A Probabilistic Approach to Service Selection
with Conditional Contracts and Usage Patterns

Adrian Klein'?:3, Fuyuki Ishikawa?*, and Bernhard Bauer!

! University of Augsburg, Germany
bauer@informatik.uni-augsburg.de
2 Technical University Munich, Germany
3 Ludwig-Maximilians-University Munich, Germany
adrian.klein@campus.lmu.de
4 National Institute of Informatics, Tokyo, Japan
f-ishikawa@nii.ac. jp

Abstract. Service selection is a central challenge in the context of a
Service Oriented Architecture. Once functionally sufficient services have
been selected, a further selection based on non-functional properties
(NFPs) becomes essential in meeting the user’s requirements and pref-
erences. However, current descriptions of NFPs and approaches to NFP-
aware selection lack the ability to handle the variability of NFPs, that
stems from the complex nature of real-world business scenarios. There-
fore, we propose a probabilistic approach to service selection as follows:
First, to address the inherent variability in the actual values of NFPs at
runtime, we treat them as probability distributions. Then, on top of that,
we tackle the variability needed in describing NFPs, by providing condi-
tional contracts. Finally, from usage patterns, we compute user-specific
expectations for such NFPs. Further, we depict a typical scenario, which
serves both as a motivation for our approach, and as a basis for its eval-
uation.

1 Introduction

A Service Oriented Architecture (SOA) lays the ground for loose coupling of
interoperable services [1]. In a SOA, there are service providers, that offer services
under certain conditions, and service users, that need services that fulfill certain
criteria. Service contracts provide the basis necessary for the interaction between
both of them, by describing the functional and non-functional properties (NFPs)
[2] of a service. Service selection deals with finding the service that best matches
the user’s criteria and, as such, is a central challenge in the context of any
SOA. The selection process is usually twofold: First, consider only the services
matching the functional criteria. Then, to find the best one, rank those services
according to which extent they fulfill the non-functional criteria.

While functional matching is a necessary part of any service selection, it has
already been studied intensively [3]. On the other hand, matching based on NFPs
such as price, response time, availability, or reliability has been drawing more

254

and more attention, but it is far from being as well-understood. Sure, there
is a consensus on the need for Service Level Agreements (SLAs), and several
standards, like WSML [4] or WSLA [5], exist to define SLAs. Still, we think
that probabilistic aspects are not covered in the necessary detail at the moment.
Therefore, we want to focus on the aspect of variability found both in NFPs’
values and their contractual descriptions.

,_
Lh
—

—

100+

b2
Ly

Probability | %]
T4
Probability [%]

-
L
-2
LAy

N Foa * .
254 % . e r
-
|
0,042 it oo 1l o' m B 0.0

0 IE‘}U :{‘}u 31}{1 4t'm :‘»{'m Mo Tu We Th Fr Sa Su

Response time [ms]

«Service A » Service I3|

(a) Response time

Day of the week
[*User 1+User 2|

(b) Usage patterns

Fig. 1. Examples

The values of a lot of NFPs exhibit an inherent variability. For instance,
response time is not a constant value at all. Yet, in typical contracts, NFPs
are represented by their maximum value only, whereas probability distributions
would be much more accurate. As you can see in Fig. 1(a), the distributions of
two services regarding response time can be quite different, though they share
the same maximum value. This means that different users might prefer one over
the other, which we think should be reflected in the selection. We therefore
propose using probability distributions throughout the whole selection process.

The description itself also often exhibits variability. Commonly, in a contract,
there is only one description for each NFP, specifying its value(s). A provider
can, of course, offer multiple contracts, but, since customization is not possible,
cannot really tailor a single contract for a specific kind of user. For example,
if we take a look at mobile phone providers: They succeeded in catering to
specific kinds of users, because what is charged per minute depends on several
conditions, enabling each user to find a contract that best matches his needs. We
think that, in a SOA, this possibility for providers to differentiate themselves
is becoming increasingly important, as more and more functionally equivalent
services are made available. We therefore propose the concept of conditional
contracts. Providers can specify several descriptions of each NFP in a contract,
and conditions according to which one of them will be chosen. Additionally, to

255

help users finding the service that best matches their needs, the selection process
should be adapted accordingly by taking usage patterns into account: A usage
pattern tells us how and when a service is expected to be used by a user, and, as
such, can be represented by a probability distribution. For instance, consider a
contract for a service s that, compared to the average, is very expensive during
the week, yet very cheap during the weekend: Given two users uqy and us and
their corresponding usage patterns from Fig. 1(b), that tell us exactly which
days of the week they usually use s, it is clear that u; should use s, whereas an
average service would be a better choice for us.

