2009 IEEE International Conference on Services Computing

Towards Autonomic Service Discovery — A Survey and Comparison

Michael Rambold, Holger Kasinger, Florian Lautenbacher and Bernhard Bauer
Department of Computer Science
University of Augsburg
86135 Augsburg, Germany
{rambold, kasinger, lautenbacher, bauer} @informatik.uni-augsburg.de

Abstract—Service-oriented architecture has become the stan-
dard paradigm for software component integration. However,
with the permanently increasing amount of available services
and dynamic changes, the complexity of such service infrastruc-
tures, their maintenance, and consequently the expenditures
spent for their operation increase equally. To deal with these
effects, an improvement of service composition and discovery
becomes necessary, especially a higher degree of automation.
Following the idea of Autonomic Computing, which simi-
larly aims at automating processes and workflows to a high
degree, service composition and discovery have to proceed
autonomously, which will on the one hand side reduce human
involvement to a minimum, but on the other side require
certain capabilities on the part of these mechanisms. For these
purposes, in this paper we define prime criteria that have to be
fulfilled for an autonomic service discovery. Based on that we
present a comprehensive survey on existing service discovery
approaches and evaluate to which extent they already fulfill
these criteria. As a result, the paper reveals that there already
exist some approaches that support or even fulfill a couple
of the proposed criteria, which principally enables autonomic
properties, but what is missing is an holistic approach focusing
explicitly on providing autonomic properties.

I. INTRODUCTION

Service-oriented architecture (SOA) has gained a lot of
attention over the last years and has become the de-facto
standard for web application and software component in-
tegration. SOA offers a frame in which loosely coupled
software services can be created, managed, integrated, and
combined. The main goal of SOA is a software architecture
aligned to business processes, which can easily react on
dynamic requirement changes and new consumer, regulatory,
or competitive demands. As the number of services in the
Internet and company intranets is steadily increasing and as
requirements and demands are permanently changing, the
complexity of service composition increases equally.

Already shallow changes (where change effects are re-
stricted to the clients of that service, cf. [1]) require
an adaptation of invoking services, registry entries, and
service orchestrations. These modifications become more
complex the more services need to be orchestrated: each
service description needs to be actualized in the registry,
the invocation of the service by other services needs to be
modified, and already completed service orchestrations (e. g.
in WS-BPEL [2]) need to be changed again. Because these

192

modifications are mostly performed manually, they cause
increasing operational expenditures and henceforth lead to
reduced profit and higher total cost of ownership (TCO) of
the service infrastructure.

To tackle these effects, one of the most notable research
challenges for service-oriented computing is an autonomic
composition of services (cf. [3]). This in turn requires an
enhanced and automated service discovery that demands
minimal user involvement. In other words, following the
idea of Autonomic Computing (AC) [4] (for a more detailed
overview on AC see e.g. [5], [6]), service discovery in
the future has to be autonomic itself in order to enable an
autonomic service composition, i.e. self-configuring (e.g.
fully automatic discovery based on an unambiguous service
description without prior registration), self-optimizing (e.g.
ranking the discovery results based on the actually provided
quality of service and cost of service), self-healing (e.g.
being capable to cope with faults and network changes
during discovery as well as recover from errors), and self-
protecting (e.g. recognizing malicious services automati-
cally and replace them in the results of a service discovery
by other matching services). As a result, the discovery
of services will be accomplished autonomously given only
high-level objectives from administrators or users. The great
complexity of service discovery will be transferred to the ser-
vice infrastructure and human involvement will be reduced
significantly, which will reduce TCO equally.

However, it is incontestable that achieving this high degree
of automation and autonomy at once is virtually impossible.
There exists a broad spectrum of autonomic maturity (see
[7]) starting from the basic level, at which administrators
or users perform all necessary tasks manually, right up to
the autonomic level, at which service discovery will be
automatically managed by established business rules and
policies. But the higher the desired level of autonomic
maturity, the more specific capabilities are required on the
part of the service discovery mechanisms.

