Transformation of Graphical ECA Policies
into Executable PonderTalk Code

Raphael Romeikat, Markus Sinsel, and Bernhard Bauer

Programming Distributed Systems, University of Augsburg, Germany
{romeikat,sinsel,bauer}@ds-lab.org

Abstract. Rules are becoming more and more important in business
modeling and systems engineering and are recognized as a high-level
programming paradigma. For the effective development of rules it is de-
sired to start at a high level, e.g. with graphical rules, and to refine them
into code of a particular rule language for implementation purposes later.
An model-driven approach is presented in this paper to transform graph-
ical rules into executable code in a fully automated way. The focus is on
event-condition-action policies as a special rule type. These are modeled
graphically and translated into the PonderTalk language. The approach
may be extended to integrate other rule types and languages as well.

1 Introduction

Increasing complexity of information systems complicates their development,
maintenance, and usage. Due to this evolution, the Autonomic Computing Ini-
tiative by IBM [1]| proposes self-manageable systems that reduce human inter-
vention necessary for performing administrative tasks. For realizing autonomic
capabilities within managed objects, policies are a promising technique. The
idea behind policy-based management is allowing administrators to control and
manage a system on a high level of automation and abstraction. According to
[2], policies are an appropriate means for modifying the behavior of a complex
system according to externally imposed constraints.

The focus of this paper is on a certain type of policy called Event-Condition-
Action (ECA) policies. ECA policies are considered as reaction rules that allow
for specifying which actions must be performed in a certain situation. They
specify the reactive behavior of a system in response to events and consist of a
triggering event, an optional condition, and an action term.

Policy-based management is also a layered approach where policies exist on
different levels of abstraction. Wagner et al. consider three different abstrac-
tion levels [3]. The business domain level typically uses a natural or a visual
language to define terms and constrain operations. The platform-independent
level defines formal statements expressed in some formalism or computational
paradigm, which can be directly mapped to executable statements of a software
platform. The platform-specific level expresses statements in a specific executable
language. Strassner defines a flexible number of abstraction layers as the Pol-
icy Continuum [4]. The idea is to define and manage policies on each level in a

194

domain-specific terminology, and to refine them e.g. from a business level down
to a technical level.

An approach is presented that allows to graphically model ECA policies and
transform those policy models into executable code. It uses techniques from
model-driven engineering (MDE) to model policies in a language-independent
way and to automatically generate code. Models are used to represent ECA
policies based on common policy concepts that are represented in a generic
metamodel. The policy language PonderTalk is also represented by a respective
metamodel. Model transformations allow for generating executable PonderTalk
code from an initial policy model. A full implementation of the approach exists
as plugin for the software development platform Eclipse.

There have been other approaches for modeling information about policies
and policy-based systems. The authors of [5] present a General Policy Modeling
Language (GPML) as a means to design policies and map them to existing policy
languages. This approach is also based on MDE concepts, but uses an UML
profile for visualization and is based on the rule interchange language R2ML with
a focus on logical concepts to map GPML policies onto existing policy languages.
The Common Information Model (CIM) [6] by the Distributed Management
Task Force (DMTF) represents a conceptual framework for describing a system
architecture and the system entities to be managed. An extension to CIM to
describe policies and to define policy control is provided by the CIM Policy Model
[7]. Another type of information model is the Directory Enabled Networks next
generation standard (DEN-ng) [8] by the TeleManagement Forum (TMF). DEN-
ng is based on the Policy Continuum and considers different levels of abstraction.
Policies are directly integrated into the models. Similar to the approach presented
here, the CIM Policy Model and DEN-ng are independent of any policy language.
They are as metamodels that enable the developer to describe a system and the
enclosed policies in an implementation-independent way. Policies are specified in
a declarative way while omitting technical details. However, only specification
of policies is regarded in both approaches. They do not offer a possibility to
transform a policy model to a particular language that can be executed by some
engine. It remains an open issue to what extent PonderTalk and other policy
languages are compatible with those policy models.

This paper is structured as follows. Section 2 gives an introduction to Model-
driven Engineering and to the policy language PonderTalk. Section 3 describes
the model-driven approach to transform graphical ECA policies into executable
code. Section 4 describes the implementation of the approach. The paper con-
cludes with related work and a summary in section 5.

2 Basics

This section presents a short introduction into model-driven engineering, which
represents the foundation of the approach, and into the policy language Pon-
derTalk, which is the target of the transformation.