In a nutshell, we propose a probabilistic approach to leverage the variability
of NFPs: we use conditional contracts and usage patterns, while treating NFPs
as probability distributions throughout the whole selection process. This gives
providers an opportunity to differentiate themselves and users a very easy way to
find the best match. Our evaluation shows that not only does our approach make
novel kinds of scenarios possible, it also allows for better selection in existing
scenarios.

The structure of this paper is as follows: Section 2 gives an overview over
related work. Section 3 introduces a realistic scenario. Section 4 describes our
approach. Section 5 evaluates our approach against our scenario, and finally
Section 6 concludes the paper.

2 Related Work

In this section we survey work that is related to ours. We show both the impact
and the differences in relation to our work.

Regarding NFPs, while, in general, there is a lot of research out there, prob-
abilistic approaches are less common. Probability distributions for NFPs have
mainly been used in computing the NFPs of service compositions with different
kinds of techniques: Dynamic programming and the greedy method [6], as well
as Monte-Carlo simulations [7] have been applied for this purpose. This gives
us confidence that using probability distributions for NFPs is feasible, because
even calculating those for composed services works reasonably well. Besides, to
the best of our knowledge, there is no work that uses probabilistic NFPs directly
for service selection, as we do in our approach.

While we have not seen conditional contracts, as such, there exists an ap-
proach [8] that formalizes the obligations of a service provider as logical rules,
which are specified with the Web Service Modeling Language (WSML) [4]. This
allows to use reasoning on top of those rules to compute the actual NFPs for a
specific service request. In a way, this is quite similar to what you can do with
conditional contracts, yet we found two important differences: First, there ex-
ists no designated way to use such logical rules in conjunction with probabilistic
computations. Second, given the possible complexity of such rules in WSML, it
might not be feasible to derive direct conditions that imply certain values for
NFPs. As we will see, both are strictly necessary for our approach. Hence, we
deem conditional contracts a better choice for our purposes.

256

Concerning usage patterns, there seems to be little research besides the intro-
duction of the notion to refer to patterns in how users usually compose services
[9]. On the contrary, we only refer to usage patterns in how a single service is
used, e.g. at which day of the week, or at which time, a user usually calls a
service

In conclusion, our contribution does not only lie in defining conditional con-
tracts and usage patterns, but in combining them together with probability dis-
tributions into a probabilistic approach, which leverages the variability of NFPs
both in their values and descriptions.

3 Scenario

Now. we start by depicting a realistic scenario to illustrate the real-world prob-
lems that we are trying to solve. First, we describe the setting, the service in
question and the assumed infrastructure in a general overview. Then, we give
detailed descriptions of the involved providers and users. Finally, we pinpoint
the challenges that arise from this scenario.

3.1 Overview

Our overall setting is the stock market. The service we envision provides mobile
news about companies listed in the stock market. A stock market, in general, is
only open on certain days of the week during specific time slots. For our means,
we assume a stock market that is open from Monday to Friday during 9 and 17
o’clock. Consequently, the demand for the service is generally highest when the
stock market is open, and lowest on the weeckend.

Through their mobile clients, users can request news when and how often they
want. Payment is specified per service request. The service discovery happens
through brokers, that are commonly found in a SOA. These brokers have access
to all service contracts available from different providers. Furthermore, brokers
not, only provide service discovery, but can also compute the contract that best
matches a user’s requirements and preferences. However, as consulting the broker
incurs a notable fee, the users’ clients usually only update their contracts once
in a while, e.g. once a month.

