, January-March 2010   23

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

The requirements ontology has been in-
stantiated with the previous example and does 
now contain the description of all roles and 
users (such as sales clerk) and the goals that 
were defined within a project (e.g. Register 
new customer order). By using this ontology 
(an excerpt in XML-format is shown in Figure 
10) we can now annotate the customer order 
example in DITA.

Thereby, we use additional tags referenc-
ing parts of the ontology in analogy to cur-
rent Semantic Web service standards such as 
SAWSDL (Kopecky et al., 2007). With these 
ref-tags, we can point from one word or a whole 
passage in the requirements specifications to 
some concepts in the ontology. This allows 
for improved computer processing. The result 
is shown in Figure 11. There, the person sales 
clerk is referenced to a similar named concept 

Figure 9. The requirements ontology ON-EREQ (Kassal, 2008)



24   International Journal of Enterprise Information Systems, 6(1), 12-28, January-March 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

in the ontology or the description that the rat-
ing is sufficient is connected to the concept 
Rating_Sufficient in the ontology.

Benefits

Using DITA it is now easily possible to derive 
a technical documentation for the product, 
since DITA has been developed exactly for 
this purpose. With the semantic annotations 
one can automatically query existing projects 
as to whether there had been similar use cases 

and how they were implemented. Looking for 
existing components which implement one of 
the mentioned requirements is also possible. 
Henceforth, the reuse of existing components 
can be further extended. A software developer 
does not need to know which components have 
been implemented in earlier projects, but using 
their semantic descriptions he can simply search 
for keywords and find the existing components 
and their descriptions and use them in the new 
project. This is possible due to the semantic 
annotation that has been integrated into the 

Figure 10. An excerpt of the requirements ontology

Figure 11. Customer creation requirements in DITA with semantic annotations



International Journal of Enterprise Information Systems, 6(1), 12-28, January-March 2010   25

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

requirements. With the use of an inference en-
gine the system can now compute similarities 
and equalities between requirements based on 
their described concepts. This enables one to 
find corresponding components and other use 
cases based on semantics and not only their 
syntax.

For example, one might search for all pro-
cesses in which the identification of a customer 
is requested or modified. “Entering_Custom-
er_ID” in the ontology includes the concepts 
“Enter” and “Customer_ID” which themselves 
might be inherited by “Insert” and “identifica-
tion”. Since “Insert” is a kind of modification 
and identification fits to the request, the PC can 
compute that this step, and hence the whole use 
case, must be considered.

Another benefit is the possibility to check 
for inconsistencies: if several requirements 
have been entered, they might describe dif-
ferent behaviors of a single system or several 
concepts of a domain that do not fit together. 
One requirement might say that every customer 
has exactly one address whereas the other says 
that the shipping address of the customer might 
be different than the address where the person 
lives or the organization is located.

Additionally, it is now possible to personal-
ize a system to the user: since the ontology can, 
for example, represent the low level of computer 
expertise of the sales clerk, the human-machine 
interface can be adapted and made as simple 
as required.

5 Related Work

The combination of requirements engineering 
and Semantic Web technologies was already 
studied in Selberg and Austin (2003). There, 
the Internet is described as a virtual, chaotic 
system which is similar to the study of require-
ments and the authors have shown which parts 
of requirements engineering could be realized 
with each tier of the Semantic Web layer cake. 
In their following report (Mayank et al., 2004) 
they describe how components could be se-
mantically annotated and how this semantic 

annotation could be implemented. Similarly, 
Kinary (2003) shows how semantic annotated 
components could be composed to solve a 
problem, but there is no adoption of Semantic 
Web languages- Java is used instead.

Kaiya and Saeki (2005) represent a frame-
work for the ontology-based analysis of require-
ments, but many technical details are missing 
as the report is quite high-level. Additionally, 
Lin et al. (1996) summarize all requirements 
in an ontology in order to deduce additional 
information and to check the consistency of 
the requirements. This ontology does not only 
cover quality of service aspects, but also or-
ganizational, structural or functional aspects. 
Dobson & Sawyer (2006) state that the basics 
for ontology-based requirements analysis has 
already been laid through the Requirements 
Modeling Language (RML) in the 1980s and 
how RML could be combined with current 
Semantic Web languages.