195

2.1 Model-Driven Engineering

In software engineering one can observe a paradigm shift from object-orientation
as a specific type of model towards generic model-driven approaches, which has
important consequences on the way information systems are built and main-
tained. The model-driven engineering approach follows multiple objectives: ap-
ply models and model-based technologies to raise the level of abstraction, reduce
complexity by separating concerns and aspects of a system under development,
use models as primary artifacts from which implementations are generated, and
use transformations to generate code with input from modelling and domain ex-
perts [9,10]. Model-driven solutions consist of an arbitrary number of automated
transformations that refine abstract models to more concrete models (vertical
model transformations) or simply describe mappings between models of the same
level of abstraction (horizontal model transformations). Finally, code is gener-
ated from lower-level models. Models arc more than abstract descriptions of
systems as they are used for model and code generation. They are the key part
of the definition of a system.

2.2 PonderTalk

Ponder2 [11] is a policy framework developed at Imperial College over a number
of years. A set of tools and services were developed for the specification and
enforcement of policies. Ponder2 offers a general-purpose object management
system and includes components that are specific to policies.

Everything in Ponder2 is a managed object. Managed objects generate events
and policies are triggered by those events to perform management actions on
a subset of managed objects. This is also called local closed-loop adaptation of
the system. There are managed objects that are available by default to interact
with the basic Ponder2 system, i.e. factory objects to create events and policies.
Besides that, user-defined managed objects are implemented as Java classes and
used within Ponder2. Managed objects can send messages to other managed
objects and new instances of managed objects can be created at runtime.

ECA policies are called obligation policies in Ponder2 and are specified with
the language PonderTalk. PonderTalk has a high-level syntax that is based on
the syntax of Smalltalk and is used to configure and control the Ponder2 system.
Basically, everything in Ponder2 can be realized with PonderTalk, i.e. define and
load managed objects, specify policies, or throw events that trigger policies. In
order to realize a policy system in Ponder2, the respective PonderTalk code has
to be implemented.

Example Scenario. Now, an example scenario is presented where ECA policies
are used to manage the behavior of a communication system. Further sections
will refer to this scenario when presenting examples.

The signal quality of wireless connections is subject to frequent fluctuations
due to position changes of sender and receiver or to changing weather conditions.
A possibility to react to those fluctuations is adjusting transmission power. A

196

good tradeoff between transmission power and signal quality is desired. Too high
transmission power causes additional expenditures whereas signal quality suffers
from too less transmission power.

In that scenario signal strength is managed autonomously by a policy system
using ECA policies. A Transmitter adjusts transmission power with the actions
increase_power and decrease_power, both of them expecting a value by which
power should be increased and decreased. Whenever a change in signal quality
is noticed, an intensityChange event is thrown that contains the id of the affected
receiver and the signal quality’s old Value and new Value.

Two ECA policies lowQuality and highQuality are responsible for adjusting
transmission power. They are triggered whenever an intensityChange events oc-
curs and in their condition check the old and new signal quality enclosed in the
event. If the transmission power falls below a value of 50, the lowQuality policy
executes a call of increase_power (10) to increase transmission power by 10 at
the Transmitter. The other way round, the highQuality policy executes a call of
decrease_power (10) at the Transmitter if transmission power goes beyond a
value of 80.

The behavior of the transmission system can new be adjusted at runtime via
the policies. The accepted signal quality is specified in the conditions of the two
determining policies by means of the two boundaries 50 and 80. Changing those
boundaries has immediate effect on the transmission power and signal quality.

3 Modeling and Transforming ECA Policies

In this section the overall approach to graphically model ECA policies and trans-
form those policy models into executable code is presented. Various aspects have
to be considered for the approach to be effective. Figure 1 illustrates how the
various aspects of the approach are related to each other.

Generic

. PonderTalk
o Model2Model
Riusizaicn POI I Cy Tr:nseform(;ti?)n M eta m O d el
Metamodel
. k3 k-]
Graphical g g
Editor 3 2
Creation and | G eneric Model2Model Pon d erTa I k ModeI2T‘ext Pon d erTa I k
Modification POI i Cy M od e I TransformTtion M Od e I Transformation Cod e

Fig. 1. From Graphical Policies to PonderTalk Code

First, a generic policy metamodel contains common concepts of ECA policies.
It abstracts from special features and technical details that are specific to a
certain policy language and thus allows to specify ECA policies independently of
a particular language. Any ECA policy is initially represented as instance of that

197

metamodel to offer an abstract view onto the policy from a functional point-of-
view. As only common concepts are contained in the generic policy metamodel,
such a generic policy model can be transformed into executable code of a concrete
policy language later. Next, the concepts of the generic policy metamodel have a
graphical representation so the generic policy model is visualized as a diagram. A
graphical editor offers functionality to create and modify models in a comfortable
way.