3.2 Providers

Providers all offer functionally equivalent services. Therefore, they differentiate
themselves only through the NFPs defined in their contract(s). Though, to make
things comparable, all providers have agreed on a common pricing schema. First,
to distinguish them based on their quality, providers are classified into different
service classes A, B, ... according to their maximum response times. For those
classes, base prices are fixed. Starting from the best service class, A, for each
class the maximum response times increases, while the base price decreases.

257

Then, to cater to specific kinds of users or to differentiate themselves, providers
can introduce as many different service options as needed. These options modify
the base price, given by the service class, depending on the time of usage, which
can be classified into: Stock market open (Mo-Fr 9-17), during the week (Mo-Fr
else), and during the weekend (Sa-Su). While this discretization of the time of
usage is standardized, the providers are free to choose the according prices.

Therefore, the final price for the user is calculated by multiplying the base
price, determined by the service class, with a constant factor, determined by the
service option.

3.3 Users

As for the users, of course, each of them has different needs and uses the service
differently. Nevertheless, most can either be categorized as business users, that
deal with the stock market for a living, or as casual users, that engage in the
stock market as a hobby.

The most essential difference is the time when they use the service. Business
users mostly use the service when the stock market is open, sometimes during
the rest of the week, and only rarely on the weekend. Casual users, on the other
hand, use the service rarely when the stock market is open, also sometimes
during the rest of the week, but mostly on the weekend.

Additionally, they have different needs, resulting in different requirements and
preferences that mainly relate to the following two NFPs: Response time and
price. Regarding response time, both value the response time in terms of the
throughput, which means the number of news updates they can receive in a
certain time interval. Also, both have an optimal throughput that allows them
to make the best use of the service, and a minimum throughput that is the
limit of what is actually usable or tolerable for them in terms of productivity
or patience. Naturally, business users have much higher requirements for the
throughput than casual users. Regarding the price, both, similarly, have optimal
and maximum values, and, as expected, casual users are more price sensitive
than business users. Throughput and price each contribute a part to the overall
utility of the service for the users: Business users value throughput the most,
while casual users are more concerned about price.

3.4 Challenges

So far, we have described the scenario, but not yet analyzed what actually is chal-
lenging about it. On a top level, we identify two areas that pose new challenges:
The definition and the selection of contracts.

Definition. The definition of contracts that meet the needs of the providers
is the first challenge, because, with normal contracts, it is not possible to real-
ize the service options mentioned: Representing an option as a separate contract

258

would only allow to realize a base option that offers a constant price. On the
other hand, any meaningful option would have to specify multiple alternatives at
least for the price, depending on the time of the usage of the service. Otherwise,
there would be no way for the service providers to cater to business or casual
users by tailoring their contracts.

Selection. Sclecting the best contract that accurately matches the users’ needs
poses the second challenge. While choosing the right service class according to its
maximum response time is not that hard, choosing the best contract of providers
from the same class is. The same maximum response time tells us nothing about
the actual distribution of the response time’s values: What is the average value,
or how probable is an interval of values that is of special interest to the user? So
selecting the best contract by choosing the right service class and service option
is not trivial, because not only the needs, but also the usage patterns of users
might differ, which might have a high impact on selection. Hence, accurately
taking the long term prospect of a contract for a user into account is not easy,
but especially important, as the contract can only be changed so often, because
of the incurred fee when invoking the broker.

4 Approach

In this section we introduce our approach. While we want to illustrate how it can
solve the challenges posed by the scenario, we first present it in its generality here,
and then adapt it specifically to our scenario later on in the evaluation. First, we
introduce our notions of conditional contracts, usage patterns and probability
distributions, before going into the details of our probabilistic approach.

4.1 Conditional Contracts

First, we need contracts that allow us to express the services of our scenario.
As already mentioned, we could model each service option with a separate con-
tract, but we also would have to model the conditional pricing for each option.
Therefore, we propose conditional contracts.

Definition 1. A conditional contract (cc € CC) consists of a conditional state-
ment. A conditional statement (cs € CS) can either be a statement (s € S) or
a tuple of a condition (c € C) and two conditional statements, of which the first
corresponds to the condition being true and the second to it being false.