6 Conclusion and Outlook

In this article we have shown that linguistics-
based modeling methods need to be considered 
and applied to requirements engineering. As in 
many other areas, multidisciplinarity is typical 
for this domain: in times of offshoring there are 
different cultures involved, there are always 
people with different apprenticeships (busi-
ness analysts, software engineers, documenta-
tion engineers, etc.) which hinders a common 
understanding of the terms used. Only with 
the application of linguistics-based modeling 
methods and a semantic annotation of the terms 
adopted in requirements specifications these 
obstacles can be overcome.

The modeling methods allow for a clear 
structure of the document: already during 
writing of the requirements specifications the 
author is forced to think about how the con-
tent can best be presented to the future reader. 
Linguistics-based modeling methods are based 
on research on linguistics and Speech Acts 
which have already been used in the area of 
technical documentation for years. The usage of 



26   International Journal of Enterprise Information Systems, 6(1), 12-28, January-March 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

these techniques in Requirements Engineering 
seems therefore more than natural.

When the requirement documents are 
not only human-understandable, but become 
‘machine-understandable’, then their reuse will 
grow intensively. Many tasks can be automated 
and documents for the next software engineer-
ing phase could be automatically generated 
with the usage of the model-driven architecture 
(MDA™) (Frankel, 2003). For example, seman-
tically described requirements specifications 
could be used to generate semantic business 
process models (Hepp et al., 2005) which could 
then be further refined and finally executed.

The semantic annotation can also lead 
to further personalization of the developed 
software: if the person who is responsible for 
some requirements can be traced back, it is pos-
sible to personalize the software to the needs 
of each individual person as described in the 
requirements specification (e.g., in a developed 
requirements profile). By using an ontology that 
covers the profile of the requestor, it is possible 
to personalize the application to the needs of 
each specific user later on.

References

W3C. (2004). OWL Web Ontology Language 
Reference. Retrieved from http://www.w3.org/TR/
owl-ref/

Ament, K. (2003). Single Sourcing: Building Modu-
lar Documentation. Norwich, NY: William Andrew 
Publishing.

Austin, J. L. (1962). How to Do Things with Words. 
Cambridge, MA: Harvard University Press.

Bauer, B., & Roser, S. (2006). Semantic-enabled 
Software Engineering and Development. In Proceed-
ings of Informatik 2006 (LNI P-94, pp. 293-296). 
Bonner Köllen Verlag.

Berlo, D. K. (1960). The Process of Communication. 
New York: Holt, Rinehart, and Winston.

Bühler, K. (1965). Sprachtheorie: Die Darstel-
lungsform der Sprache. Stuttgart, Germany: Verlang 
UTB.

de Cesare, S., Holland, G., Holtmann, C., & Lycett, 
M. (2007). Semantic-based systems development. 
In OOPSLA Companion (pp. 760).

Dobson, G., & Sawyer, P. (2006). Revisiting Ontolo-
gy-Based Requirements Engineering in the age of the 
Semantic Web. Paper presented at the International 
Seminar Dependable Requirements Engineering of 
Computerised Systems at NPPs, Halden.

Euzenat, J. (2002). Eight Questions about Semantic 
Web Annotations. IEEE Intelligent Systems, 17(2), 
55–62.

Flensburg, P. (2007, August 11-14). An enhanced 
communication model. Paper presented at the 30th 
Information Systems Research Seminar in Scandi-
navia (IRIS), Tampere, Finland.

Frankel, D. S. (2003). Model Driven Architecture 
– Applying MDA™ to Enterprise Computing. New 
York: Wiley.

Gašević, D., Kaviani, N., & Milanović, M. (in press). 
Ontologies and Software Engineering. In S. Staab & 
R. Studer (Eds.), Handbook on Ontologies.

Grice, H. P. (1967). Logic and Conversation. In A. 
P. Martinich (Ed.), Philosophy of Language. New 
York: Oxford University Press.