Once an ECA policy has been modeled as a diagram, transformation into
the target language can start. The starting point for defining that transforma-
tion is the generic policy metamodel, and a metamodel for the target language,
namely the PonderTalk metamodel. As no formal metamodel was available for
the PonderTalk, a metamodel was created from the language documentation
[12]. A model-to-model transformation is defined on the metamodels and exe-
cuted on the model. It takes the generic policy model as input and generates the
respective PonderTalk model as output, which is an instance of the PonderTalk
metamodel. Finally, a model-to-text transformation takes the PonderTalk model
as input and generates a textual representation of that policy containing the re-
spective PonderTalk code.

The following subsections present further details about the metamodels, the
graphical visualization, and the model transformations. Various aspects will be
illustrated by means of the example scenario presented in section 2.2.

3.1 Generic Policy Metamodel

The generic policy metamodel comprises common concepts of well-known policy
languages such as PonderTalk [11], KAoS [?], and Rei [?]. It covers the essential
aspects of those languages and contains classes that are needed to define the
basic functionality of an ECA policy, i.e. events, conditions, and actions, amongst
others as described in the following. The generic policy metamodel is specified as
Essential MOF (EMOF) model. EMOF is a subset of the Meta Object Facility
(MOF) [?] that allows simple metamodels to be defined using simple concepts.
EMOF provides the minimal set of elements that are required to model object-
oriented systems. Figure 2 shows the generic policy metamodel as UML class
diagram.

The class Entity represents the components of the policy system. Each Entity
has a name attribute and three more technical attributes. Those attributes may
contain code fragments that are specific to the target language and that need to
be included into the generated code so it is executable. In case of PonderTalk,
accordingClass e.g. specifies the name of the respective Java class implementing
that Entity as managed object in Ponder2. This is somehow contrary to the
aspect of language independency, but on the other side it is a simple possibility
to to generate code that is executable without further modification.

Entities can be organized in a Domain hierarchy, similar to the folders of a file
system. A Domain is a collection of Entities that belong together with regards
to content. Events, conditions, and actions can also be contained in a Domain.
A Domain is an Entity itself as it can also be controlled by Policies.

198

0..1 01

Entity
-name[1] : String
-accordingClass[0..1] : String
-casslInitCode[0..1] : String
-createArg[0..1] : String

* * *

PolicyGroup . Policy %i Domain
-name : String #active : boolean = true *
-active : Boolean = null 7\ . *

EventParameter —| Obligation li

-name : String

*

*

0..1

1.* 1 ; /
Event Condition < Action
-name : String o * JAN -action : String

2.* -executionNr : int

AndExpression I‘— OrExpression —OI NegationExpression|
BinaryExpression «enumeration»

first - String BinaryExpressionType

rsecond : String + LOWER OR EQUAL = 1

-type : BinaryExpressionType + I =

i =P i +EQUAL =2

+UNEQUAL=3
+GREATER_OR_EQUAL =4
+GREATER =5

Fig. 2. Generic Policy Metamodel

The class Policy is the abstract superclass of all types of policy, whereas only
one concrete type Obligation is included so far, representing ECA policies. The
active attribute of a Policy describes its status and may be set to true or false.
Only active Policies are triggered at runtime in a policy system.

Policies can be grouped in PolicyGroups. Groups are named and can contain
other groups. In contrast to a Domain, a PolicyGroup has an administrative
purpose and is used for activating and deactivating a set of Policies all at once
using the active attribute of the group, which may be set to true, false, or
undefined. The active status of a Policy is determined by the closest Policy-
Group in the group hierarchy with active set to true or false and where that
Policy is contained. If at the respective level of the hierarchy some active and
inactive PolicyGroups contain that Policy, the policy is regarded as being ac-
tive. The active attribute of a Policy is only deciding if all PolicyGroups which
contain this Policy have active set to undefined.

199

The classes Fvent, Condition, and Action represent the actual content of an
Obligation. Each Obligation requires at least one Fvent, optionally has a Con-
dition, and has an arbitrary number of Actions associated. An Obligation is
triggered by at least one Event whereas at runtime the occurrence of one re-
spective Fvent suffices to trigger that Obligation. An Event can be thrown by
any FEntity, has a name, and can contain a set of parameters represented by the
class FventParameter. EventParameters are named and can be referred within
the Condition that is associated with the respective Obligation.