<ce>un=<cs > (1)
<es>u=<s> | (Ke>, <es>, <ces>)

As syntax we propose something similar to typical programming languages, so
a sample conditional contract could look like this:

259

contract {
if time.weekDay = Monday
if 8 <= time.hour <= 9

price = 4
else
price = 2
else
price =1

The semantics are also similar to what one would expect in a typical program-
ming language, so by evaluating the conditions, one can easily deduce which
statement actually holds when a service is called.

4.2 Usage Patterns

Then, to select the best service option for a user, we need to know how he uses
the service. Thus, we introduce usage patterns.

Definition 2. A usage pattern function up takes a condition ¢ € C as a param-
eter and returns a probability between 0 and 1 for the likeliness that c is true.

up : C — [0, 1] (2)

For a given user, we compute! his usage pattern function, so we can evaluate
the contracts for him.

4.3 Probability Distributions

Finally, to find the best provider not only on a service class level, but also within
a service class, we treat all our NFPs as probability distributions. This way, we
can later differentiate even between providers within the same service class.

Given an utility function, instead of applying it only to maximum values, we
can apply it first to the values of the probability distributions themselves, be-
fore aggregating everything into a single utility value. To aggregate these utility
values properly, we need the probability for each combination of values for the
NFPs involved. Therefore, we introduce a NFP function.

Definition 3. A NFP function nfp defined for several NFPs Py, ..., P, € NFP
takes possible values for those NFPs as parameters and returns a probability
between 0 and 1 for the likeliness of this combination of values.

nfp: Pp x---x P, —[0,1] (3)

L There are many ways how to compute or approximate such a usage pattern function,
e.g. one could compute it from the history of the user’s previous requests.

260

4.4 Probabilistic Selection

Now, that we have introduced our notions of conditional contracts, usage pat-
terns and probability distributions, we can introduce our probabilistic approach
in its entirety. In the following we layout the steps of our approach one by one.

Setup. Our approach finds the best contract cc, for a given user u from a given
list of contracts CC, C CC. For that, we only consider a limited number of NFPs,
P, :={P,...,P,} CNFP, for which we also define the following notation:

E::Plx---xPn (4)

To compute the utility of a contract cc, we need the user’s utility function wutil,
that implies certain values for our NFPs P,:

utily, : P_’a) — IR (5)

Compute Conditions. As a first computation step, we compute all “full”
conditions that directly determine if statements in the given contracts hold or
not. For this, we need the following auxiliary function ac:

{cers} for cc = s
ac(ce, Cepy) = ac(csy, Cete N €)
U ac(csa, Cety N 7 C)

(6)

for cc = (¢, cs1,¢89)
Then, we compute the relevant conditions RC, for all given contracts, as follows:

RC, = U ac(ce, true) (7)

cceCCy

Compute Usage Patterns. The next step is to compute? the user’s usage
pattern. While the usage pattern function may only be partial, it is important
that it is defined for all relevant conditions:

Ve € RC, . upy(c) is defined (®)

Compute NFPs. In the next step, we compute the user-specific probability
distributions of all NFPs for each contract cc. In order to do this, we determine
the relevant statement that corresponds to a given condition ¢ with an auxiliary
function rs:

{s} for cc = s AN ey = ceorn

{} for cc = s ANey # Cers

rs(cs1, Cyy Cota N C)
U rs(esa, Cry Cote N 1 C)

(9)

rs(ce, ez, Coty) =
for cc = (¢, cs1,cs2)

2 There are several ways to compute this, but we do not focus on this in our approach.

261

Furthermore, for all statements s of cc, we compute® the NFP function nfpec s
that returns the likeliness of a combination of values under the assumption that
statement s holds:

nfpcc,s : Fa) - [O 1] (10)

Given all this, we can now compute the probability distribution for NF'Ps spec-
ified in cc, as follows:

nfpcc,u(ﬁ) = Z UPy (C)) nfpcc,s(ﬁ)

c€ac(ce,true) (11)
sers(ce,c,true)

Compute Utility. As a last step, we compute the utility of the contract cc
for the user wu, using the utility function wutil,. As already explained, we first
apply the function to the values of the probability distributions itself, before
aggregating everything into one utility value uv to make full use of the probability
distributions:

uvy(ce) = Z nfDecu(P) - utily, (p) (12)
FeP,
Thus, we can compute the utility value for any given contract, and then select
the contract cc,, with the highest utility value for our user w.