Gruber, T. R. (1993). A Translation Approach to Por-
table Ontology Specifications. Knowledge Acquisi-
tion, 5(2), 199–220. doi:10.1006/knac.1993.1008

Guarino, N. (1997). Understanding, building and 
using ontologies. International Journal of Human-
Computer Studies, 46(2-3), 293–310. doi:10.1006/
ijhc.1996.0091

Hepp, M., Leymann, F., Domingue, J., Wahler, 
A., & Fensel, D. (2005, October 18-20). Semantic 
Business Process Management: A Vision Towards 
Using Semantic Web Services for Business Process 
Management. In Proceedings of IEEE ICEBE, Bei-
jing, China (pp. 535-540).

Hevner, A. R., March, S. T., Park, J., & Ram, S. 
(2004). Design Science in Information Systems 
Research. MIS Quarterly, 28(1), 75–105.

Hong, S., Goor, G., & Brinkkemper, S. (1993). A 
Formal Approach to the Comparison of Object-
Oriented Analysis and Design Methodologies. In J. 
F. Nunamaker & R. H. Sprague (Eds.), Information 
Systems of HICCS (pp. 689-698).



International Journal of Enterprise Information Systems, 6(1), 12-28, January-March 2010   27

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Kaiya, H., & Saeki, M. (2005). Ontology Based 
Requirements Analysis: Leightweight Semantic 
Processing Approach. Paper presented at the Inter-
national Conference on Quality Software (QSIC), 
Melbourne, Australia.

Kassal, S. (2008). Semantic Requirements – Ontol-
ogie-basierte Modellierung von Anforderungen im 
Software Engineering. Master thesis, University of 
Augsburg.

Kiniry, J. R. (2003). Semantic Component Com-
position. Paper presented at ECOOP, Darmstadt, 
Germany.

Kopecky, J., Vitvar, T., Bournez, C., & Farrell, J. 
(2007). SAWSDL: Semantic Annotations for WSDL 
and XML Schema. IEEE Internet Computing, 11(6), 
60–67. doi:10.1109/MIC.2007.134

Ley, M. (2006). Aspekte der Informationsstrukturi-
erung: Über Strukturierungsprinzipien, die Ebenen 
der Textstruktur und Dokumentgrammatiken. Tech-
nische Kommunikation, 28(4), 51–53.

Lin, J., Fox, M. S., & Bilgic, T. (1996). A 
Requirement Ontology for Engineering De-
sign. Concurrent Engineering, 4(3), 279–291. 
doi:10.1177/1063293X9600400307

Lobin, H. (2000). Informationsmodellierung in 
XML und SGML. Berlin Heidelberg, Germany: 
Springer-Verlag.

Mayank, V., Kositsyna, N., & Austin, M. (2004). 
Requirements Engineering and the Semantic Web 
– Part II (Tech. Rep. 2004-14). College Park, MD: 
Institute for Systems Research.

Metz, P., O’Brien, J., & Weber, W. (2003). Specifying 
Use Case Interaction: Types of Alternative Courses. 
Journal of Object Technology JOT, 2(2).

Missikoff, M., Schiappelli, F., & Taglino, F. (2003, 
October). A Controlled Language for Semantic An-
notation and Interoperability in e-Business Applica-
tions. In Proceedings of the Semantic Integration 
Workshop (SI-2003), Sanibel Island, FL (Vol. 82, 
13). CEUR-WS.

Moodey, D. L., & Shanks, S. (1994). What makes 
a good data model? Evaluating the Quality of En-
tity Relationship Models. In P. Loucopoulos (Ed.), 
Entity-Relationsship Approach – Proceedings of 
ER’94, Business Modelling and Re-Engineering 
(pp. 94-111).

Muthig, J., & Schäflein-Armbruster, R. (1999). 
Funktionsdesign: eine universelle und flexible 
Standardisierungstechnik. Augsburg, Germany: 
WEKA-Verlag.

OASIS. (2007). DITA Version 1.1, Architectural 
Specification. Boston: Author.

Rueping, A. (2003). Agile Documentation: A Pat-
tern Guide to Producing Lightweight Documents 
for Software Projects. New York: Wiley Software 
Patterns Series.

Rupp, C. (2007). Requirements Engineering und 
Management – Professionelle, iterative Anforderung-
sanalyse für die Praxis. Munich, Germany: Hanser 
Verlag.