In this paper we screen a great number of currently ex-
isting service discovery approaches and provide a thorough
insight into the current state of research towards the vision
of an autonomic service discovery. We define prime criteria
that are essential for an autonomic service discovery and the
enabling of self-* properties (Section II). We survey existing

service discovery approaches (Section III) and compare as
well as evaluate them on the basis of these criteria (Section
IV). Finally, concluding remarks and an outlook on future
research challenges for an autonomic service discovery are
given (Section V).

1I. AUTONOMIC SERVICE DISCOVERY CRITERIA

A prerequisite for any service discovery approach en-
abling basic self-configuring and self-optimizing capabilities
is the provisioning of expressive service descriptions, the
cnabling of high matchmaking levels, the provisioning of
fundamental service composition functionality, as well as the
involvement of actual Quality of Service (QoS) and Cost of
Service (CoS) descriptions. For the enabling of basic self-
healing capabilities, an approach is additionally expected to
fulfill at least a high degree of scalability, robustness, and
up-to-dateness. Finally, basic self-protecting capabilities in
addition require at least policies or service level agreements
contained in the QoS descriptions, which are appropriate
to indicate malicious service behaviors, as well as a proper
service replacement mechanism. Please note that some of
these criteria are relevant for more than one self-* property.
For instance, a proper service replacement mechanism is not
only required for self-protection but also for self-healing.
The reason is that self-* properties usually overlap and are
closely linked to each other.

In summary, this yields the following eight prime criteria,
which we will use for the comparison and evaluation of
existing service discovery approaches in Section IV:

o Service Description: In order to automate a service dis-
covery, the service description should define the func-
tionality, scope, behavior and intention of a service in
an unambiguous way. Already today, some description
languages and technologies exist that annotate (web)
services with ontologies, see e.g. OWL-S [8], WSMO
[9], WSDL-S [10] and SAWSDL [11]. In general, the
more distinct the contained information, the better is
the precision of the retrieval.

o Matchmaking/Reasoning: This criterion is closely re-
lated to the expressiveness of the service description.
The better the included service information are utilized
to differentiate between offered services for combining
them with a request, the better is the quality of the
retrieval and the higher is the degree of automation.
Scalability: The performance of a service discovery
regarding message and space overhead considering in-
creasing inquiries is an important factor for possible
application scenarios. Apparently, it correlates with
the architectural degree of decentralization (centralized,
distributed, decentralized, cf. [12]) and to what ex-
tend the publication and request communication is dis-
tributed among multiple subsystems as well as managed
by an active load-balancing mechanism.

193

e Robustness: A discovery mechanism should be capable
to cope with faults and network changes without con-
siderable performance or function losses. An example
is recovery from errors or the structural re-stabilization
of multiple sites, which relates the robustness closely
to the degree of decentralization.

Service Composition: Service discovery is expected to
support service composition by retrieving the requested
set of services. However, single services very seldom
correspond to a request in a direct manner. Thus,
a service discovery mechanism should also include
service composition capabilities. This makes service
composition a part of the service discovery and vice
versa. Due to this iterative request splitting, the reuti-
lization and recall of services can be optimized.
Quality of Service and Cost of Service: In order to allow
for a refined selection of services matched as equal,
non-functional service criteria such as QoS and CoS
should be included in the discovery mechanism. QoS
represents a useful descriptive container to formulate
security issues and other constraints for invocation.
Ideally, multiple QoS and CoS combinations should be
offered and automatically selected.

Up-to-dateness: A further issue of service discovery
is the up-to-dateness of utilized service information.
The discovery process should consider the availability
of a service respectively the probability that a service
description may be outdated due to a change.

Service Replacement: 1t would be desirable, if com-
plementary services are offered respectively cached to
allow for a replacement in case of a service failure.

In their entirety these criteria are vital for the provisioning
of autonomic capabilities for service discovery. Of course,
various (other) criteria for service discovery have been
already proposed in diverse surveys (see e.g. [13], [14],
[15], [16], [17]) by the web service community. However,
these surveys evaluate publicly available service registries
or categorize the latest service discovery approaches and
therefore establish more general criteria, without regarding
the special needs of autonomic service discovery. Similarly,
the originally defined service description [18] and web
service architecture [19] requirements also fail to incorporate
autonomic requirements. In contrast, the AC community
has identified the need for autonomic capabilities in SOAs
already for a while (sce e.g. [20]), but concentrates more
on the realization of autonomic SOAs in their entirety (see
e.g. [21]) along with the respective functional requirements
[22], but did not explicitly focus on criteria for an autonomic
service discovery as an integral part of autonomic SOAs, yet.
Nevertheless, subsets of the criteria and requirements pro-
posed by both communities have been reused in this paper.
In addition to them, sophisticated architectural requirements
and automation aspects have been considered (cf. [12]).