5 Evaluation

In this section, we evaluate our approach against the scenario introduced before.
The goal is to show two points:

1. Applying our approach to existing scenarios improves selection.
2. Using our approach allows for selection in novel scenarios.

Response time is a suitable NFP to show (1), because its variability is already
inherent, independent of any scenario. So we take our scenario without its pricing
aspects and show that applying our approach improves selection. Because our
results do not depend on introducing novel pricing schemes, they can be generally
applied to existing scenarios.

Price, on the other hand, is a NFP for which we can clearly show (2), di-
rectly following our scenario. Nevertheless, because of the prominence of pricing
schemes, we think our results can be easily transfered to other scenarios as well,
given some domain specific adaptation.

Hence, we conduct our evaluation in two parts, focusing on response time in
the first part and on price in the latter to show (1) and (2), respectively.

3 The complexity of the computation mainly depends on what kind of statements are
allowed. For example, computation of nfpcc,s should be casy when directly assigning
constant values or probability distributions to specific NFPs.

262

5.1 Response Time

In order to evaluate our approach for the NFP response time, we first define
concrete providers and users. Then, we compute the utility of the providers for
each user.

Users. We have four users: w1, us, ug and uy. Out of them, u; and us are
business users, and u3 and uy4 are casual users. Therefore, u; and us have sharper
requirements regarding response time, meaning a higher optimal and minimum

\ Mo-Fr Mo-Fr Sa-Su

Utility [%]
Probability [%e]

[
L]

0 25 500 750 1000 9-17 else
Response time [ms] Time
(a) Utility functions (b) Usage patterns
Fig. 2. Users

In Fig. 2(a) we see the corresponding utility functions for them?, that are of
the following form?®, similar to those described in [10]:

f(@) = o (13)
Additionally, our users have usage patterns, as seen in Fig. 2(b), that are typical
for business and casual users, respectively. Two aspects are of special interest:
First, while the usage pattern of u; directly corresponds to the load of p1, us’s
usage pattern is still similar, but slightly different. Second, while both us and
uy4 represent casual users, only u4 uses the service solely on the weekend.

Providers. We have two providers, p; and po, with the same maximum response
time. This implies, they are in the same service class and therefore share the
same base price. Thus, it makes sense to compare them just in terms of their
response time. The probability distributions of their (aggregated) response times
are shown in Fig. 3.

4 The utility functions of 41 and u2 are identical. The same is valid for u3 and u4.
® Both a and ¢ can be computed from the optimal and minimum throughput.

263

[] b
n =
[[*¥]
L [=

]
[5]

Probability [%]

Probability [%]

- tLl]
BT

ﬁ. F .q'.'-. i, “l I“
. ooolq..'.. ... ,,..
“__--a.l. . . .‘flt------., 04 -----l"‘? . :."Ins-..,
0 250 500 750 1.000 0 250 500 750 1,000
Response time [ms] Response time [ms]
| | |
=gl °p2]
(a) Provider p; (b) Provider p2

Fig. 3. Aggregated response time

100-

fad

23 =
p— il 4
g 20 =
— 20 Z
£ = 50
—— = 30
‘s 15 : =
o o =
8 M S
 10; o 25-
m L] L]
...'..l
ﬁl) .i' ... |-
L .l. L -l. {]' + * *
Qlasadanee®® &, e, i, T P Mo-Fr Mo-Fr Sa-Su
0 250 500 750 1.000 9-17 else
Response time |ms] Time
* Mo-Fr 9-17 = Mo-Fr else « Sa-Su “pl]
(a) Response time (b) Load

Fig. 4. Provider p1

As you can see, for py the probability distribution follows a simple normal
distribution, while for p; it seems to follow no obvious pattern. That is, because,
contrary to po, the response time of p; is dependent on the load, which varies
throughout the weck, as shown in Fig. 4(b). So actually, the distribution of p; is
made up of all the normal distributions from Fig. 4(a), that, when aggregated,
result in the distribution from Fig. 3(a).