Schramm, W. (1954). How communication works. In 
W. Schramm (Ed.), The Process and Effects of Mass 
Communication (pp. 5-6). Urbana, IL: University 
of Illinois Press.

Searle, J. (1969). Speech Acts: An Essay in the Phi-
losophy of Language. Cambridge, UK: Cambridge 
University Press.

Selberg, S. A., & Austin, M. (2003). Requirements 
Engineering and the Semantic Web – Part I, (Tech. 
Rep. 2003-20). College Park, MD: Institute for 
Systems Research.

Shannon, C. F., & Weaver, W. (1964). The Math-
ematical Theory of Communication. Urbana, IL: 
University of Illinois Press.

Sieber, T., & Kammerer, M. (2006). Sind Metadaten 
bessere Daten? Technische Dokumentation, 5/2006, 
56–58.

Sieber, T., & Kovács, L. (2005). Technical documen-
tation: Terms, problems and challenges in managing 
data, information and knowledge. In Proceedings of 
the University of Miskolc’s 5th International Confer-
ence of PhD Students (pp. 165-170).

Sieber, T., & Lautenbacher, F. (2007). Enterprise 
Content Integration: Documentation, Implementa-
tion and Syndication using Intelligent Metadata (ECI-
DISI) (Tech. Rep. 2007-17). Augsburg, Germany: 
University of Augsburg, Germany. Retrieved from 
http://www.ds-lab.org/publications/reports/2007-17.
html

Strawson, P. F. (1969). Intention and Convention in 
Speech Acts. In K. T. Fann (Ed.), Symposium on J. 
L. Austin, International Library of Philosophy and 
Scientific Method. New York: Humanities Press.



28   International Journal of Enterprise Information Systems, 6(1), 12-28, January-March 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Tetlow, P., Pan, J. Z., Oberle, D., Wallace, E., Uschold, 
M., & Kendall, E. (2006). Ontology Driven Archi-
tectures and Potential Uses of the Semantic Web 
in Systems and Software Engineering. Cambridge, 
MA: W3C.

Wiegand, H. E. (1989). Aspekte der Makrostruktur 
im allgemeinen einsprachigen Wörterbuch: alpha-
betische Anordnungsformen und ihre Probleme. In 
F. J. Hausmann, O. Reichmann, H. E. Wiegand, & L. 
Zgusta (Eds.), Wörterbücher (Vol. 1, pp. 371-409). 
Berlin, Germany: Springer.

Wiegand, H. E. (1989). Der Begriff der Mikrostruk-
tur: Geschichte, Probleme, Perspektiven. In F. J. 
Hausmann, O. Reichmann, H. E. Wiegand, & L. 
Zgusta (Eds.), Wörterbücher (Vol. 1, pp. 409-462). 
Berlin, Germany: Springer.

Wittgenstein, L. (1973). Philosophical investigations. 
Upper Saddle River, NJ: Prentice Hall.

Since 2005 Florian Lautenbacher is researcher and Ph.D. student at the University of Augs-
burg, Germany, and holds a diploma in Computer Science from the same university. During his 
studies he has worked for Fujitsu Siemens Computers, a medical supply center as well as at the 
university. His current research interests are in applying semantic technologies to model-driven 
software engineering, in particular in workflow and business process technologies as well as 
service-oriented architectures. Florian is project co-lead of the Eclipse Technology project Java 
Workflow Tooling (JWT) which started in 2007 and is part of the current Eclipse Galileo distribu-
tion. Moreover he is involved in several other national and international projects mostly related 
to business process management and SOA. He has published more than 20 scientific papers.

Bernhard Bauer is professor and head of the programming of Distributed Systems Group at the 
University of Augsburg since 2003. He holds a diploma in computer science from the University 
of Passau, Germany, and a PhD. in computer science from the Technische Universität München, 
Germany. For more than 6 years Bauer has worked in industry. The focus of his research group 
at the university is on industrialization of software engineering and software operation. The 
main research areas are model-driven software development, semantic technologies as well 
as self-organizing systems to improve the automation of the software product lifecycle as well 
as the autonomy of software systems. He has published more than 100 scientific papers in the 
area of agent-based systems and agent-oriented software engineering, compiler construction, 
(semantic-enabled) model-driven software engineering and autonomous systems.