III. SURVEY

Today, a vast number of diverse service discovery ap-
proaches exists. In order to facilitate a reasonable overview
and to indicate their potential application fields, we cate-
gorize the screened approaches along two dimensions (see
Figure 1), their architectural degree of decentralization (i. c.
centralized, distributed, or decentralized) and their match-
making respectively reasoning level (i. e. syntactical, hybrid,
or semantical). Please note that hybrid matchmaking is
not based on syntactic information only, but either reveals
hidden semantic information or combines syntactic with
semantic matchmaking mechanisms. The UDDI registry [23]
with its syntactical matchmaking serves as a basis for both
dimensions. The quadrants spanned by both dimensions are
ranked by numbers from 1 to 9. Starting with syntactical
and centralized approaches similar to the mentioned UDDI
approach in the bottom left quadrant, the ranking goes up to
the top right quadrant, whereas it prefers the matchmaking
and reasoning level over the degree of decentralization,
which results in a meandering enumeration.

§ - ABSDM [50] - P2P LSH [54] - P2P SDDS [57]
= |- WS-Discovery [51] - P2P pService [55] - P2P Sem. Keys [58]. [59]. [60]
g - P2P exChord [52] - P2P SPiDeR [56] - P2P Supercluster [61]
3 |- p2p HSFC [53] - P2P I-Wanderer [62]
3 ~ WSMO Tuple Space [63]
) ™ ©
- P2P CSRB [40] - P2P UDDI Federation [43] - P2P MWSDI [48]. [10]
- P2P Meta-Directory [41] - P2P Stratus [44] - Semantic Agent [49]
2 |- 2P Ad-UDDI [42] - P2P USQL search engine [45]
E - Web Crawler [46), [47]
£
]
o
@) 5) ®)
- UDDI [23] - PLF Model [27] - SWSC [33]
- Active UDDI [24] - Tuzzy Model [28] - OWL-S based [34], [35]. [36]
- QoS / CoS model [25] - UDDI & DB [29], [30] - Pragmatic Web [37]
- CBB [26] - Custom matching [31] - Behavior Signatures [38]
- - User Experience [32] - Discovery by Composition [39]
g
E
5)
8 m 3 (©)
syntactical hybrid semantical

Figure 1.

Categorization of service discovery approaches

The service discovery approaches described below are

surveyed with focus on the described criteria in the order
of centralized to decentralized registry architectures. Each
architectural category is then differentiated regarding its
matching level from syntactical to semantical involvement.

A. Centralized Registry Architectures

1) Syntactic Matching: The Active UDDI [24] is an
information maintenance extension of the UDDI. An active
service is set as a proxy between the original registry

194

and their consumers which holds state information of all
services. Thus, all retrieved service information are up-to-
date. In addition, it offers a service replacement through a
publish-subscribe process.

In [25] a QoS and CoS model is established while the
search functionality is still based on an UDDI. Stored
services provide a list of trade-offs between offered QoS
and requested CoS. Service requester hold information about
desired cost and benefit with upper and lower limitations.
An integrative selection can be achieved by comparing the
alternatives regarding cost and quality within the request
boundaries.

Towards hybrid matchmaking, in [26] the service descrip-
tion respectively WSDL operations and service types are
extended by constraints e.g. the attribute price of a type
book is an integer with range from O to 1000. The UDDI
is extended to a constraint-based brokering (CBB) whose
matchmaking does not exceed or harm a provided constraint.