Selection. Now, we compute the utility of each provider for each user, using
four different methods: mazx, avg, prob, and cond. This yields the results seen in

264

Fig. 5. First, as a baseline we compute the utility using the maximum response
time of the providers (maz). This yields a utility of 0% for both providers, as
their maximum response time corresponds to a throughput that is lower than
the users’ minimum throughput. We proceed by computing the utility using the
average response time (avg), which is already better, because we get utilities
greater than 0% for the providers.

Next, we compute the utility using the probability distribution of the (aggre-
gated) response time (prob), and compare prob to avg. For p;, we see that there
is quite a notable difference for all users. Interestingly, while for u; and wus the
utility increases with prob, for us and uy4 it decreases. This shows using avg can
serve neither as a lower nor as an upper bound for the utility computed using
the inherent probability distributions.

100+ 100+

- . £ 50-
1 ‘I ‘l)| | |
[E = II A 8 (- - cE . B II £ II i

|
h
|
Lh

Utility [%]

Utility [%]
=

L

max ave prob cond max avg prob cond
Method Method
sl su2=u3 =ugd
(a) Provider pq (b) Provider ps

Fig. 5. Utility values

Finally, we compute the utility using our full approach with conditional con-
tracts and usage patterns (cond), and look at the difference between prob and
cond. This means that instead of just having one probability distribution for the
aggregated response time in each provider’s contract, we give three conditional
definitions with different distributions, one for each time of usage. In the case of
p1., those conditional definitions correspond to the probability distributions given
in Fig. 4(a). For py, on the other hand, there is just a single distribution from
Fig. 3(b), so introducing conditions in py’s contract does not change anything.
This explains why the utility of ps does not change for a single user, as, with-
out conditions, the usage patterns have no impact on the utility computation.
So for p;, we can see differences for all users, except for uy, which is because
of the correspondence of the load of p; and the usage pattern of u;: The different

265

normal distributions of p;’s response time are aggregated according to p;’s load,
and each distribution corresponds to conditions in the contract; the same condi-
tions the usage patterns correspond to. Hence, the bigger the difference between
usage pattern and load, the bigger the difference in utility. For w; this means
no difference, for us a slight difference, and for us and w4 big differences, as
their usage patterns are quite different from p;’s load. Overall, the comparison
between max and cond shows quite remarkable differences in utility, especially
regarding p;: For uz and uy the utility goes up from 0% to over 40%, and for us
and w4 it even goes up from 0% to over 90%.

5.2 Price

In order to evaluate our approach for the NFP price, we first refine the concrete
providers and users, we already introduced. Then, we again compute the utility
of the providers for each user, now considering price and response time.

Users and Providers. In order to compute the utility of a provider for our
users, we first define the additional utility functions you can see in Fig. 6.°

Utility [%]

0+ St e

0 10 20 30 40 50 60 70 80
Price [Cent]

Fig. 6. Utility functions

Then, we use a typical weighted sum, as for instance used in [8] and [11]. to
combine the utilities for response time and price. Figure 7(a) shows the corre-
sponding weights for each user, which reflect that u; and us are business, and
us and uy are casual users. As you can see in Fig. 7(b), similar to response time,
the price for p; also depends on the load, while py’s price is constant.”

6 Both u; and us have the same utility function.
" The aggregated average price (according to the load) for p; is equal to p2’s price.

266

100+

sl =u2=u3-ud

(a) Provider p;

50+

sl =u2=u3-ud

(b) Provider p2

40+
— 75 E
) -
S Q 30+
= <. .
& 50 = 20+
2 =
E: =
25- 10- ‘II
0-
)= l I | II ll' \lﬁ I I ‘\.IU—I I: (l-'\ll
response lime price 9-17 else
NFP Time
sul=u2=u3-ud
(a) Weights (b) Price
Fig. 7. Distributions
100+ 100+
75 . 153
£ s0- £ s0-
=] =
251 25+ [l ‘ ‘
[E II_ ‘ II | oE . [\E II II II ||' £
max avg prob cond max avg pmh cond
Method Method

Fig. 8. Utility values

Selection. Again, we compute the utility of each provider for each user. The
results from Fig. 8 are interesting in many respects, but we will pick just some
observations: Comparing p;’s utility for us to the previous evaluation, we see
that, while the maz utility is not 0% anymore, it is still less than 30%.