A Condition is a boolean expression. A BinaryFEzpression is the simplest form
of a Condition and compares two strings with each other. These strings represent
the left land side (LHS) and right hand side (RHS) of the Condition, denoted
by the attributes first and second. Those strings can contain the name of an
EventParameter, which allows to analyze the Event that triggered the Obligation.
Or, they can directly contain a simple value in the form of an enclosed string
or numeric value. The comparison operator is defined by the attribute type and
may be one of <, <, =, #, >, and >. An expression can additionally be negated
using the class NegationFEzxpression, or combined as conjunction or disjunction
using the classes AndEzpression and OrExpression respectively.

If the Condition of an obligation evaluates to true, the associated Actions are
executed. Executing an Action means calling an Operation. The attribute action
within the class Action specifies which Operation is called. The attribute exrecu-
tionNr must be used to denote the sequence of execution if two or more Actions
are associated with an Obligation. Arbitrary numbers may be used as long as
they are different from each other. They need not be consecutive, which provides
some flexibility when associating multiple Actions to multiple Obligations.

3.2 PonderTalk Metamodel

As a next step, the PonderTalk metamodel is defined as the target of the model-
to-model transformation. That metamodel is again specified as EMOF model;
figure 3 shows it as UML class diagramm. It refers to the current version 2.840 of
Ponder2 and contains only those concepts that are needed to represent an ECA
policy in PonderTalk. Other functionalities of PonderTalk such as authorization
policies are not adressed as they go beyond the expressiveness of the ECA pol-
icy metamodel. In the following, the PonderTalk metamodel is described with
respect to its differences to the generic policy metamodel.

In PonderTalk an Entity is called ManagedObject. Apart from naming there
is no difference between those two classes. The same applies to an Obligation,
which is now called ObligationPolicy. The classes Domain, Policy, Condition,
BinaryEzxpression, NegationEzrpression, AndFExpression, OrErpression, and Bi-
naryFExpression Type do not differ from the generic policy metamodel.

PonderTalk does not know the concept of groups. Thus, a way has to be
found to represent PolicyGroups when transforming into PonderTalk. This has
an effect on the active attribute of a Policy and is described later.

200

1
0.1 ManagedObject
h -name[1] : String
-accordingJavaClass[0..1] : String
-classInitCode[0..1] : String
-createArd0..1] : String
0.1 JAN *
Template Policy | Domain I%
#active : boolean = true *
AN . .
—
Argument ObligationPolicy Operation
.~ |name : String -operation : String
-executionNr : int
0..1 0..1 1 1.*
EventTemplate %i Condition l— Action l—
2.* /\
o 7

AndExpression IQ— OrExpression —QI NegationExpression

BinaryExpression _ «enumeration>»

Ffirst : String BinaryExpressionType

second : String TSWEE o EQUAL = 1

-type : BinaryExpressionType + IR =

i =P i +EQUAL =2

+UNEQUAL =3
+GREATER_OR_EQUAL =4
+GREATER =5

Fig. 3. PonderTalk Metamodel

On the other hand, PonderTalk introduces a new class Template. Templates
are used to create new instances of ManagedObjects, Policies, or Domains. A
Template itself is also a ManagedObject.

An FEvent in the generic policy metamodel is called EventTemplate in Pon-
derTalk. An EventTemplate can contain an arbitrary number of named Argu-
ments, which represent the respective EventParameters. A noticeable difference
is that an ObligationPolicy in PonderTalk cannot be triggered by an arbitrary
number of FventTemplates, but is triggered by at most one. This is taken into
consideration by the transformation later. Additionally, an EventTemplate is an
instance of ManagedObject in PonderTalk.

The condition part of an ObligationPolicy exactly corresponds to the generic
policy metamodel, but there are important differences in the action part. An
ObligationPolicy in PonderTalk does not execute an arbitrary number of Ac-
tions, but executes exactly one Action. An Action uses at least one Operation

201

to execute commands on a ManagedObject. The attribute operation is used to
specify a particular PonderTalk command.

3.3 Graphical Visualization

Now, a graphical representation of a policy is created as a diagram. For this
purpose, the classes of the generic policy metamodel that were instantiated
when modeling the policy are visualized with all necessary information. Abstract
classes in the metamodel do not have a graphical representation as no instances
of them can be created. A visualization of the classes in the PonderTalk meta-
model is not required either as that metamodel is only used as intermediate step
in the transformation later and needs not be available as a diagram.