2) Hybrid Matching: In [27] a discovery mechanism is
established that uses WSDL as input, but reveals hidden
semantic concepts behind words for matching purpose by
extracting words with their frequency such as name and
textual description. These terms are in turn used as input
of a Bayesian Network model, whose variables are adapted
to correspond to the service description. The approach
expresses that similar network variables refer to similar
services. These latent variables are stored as vectors and
are used to cluster the description space. A service request
is alike preprocessed by assigning to a cluster. The vector
distance to all other services of this cluster is measured
and those with the smallest distance are filtered with QoS
parameters to retrieve a ranked response. Some approaches
(e.g. [28]) are extending the UDDI data-model with OWL-
S, but use a combined syntactical and semantical matching
approach. In [28] the so-called fuzzy matching decomposes
a request to atomic processes, measures their overall simi-
larity to stored services regarding its weighted description,
functional and QoS similarity and compose suitable atomic
processes to retrieve a service. After the search corpus is
scaled down by a thesaurus keyword search, the functional
similarity of each atomic process is measured according to
their amount of common process attributes and, subtracted
from this, their different attributes of the same ontology. The
result candidate set is further processed with QoS and CoS
constraints.

Established information retrieval mechanisms from other
research fields have been transferred to the field of web ser-
vice discovery to reveal hidden semantics. In [29] and [30]
UDDI is extended by a database system. Each tag in WSDL
is transformed into a path from the root tag and, according
to the path, stored in a general pre-ordered tree structure
[29]. A service is converted to a vector whose elements
refer to itemIDs of the tree and are weighted regarding their
occured frequency. The vector distance between a request

and stored descriptions is used for matching purposes. SQL
queries with focus on the vector distance are used to search
the database for a link to UDDI registry entries.

[31] also uses a vector spacc model with syntactical
information retrieval concepts. The particular characteristic
of this approach is the customizable hybrid matching. All
matching techniques can be mixed and processed in parallel,
cascaded to shrink the search corpus or changed according
to customized desires.

User Experience retrieval [32] assumes that users with
similar interests have similar significant action sequences.
Data mining processes are used to discover similar patterns
from monitored user actions that may refer to the similar
services and give recommendations for an action that should
be performed like a search request.

3) Semantic Matching: [38] combines OWL-S with a
finite state automata to describe the service behavior in a
semantic manner whereby it allows for a service composi-
tion. [34], [35] and [36] extend an UDDI registry matching
process respectively its data model with OWL-S. In [35],
annotated services are pre-computed during registration.
Each concept node of an ontology tree has a list of services,
including their matching degree (exact, plugin, subsume). An
advertisement is added to each concept list that corresponds
to one of its input or output concepts. To match a request,
for each of its input and output concepts, the concept list is
called. A registered service that is included in each of the
referring concept lists is retrieved.

Semantic Web Service Clustering (SWSC) [33] is an
UDDI extension that also uses OWL-S as semantic extension
in combination with the WordNet ontology. Similar to the
syntactic information retrieval approaches, purged terms are
extracted to calculate the similarity between all registered
services and assigned to similar clusters.

A semantic service discovery through service composition
is presented in [39]. If a single service cannot fulfill the
requested input and output descriptions, then services are
searched that fulfill at least one original output. If a set of
these discovered services can now fulfill the output, but not
their original input, then the process is repeated by searching
new services, that fulfill the new input as output, until
the original request is satisfied through discovered service
composition. Additionally, QoS parameter are influencing
the choice between similar services.

The Pragmatic Web consists of tools, practices, and theo-
ries that describe why and how people use information [64].
A service is divided into their role (who), context parameters
(why), the concept (input and output, what part) as similar
semantic services are not implicitly similar to the user ideas
[37]. Therefore, matching of the why part by a combination
of natural processing techniques is necessary in addition to
the ontology enriched what part by semantic similarity of
input and output characteristics.

195

B. Distributed Registry Architectures

1) Syntactic Matching: In [40], a Pecer-to-Peer (P2P)
overlay network consists of multiple peer groups with one
super peer as a local registry. Seemingly similar services are
stored in a peer group. A service request of a peer group
is first matched in the super peer registry. If the request
cannot be satisfied, it is forwarded to a centralized broker,
the Common Service Registry Broker, that mediates between
different peer group registries.