Also there is a sharp drop-off in avg and prob utility, that is not visible in
the cond utility, which still is over 90%. The utilities for ps, on the other hand,
are not that much different, except that you can clearly see the different price
expectations of ug and uy reflected in the increase of utility for us and decrease
for u4, who is more price sensitive.

267
6 Conclusion

In this paper, we have proposed a probabilistic approach that leverages the
variability of NFPs by using conditional contracts and usage patterns, together
with probability distributions. We also have described a realistic scenario to
illustrate the settings in which such variabilities occur. Furthermore, we have
evaluated our approach against this scenario, with concrete examples, focusing
on the two NFPs response time and price. The results of our evaluation show
that our approach improves selection for existing scenarios and makes selection
for novel scenarios possible.

Applying our approach in practice could yield some insights into how different
ways of computing usage patterns or utility functions would fare, or what the
impact of introducing conditional contracts in existing systems would be.

Last but not least, our work could also be extended in several ways. First, if
anyone is going to use conditional contracts, the question is how to best formalize
them, which could e.g. be done using WSLA [5]. Second, while we introduced
conditional contracts, our approach could also, more generally, be applied to
conditional descriptions of NFPs that are not necessarily contained in a contract.
This also leaves the questions how to get such descriptions, and from where
and from whom to get them. Finally, we have only looked into selection so
far, but applying our approach to adaptation could be very interesting, because
conditional descriptions of NFPs, and usage patterns could probably change at
runtime.

References

1. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-oriented com-
puting. Communications of the ACM 46, 25-28 (2003)

2. O’Sullivan, J., Edmond, D., Ter Hofstede, A.: What’s in a Service? Distributed
and Parallel Databases 12(2-3), 117-133 (2002)

3. Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K.P.: Semantic Matching of
Web Services Capabilities. In: Horrocks, 1., Hendler, J. (eds.) ISWC 2002. LNCS,
vol. 2342, pp. 333-347. Springer, Heidelberg (2002)

4. de Bruijn, J., Lausen, H., Krummenacher, R., Polleres, A., Predoiu, L., Kifer,
M., Fensel, D., Toma, I., Steinmetz, N., Kerrigan, M.: The Web Service Modeling
Language WSML. Technical report, WSML, WSML Final Draft D16.1v0.3 (2007),
http://www.wsmo.org/TR/d16/d16.1/v0.3/

5. Ludwig, H., Keller, A., Dan, A., King, R., Franck, R.: Web Service Level Agree-
ment (WSLA) Language Specification, Version 1.0, IBM Corporation (2003),
http://www.research.ibm.com/wsla/WSLASpecV1-20030128. pdf

6. Hwang, S., Want, H., Tang, J., Srivastava, J.: A probabilistic approach to modeling
and estimating the QoS of web-services-based workflows. Information Sciences: an
International Journal 177(23), 5484-5503 (2007)

7. Rosario, S., Benveniste, A., Haar, S., Jard, C.: Probabilistic QoS and Soft Contracts
for Transaction-Based Web Services Orchestrations. IEEE Transactions on Services
Computing 1(4), 187-200 (2008)

268

8.

10.

11.

Toma, I., Roman, D., Fensel, D., Sapkota, B., Gomez, J.M.: A Multi-criteria Ser-
vice Ranking Approach Based on Non-Functional Properties Rules Evaluation. In:
Kramer, B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp.
435-441. Springer, Heidelberg (2007)

Balke, W., Wagner, M.: Towards Personalized Selection of Web Services. In: WWW
2003 (May 2003)

Menasce, D.A., Dubey, V.: Utility-based QoS Brokering in Service Oriented Archi-
tectures. In: ICWS 2007, July 2007, pp. 422-430 (2007)

Haddad, J.E., Manouvrier, M., Ramirez, G., Rukoz, M.: QoS-Driven Selection of
Web Services for Transactional Composition. In: ICWS 2008, September 2008, pp.
653-660 (2008)