Figure 4 shows the graphical representation of the example scenario presented
in section 2.2. Additionally to the scenario description, the two policies lowQual-
ity and highQuality are put into a policy group named quality.

4 dndExpression @ transmitkers £ AndExpression
*<aldvalue =50 < newvalue < 50 | ¥ newvalue = 80 < aldvalue <= 80
s bransmitters

Class: Transmitber

& lowCuality | B quality | & highQuality
|ackive = trug__ active = krue _active = krue

HjintensityChange

| Tid
[T cldvalue
[T newvalue
M oot transmitkers/tr ansmitkert increase_power: 10 W ook transmitters transmitters decrease_power: 10
|Actiond 0 Actiond 0

Fig. 4. Visualization of a Generic Policy Model

For visualizing the instantiated classes simple rectangular shapes were chosen
that ressemble the way classes are visualized in UML. As header of each shape,
a symbol and an identifying text are displayed to characterize it. That text
contains the name attribute if existant in the respective class. For an action, the
action attribute is used instead. For a binary expression, a textual representation
of its attributes is used to visualize the LHS, RHS, and the operator, and for
the other expression classes, the name of the class itself is used.

Further details of the classes are displayed in the shape body, which usually
contains the attributes with their value. Event parameters are not visualized
as rectangular shape, but they are visualized within the body of the enclosing

202

event, which can be seen with the event intensityChange and the contained event
parameters ud, old Value, and new Vaule. Conditions that are used within another
condition are directly visualized within the body of the parent condition as
shown with the two AndConditions, which both contain two binary conditions.
This way of integrating event parameters and nested conditions reduces the
overall number of shapes in the policy diagram.

Finally, associations between classes are displayed as directed lines as known
from UML class diagrams. The direction represents the visibility of the classes
as defined by the respective associations in the metamodel.

The chosen way of visualizing classes and associations omits complex shapes
and technical details, so it focuses on the essential information and developers
should easily get familiar with it. In section 4 a graphical editor is presented
that allows to create ECA policies based on the generic policy metamodel and
the graphical visualization.

3.4 Model Transformations

An ECA policy is now specified as generic policy model using the generic policy
metamodel and the graphical visualization. The next step is generating a repre-
sentation of that policy as PonderTalk code as an implementation for Ponder2.
For this purpose, model transformations take the generic policy model as input
and generate the respective PonderTalk code. The overall transformation pro-
cess is divided in two steps. First, the generic policy model is transformed into a
PonderTalk model. That model is in a second step transformed into PonderTalk
code. The necessary transformations are summarized in figure 5 and described
in the following.

. Modified P | Modified
Generic Polic F : . PonderTalk i PonderTalk
Model v Mog:ggiion 1 Genilncd PIOIICY T';Iao:seflozrm'eoln 1 Model Mogilgdcgﬁon 1 Por;/?eJTlalk Tr':r‘::grz:\:?m | Code
ode ode

Fig. 5. Model Transformations

From a Generic Policy Model to a PonderTalk Policy Model. When
transforming a generic policy model, a check is performed first whether the model
fulfills the structural requirements of the metamodel with respect to the cardi-
nalities of the associations. Furthermore, domains must not contain themselves
nor contain two domains that are named equally. The same applies to policy
groups. All entities of the model must have a name and names must be unique
amongst obligation policies and amongst direct entities (without subtypes). Fi-
nally, any action must specify its action attribute. If all checks are passed, the
model is well-formed and ready to be transformed.

Now, a model modification is executed to modify the source model. A modifi-
cation does not create a new model as target, but the result of the modification
is the modified source model itself. Model modifications are used in order to

203

enrich a model with additional information that was not modeled explicitly, or
to modify details of a model to simplify further transformations. In the generic
policy model, an Obligation can be triggered by various Fvents whereas in the
PonderTalk model only one FventTemplate is allowed per ObligationPolicy. For
this purpose, a model modification duplicates Obligations with two or more as-
sociated Fvents into several Obligations of with each one is associated with one
of the original Fvents. The rest of the Obligation is duplicated without changes.
This structural change allows the straightforward generation of the PonderTalk
model from the modified generic policy model.

Then, a model-to-model transformation takes the modified generic policy
model as input and generates the respective PonderTalk model as output. For
this purpose, the transformation translates the concepts of the generic policy
metamodel in a way so they are expressed by the concepts of the PonderTalk
metamodel. The transformation is defined on the classes of the metamodel and
is executed on the instances of those classes in the model. As a result, the Pon-
derTalk model is generated as follows.