[41] is also based on a P2P communication layer with
meta-directory nodes that cluster the description corpus.
Meta-directory peers store the location of UDDIs as keys
and are searched before a certain UDDI registry is invoked.
If the requested service is not found in a meta-directory,
the request is broadcasted to the other meta-directories.
Therefore, the load is shifted from the UDDI registries to
the meta-directories and to the P2P network.

[42] stresses the realtime status of services information. A
root registry serves as central entry point to a P2P network
of specialized Active and Distributed UDDI (Ad-UDDI)
registries. Service information are duplicated and deployed
to Ad-UDDIs of the same domain concept. Web service
state informations are cached through a monitoring process
in each registry. A request is first looked up in the cache,
then it is checked in the own registry or send to registries of
the same domain if necessary. In addition, Ad-UDDIs allow
for a service replacement.

2) Hybrid Matching: In [43] a federation of UDDI reg-
istries is presented that uses WSDL-S beside a syntactical
search functionality to improve the matchmaking. Registries
are clustered w.r.t. their domains in small federations. A
request is either semantically matched against the local
registry or send as a federated query to the directory that
mediates between different tModels (technical data structure
of an UDDI). Due to the different kinds of ontologies
and registries, the tModel directory is used to translate a
service request to the relevant registries and their concepts.
After matching the translated request against stored services,
the results are aggregated and the most suitable service is
retrieved.

[44] is using a tuple model (meta-data, timestamps and
relations) including syntactical or semantical information in
the meta-data. Different P2P layers are combined to bridge
the gap between different heterogeneous registries. Thereby,
an operation layer offers an unified publication and inquiry
API. A double-overlay P2P topology clusters the registries
w.r.t. their domain and interconnects the clusters with a
backbone network. On top of each registry a communication
and inquiry engine is running, which hides the inherent
complexity of different query languages used in web service
registries. Due to the included timestamps, retrieved service
information are up-to-date. Moreover, experimental results
show good scalability and robustness.

In [45] a service search engine with a plugin system is
presented. Document handler plugins support a variety of
descriptions (QoS, syntax, semantic). The search engine can
access several service registries, which are clustered w.r.t.
an OWL-S ontology. Search queries are based on a SQL
like language, USQL, and make use of different handlers in
parallel to retrieve best performance. The collected results
of the handler are consolidated to compute the response.

Web search crawler approaches are collecting service
descriptions published either directly on the Internet or in
different registries in a vast number of formats (e.g. WSDL
or OWL-S). Collected services are indexed in a registry, e. g.
in the Web Service Repository Builder [47], or assembled to
general description container that provide pointers to more
specialized information records in registries [46]. This makes
them error-prone and decreases the inquire performance
apart from good service publication scalability.

3) Semantic Matching: METEOR-S Web Service Dis-
covery Infrastructure (MWSDI) [48] and [10] provide a
discovery mechanism over federated registries. A P2P over-
lay network is used alike previous mentioned approaches
to access UDDIs. However, MWSDI uses a light-weight
semantic matching, which works mainly on the semantic
tags in WSDL-S descriptions with the UDDI specific search
functions. Mappings from service parameters to ontological
concepts are included in the tModels.

A semantic agent [49] can enrich search keywords through
an ontology database. First, the agent sends the keywords
to an ontology database and retrieves an ontology which
includes the keywords. The client can select one ontology.
Then the database is called again and the terms are anno-
tated with the chosen ontology and send to UDDIs to get
information of all suited services. The agent connects to
these services to extract the inputs, outputs, preconditions
and effects (IOPE) of an OWL-S description. The retrieved
information are matched against the user query and may
result in an exact, plugin or subsume match.

C. Decentralized Registry Architectures

1) Syntactic Matching: In Agent Based Service Discov-
ery Mechanism (ABSDM) [50], an agent is not only used to
connect and extract service information on command of an
user, but represents a service descriptions itself. Agents are
stored independently on distributed servers in Backus Naur
form. Joining agents are stored in an agent tree structure
under the most similar agent node as a child. The search
and matching process uses a distributed and parallel search
request over the whole tree. Thereby, an agent checks its own
library first and forwards the search request to its children.
If no suitable agent and hence no suitable service was found,
the request will be forwarded to its own father.