First, all instances of Entity are transformed into ManagedObjects one after
another. The attribute values of an entity are copied to the respective managed
object. Transforming the Entities includes transforming Domains and Obliga-
tions as they are Entities as well. When transforming an Entity, any associated
Entity (i.e. the domain of an entity) is transformed immediately, and this is a
recursive process.

It is important to notice that an Entity can be referenced multiple times by
other Entities and whenever one reference is processed, the transformation of
that Entity is called straightforward. However, a caching mechanism ensures that
an Entity is actually transformed only once and with any further transformation
call to the same FEntity, the cached result is used instead. This ensures that any
model element is created only once in the target model and the model elements
need not be processed in a special sequence during the transformation.

Events are transformed into EventTemplates and EventParameters into Argu-
ments. In contrast to the generic policy metamodel, Fvent Templates are subclasses
of ManagedObject in PonderTalk, so the generated FventTemplates are internally
marked to be ManagedObjects as well. Transforming the Conditions is performed
by simply copying them as no differences exist between the two metamodels with
respect to the condition part. Actions are transformed into Operations. The Action
objects in the PonderTalk model are created newly. For each ObligationPolicy, one
Action object is created and associated with that ObligationPolicy.

When transforming Obligations, the associated PolicyGroups are processed
along the group hierarchy to determine the active status of the Obligation as
described in section 3.1. PolicyGroups do not have a representation in Pon-
derTalk and thus no more appear in the PonderTalk model. Their only purpose
for the transformation was to determine the active status of policies whose active
attribute was undefined.

From a PonderTalk Policy Model to PonderTalk Code. Executable Pon-
derTalk code requires the standard Domains root, policy, and event to be

204

// Create Domains
2| root at: "transmitters" put: root/factory/domain create.

4| // Create event intensityChange
event := root/factory/event create: #("id" "oldValue" "newValue").
6| root/event at: "intensityChange" put: event.

8| // Load the Transmitter class file

root/factory at: "transmitter" put: (root load: "Transmitter").
10
// Create an instance named transmitter6 and put it in each associated domain
12| instance := root/factory/transmitter create.

instance intensityChangeEvent: root/event/intensityChange.

14| root/transmitters at: "transmitter6" put: instance.

16| // Create policy lowQuality

policy := root/factory/ecapolicy create.

18| policy event: root/event/intensityChange;

condition: [:id :o0ldValue :newValue | ((oldValue >= 50) & (newValue < 50)) 1;

20 action: [:id :o0ldValue :newValue | root/transmitters/transmitter6 increase_power: 10].
root/policy at: "lowQuality" put: policy.

22| policy active: true.

24| // Create policy highQuality

policy := root/factory/ecapolicy create.

26| policy event: root/event/intensityChange;

condition: [:id :o0ldValue :newValue | ((newValue > 80) & (oldValue <= 80)) 1;

28 action: [:id :o0ldValue :newValue | root/transmitters/transmitter6 decrease_power: 10].
root/policy at: "highQuality" put: policy.

30| policy active: true.

Listing 1.1. Generated PonderTalk Code

specified. A PonderTalk model might not explicitly contain those Domains. For
this purpose, a model modification checks whether they are modeled and if not,
inserts them into the model. Furthermore, that modification adds any Obligation-
Policy that is not contained in the policy Domain to that Domain and it also en-
sures that any EventTemplate is contained in the event domain. Finally, it adds
any Domain that is not contained in another Domain to the root Domain.

Now, a model-to-text transformation takes the modified PonderTalk model
as input and generates the respective PonderTalk code as output. That trans-
formation is also called code generation as it generates code for a programming
language. The transformation defines for each class of the PonderTalk metamodel
a respective textual representation as PonderTalk code. When the transforma-
tion is executed on the PonderTalk model, the respective code for the enclosed
classes is generated step by step. Listing 1.1 shows the resulting PonderTalk code
that corresponds to the policy diagram shown in figure 4.

In PonderTalk it is important to specify the statements in the correct se-
quence. Domains must first be declared before they can be referenced by other
ManagedObjects. For this purpose, a sorting algorithm initially creates an or-
dering of the Domains along the hierarchy and ensures that code for the root
Domains is generated before proceeding with the next level in the hierarchy, etc.
Now, code for all domain declarations is generated with respect to that order-
ing. It is also worth to be mentioned that the transformation does not generate
any code for the top-level Domains root, policy, and event as Ponder2 internally
creates those Domains at startup before any PonderTalk code is executed at all.