[51] defines a service discovery based on multicast. A
client searches for one or more target services by type or

196

name by sending a probe message with at least one con-
straint to a multicast group. A target service that matches the
probe respectively all contained constraints sends a response
directly to the client. In order to retrieve network transport
information of previous matched target services, a client
sends a resolve message including web service addressing
information. Again, if a target service matches the resolve
message, it responds with a resolve match message. Due to
this multicast design the retrieved service information are
always up-to-date.

In [52] a P2P structure is extended to search with XPath,
named eXCHORD. WSDL is converted into a node value
tree. Nodes refer to WSDL tags respectively to their path
from the root concept. Each node is hashed and distributed
over the extended P2P network. The relationships and there-
fore the structure is preserved on the overlay structure as
nodes refer to a path. Thus, the location of an information
in the description is included. A query is also converted
and matched against the node for range queries or matched
against a single node with the key for an exact search.

WSDL documents span an abstract space of tags [53].
The complexity of this high dimensional search corpus is
reduced to one dimension by a Hilbert Space Filling Curve
(HSFC). The curve is arranged successively through the
space and in doing so clusters are generated. A binary index
is assigned to each cluster. Cluster can be further refined by
the HSFC and may contain multiple nested clusters that have
the same index prefix as their enveloping cluster. In course
of the HSFC processing, a binary prefix tree of cluster is
constructed. The binary tree index works as key for the P2P
overlay network. Furthermore, the prefix of an index can be
used for wildcard queries.

2) Hybrid Matching: The basic idea of [54] is to hash
the input items with a specialized hash function. The lo-
cality sensitive hash function (LSH) maps similar service
descriptions to the same buckets with a high probability. In
the scope of web services each part of the service description
such as an operation is hashed and stored as elements in an
attribute vector. Each service description has a sourcelD, that
is published with the attribute vector to each node in the P2P
network, whose key corresponds to a hashed element in the
attribute vector. Similar services are hashed on a syntactical
basis, but form an implicit search cluster due to the LSH
and therefore reveal hidden semantics.

[55] combines a P2P overlay network for exact matches
with a skip graph! for range queries. Thereby, path entries
from a service description root element to a certain IOPE
element are inserted to the skip graph at a position where
the father element meets a syntactical prefix condition. A
father element of the skip graph is distributed to all nodes
that store a child entry to support range queries. Service

A skip graph [65] is a distributed data structure based on double-linked
lists, that provides the functionality of a balanced tree, whose elements are
stored in separate nodes which may fail at any time.

description can be either WSDL or WSDL-S. If WSDL is
used for description, then it gets annotated with OWL [66]
symbols and translated to WSDL-S. In addition to a QoS
support, this approach offers also actual state information
and similar services in a replacement list to optimize the
service choice.

[56] emphasizes the matching process. The architecture
is likewise based on a P2P network with supernodes that
are responsible for routing and querying and gathered when
client peers are joining or leaving the network. The match-
ing contains keywords, ontology based and behavior based
search with BPEL [2] derived finite state automata. Apart
from a composite matching possibility, a user-based QoS
rating mechanism is presented.

3) Semantic Matching: In [57] the Semantically-
enhanced Distributed Discovery System (SDDS) based on
P2P is presented. Semantics are not specified by a certain
ontology or language. Instead, an ontology manager is
situated on each node of the P2P network and performs
service discovery and deals with registration. Ontological
subsets of possible input and output request concepts are
distributed separately via the P2P hashing functionality.
In addition, services with included operations are likewise
stored in the network and are linked to a specific input or
output subset concept. A requester defines possible input
and output subsets of the request and continues by sending
the retrieved input and output concepts separately via the
Distributed Hash Table (DHT) lookup to certain nodes. Each
called ontology manager searches for possible services that
match the input respectively the output concept and returns
the service with its operation. Resulting service sets that
satisfy either the input or the output concept are intersected
to achieve a matching result.

In [58] numerical keys refer to ontology concepts.
Thereby a child concept has the same prefix as its father con-
cept. Service advertisements and requests are vectors with
encoded ontological concepts. A distributed tree structure
is established by addressing concepts keys to a P2P node.
Due to the prefix property the search can be performed
on the tree. After the distributed tree returns a set of
service advertisements, the matching engine that includes
the knowledge base will complete the semantic matching.