Now, code for FventTemplates is generated. In PonderTalk a factory object is
used to create an FventTemplate together with the enclosed Arguments. In the
PonderTalk model, any FventTemplate is associated with the event Domain,
which also results in a respective PonderTalk statement.

205

As next step, ManagedObjects (without subtypes) are transformed into code.
For any ManagedObject, the respective Java class specified in the accordingClass
attribute is loaded as factory object and put into the respective factory domain.
For ManagedObjects that are associated with a Domain in the PonderTalk model,
an instance is created additionally and added to that Domain. Arguments required
for instantiation are specified in the create Arg attribute of the ManagedObject and
are added to the statement that creates the instance. ManagedObjects that are
not associated with any Domain are only loaded as factory. This is be useful if
instances of ManagedObjects should only be created at runtime.

Finally, code for ObligationPolicies is generated including the referenced
EventTemplate, Condition, and Action. First, an ObligationPolicy is created with
the policy factory. Next, the triggering EventTemplate is associated with that
ObligationPolicy. If the ObligationPolicy contains a Condition, a textual rep-
resentation of that Condition is generated for PonderTalk. Next, the Action is
transformed into appropriate code including the referenced Operations in the
sequence as defined by their attribute executionNr. Finally, the ObligationPolicy
is put into all associated Domains and the status of the ObligationPolicy is set
according to its active attribute.

4 Implementation

In order to demonstrate the approach, an implementation was developed as a
set, of plugins for the software development platform Eclipse. The implementa-
tion is called PolicyModeler and can be integrated into any Eclipse 3.5 (Galileo)
installation via the update site http://policymodeler.sf.net/updates. Alter-
natively, a complete Eclipse installation including the PolicyModeler is available
for instant usage at http://policymodeler.sf.net/eclipse.zip. This section
presents important aspects about the implementation.

For specifying the metamodels, the Eclipse Modeling Framework (EMF) [16]
is used in the PolicyModeler. EMF stores the specified metamodels in the Ecore
format, which is an implementation of EMOF. With EMF a tree-like editor is
generated to create and modify a metamodel as well as instances of that meta-
model. However, that editor was not used for the creation of the generic policy
metamodel and the PonderTalk metamodel; instead, annotated Java interfaces
were used as they are a more effective way to specify metamodels in EMF.

For the graphical representation of the policies the Eclipse Graphical Mod-
eling Framework (GMF) [17] is used. GMF offers the generation of a graphical
editor that allows to create and modify a generic policy model as a diagram.
For the generation of that graphical editor some input is required. First, the
generic policy metamodel is referenced as instances of that metamodel are to be
visualized. Second, a graphical representation is created for each model element
to define its visualization in the diagram. Third, a toolbar is defined that offers
means to create model elements and associations between them. Finally, all in-
put is combined to define which element of the toolbar is used to create which
model element and how that model element is visualized in the diagram.

206

The model transformations are developed with the Eclipse Modeling Frame-
work Technology (EMFT) [18] and Model To Text (M2T) [19] projects, which
support the implementation of various kinds of model transformations. They offer
all functionality required for the transformations used in the approach, i.e. spe-
cial languages to realize checks, model modifications, model-to-model transfor-
mations, and model-to-text transformations. The projects are available as Eclipse
plugins themselves and thus offer good integration with the PolicyModeler.

An ECA policy is created in the PolicyModeler by composing the desired
model elements into a diagram using the toolbar. If a generic policy model
already exists as Ecore file without a graphical representation, that graphical
representation can be generated automatically by the PolicyModeler. The trans-
formation into corresponding PonderTalk code can be started directly from the
diagram. The resulting code can then be executed within a Ponder2 installation.

5 Conclusion

In this paper an approach to graphically model ECA policies and generate exe-
cutable code for the language PonderTalk from such models was presented. It is
the first the approach innovative and transfers benefits of MDE to the development
of policies such as reduction of development time. The generic policy metamodel
allows to model ECA policies independently from a particular language and allows
to generate code in an automated way. PonderTalk is used as target language, but
the approach may be extended to target other policy languages by integrating the
metamodel of the respective language and setting up the necessary model transfor-
mations. The metamodel covers important features of ECA policies. A developer
might require expressiveness for his policies that is not covered by the metamodel.
Further policy types and concepts may be integrated by extending the generic pol-
icy metamodel so it can express more than only ECA policies. However, a tradeoff
must be made here. Full code generation is only possible if the target language can
represent all concepts of the generic policy metamodel in an appropriate way. This
is why the metamodel is basically limited to the important concepts of ECA poli-
cies. Adressing more policy languages and types are subject to future work. The
same applies to reverse engineering of PonderTalk code into a graphical model,
which is currently not possible. The approach is fully implemented as Eclipse plu-
gin [20]. A small example was shown, but the approach was also applied to a larger
case study that realizes the hospital scenario from the Ponder2 tutorial [21]. That
case study regards all structural details of the two metamodels and is included in
the Eclipse download mentioned in section 4.

References

1. Kephart, J.O., Chess, D.M.: The Vision of Autonomic Computing. Computer 36(1),
41-50 (2003)

2. Damianou, N., Dulay, N., Lupu, E., Sloman, M.: The Ponder Policy Specification
Language. In: Sloman, M., Lobo, J., Lupu, E.C. (eds.) POLICY 2001. LNCS,
vol. 1995, pp. 18-38. Springer, Heidelberg (2001)

10.

11.

12.
13.

14.

16.

17.

18.

19.

20.

21.

207

. Wagner, G., Antoniou, G., Tabet, S., Boley, H.: The Abstract Syntax of RuleML

- Towards a General Web Rule Language Framework. In: IEEE/WIC/ACM In-
ternational Conference on Web Intelligence, pp. 628—631. IEEE Computer Society
Press, Los Alamitos (2004)

Strassner, J.C.: Policy-Based Network Management: Solutions for the Next Gen-
eration. Morgan Kaufmann Publishers, San Francisco (2003)

. Kaviani, N., Gasevic, D., Milanovic, M., Hatala, M., Mohabbati, B.: Model-Driven

Engineering of a General Policy Modeling Language. In: IEEE Workshop on Poli-
cies for Distributed Systems and Networks, pp. 101-104. IEEE Computer Society,
Los Alamitos (2008)

. Distributed Management Task Force: Common Information Model (CIM) Specifi-

cation. DSP0004 (June 1999)

. Distributed Management Task Force: CIM Policy Model White Paper. DSP0108

(June 2003)

Strassner, J.C.: DEN-ng: Achieving Business-Driven Network Management. In:
IEEE/IFIP Network Operations and Management Symposium, pp. 753-766. IEEE
Computer Society, Los Alamitos (2002)

. Bézivin, J.: On the Unification Power of Models. Software and Systems Model-

ing 4(2), 171-188 (2005)

Flater, D.W.: Impact of Model-Driven Standards. In: Annual Hawaii International
Conference on System Sciences, vol. 9, pp. 3706-3714. IEEE Computer Society,
Los Alamitos (2002)

Twidle, K., Lupu, E., Dulay, N., Sloman, M.: Ponder2 - A Policy Environment for
Autonomous Pervasive Systems. In: IEEE Workshop on Policies for Distributed
Systems and Networks, pp. 245-246. IEEE Computer Society, Los Alamitos (2008)
Imperial College London: Ponder2. (June 2009), http://ponder2.net

Uszok, A., Bradshaw, J.M., Jeffers, R.: KAoS: A policy and domain services frame-
work for grid computing and semantic web services. In: Jensen, C., Poslad, S., Dimi-
trakos, T. (eds.) iTrust 2004. LNCS, vol. 2995, pp. 16—26. Springer, Heidelberg (2004)
Kagal, L., Finin, T., Joshi, A.: A Policy Language for a Pervasive Computing
Environment. In: IEEE International Workshop on Policies for Distributed Systems
and Networks, June 2003, pp. 63-74 (2003)

. Object Management Group: Meta Object Facility (MOF) Core Specification (Jan-

uary 2006), http://www.omg.org/spec/MOF/2.0/PDF

The Eclipse Foundation: Eclipse Modeling Framework (EMF). (June 2009),
http://www.eclipse.org/modeling/emf

The Eclipse Foundation: Graphical Modeling Framework (GMF) (June 2009),
http://www.eclipse.org/modeling/gmf

The Eclipse Foundation: Eclipse Modeling Framework Technology (EMFT) (June
2009), http://www.eclipse.org/modeling/emft

The Eclipse Foundation: Model To Text (M2T) (June 2009),
http://www.eclipse.org/modeling/m2t

University of Augsburg: PolicyModeler (August 2009),
http://policymodeler.sf.net

Imperial College London: Ponder2 Tutorial (May 2009),
http://www.ponder2.net/cgi-bin/moin.cgi/Ponder2Tutorial