In [59] services are likewise converted to vectors of nu-
merical concept keys. In this P2P approach concept groups
are created based on these keys. The distance between a
concept group and a root concept group is calculated and
used to separate the groups. A request is forwarded to a
registry peer that converts the request analogue in a vector.
The distance of the vector to the root concept is used to find
suitable concept groups respectively services in this group
that are matched regarding WSMO and QoS parameters.

Similar to this approach ontology concepts are also used
as P2P keys in [60] and [67]. To search for a service,
first an ontology has to be chosen and the node with the

197

corresponding concept is retrieved. Then the sub-concepts
and their input and output characteristics are defined. If the
request is composed of several parts, then it is forwarded to
the responsible nodes.

In [61] a double-overlay P2P network is presented to in-
terconnect cluster managers on different layers. Supercluster
manager are assigned to main goals of WSMO and may
contain several clusters with corresponding sub-goals. A user
request contains at least one WSMO goal. It is send to
a cluster node on the lowest layer with the same goal. If
the request has a broader goal or consists of further ones
that are not in the scope of this cluster, then the request is
send from the cluster head to the supercluster manager or
even subsequent to multiple superclusters if necessary. Thus,
obtained partial services are finally composed.

One of the most interesting approaches in the P2P envi-
ronment is the I-Wanderer [62]. Query packets wander over
nodes which are clustered based on the functional descrip-
tion based on OWL-S. They log visited concept clusters and
their services. If two query packets meet coincidentally, they
exchange their knowledge. If a suitable cluster is detected,
then the query packet is proliferated and spread through the
cluster. Services are evaluated through their QoS properties
which include CoS besides timestamps that indicate their
up-to-dateness. During the discovery process, other services
can be found which are stored for future requests. Thus,
this mechanisms enhance the efficiency of current and future
search requests.

Semantic shared tuple spaces [63] based on WSMO is
another quite interesting approach. Web service descriptions
including ontological concepts are exchanged through the
space and matched locally. A response can be reassembled of
multiple sub-responses. After a response is put to the space,
the corresponding request can be removed from the space or
left in order to receive also future responses. Additionally,
a publish-subscribe mechanism can be established by a
requester to get informed about service changes or new
available services.

IV. COMPARISON

The aforementioned service discovery approaches meet
the one or other criterion proposed in Section II with distinct
gradations due to various mechanisms. Nevertheless, none of
them meets all criteria. In order to compare these approaches
against each other in a transparent way, we have developed
an evaluation model that assigns a weighting factor to each
criterion to indicate its relevance for the evaluation as well
as rates the mentioned gradations to distinguish the different
approaches. The result of the comparison is listed in Table 1.

A. Criteria Weighting

A numerical weighting factor is assigned to each criterion
(see brackets in each criterion box in Table I) in order

Table 1
COMPARISON OF SERVICE DISCOVERY APPROACHES

Criteria (quantifier)

QoS (CoS) (3)
Replacement (1)

Approach

P2P I-Wanderer |62]
P2P pService [55]
P2P SPiDeR [56]
P2P Sem. Keys [58], [59], [60]
P2P Supercluster [61]

P2P Stratus [44]

WSMO Tuple Space [63]

P2P SDDS [57]

P2P USQI. search engine [45]
Discovery by Composition [39]
Fuzzy Model [28]

OWL-S based [34], [35], [36]
P2P MWSDI [48], [10]

P2P UDDI Federation [43]
Behavior Signatures [38]

P2P LSH [54]

Web Crawler [46], [47]
WS-Discovery [51]

SWSC [33]

P2P Ad-UDDI [42]

Pragmatic Web[37]

P2 TISIC [53] -1 -
P2P exChord [52] - -
Scmantic Agent [49] 0
ABSDM [50] — —
P2P Meta-Directory [41] -
PLF Model [27] -
Custom matching [31]
P2P CSRB [40] - - 0 0 -
User Experience [32] -
QoS / CoS model [25] -
Active UDDI [24] -
UDDI & DB [29], [30] -
CBB [26] -
UDDI 23] - -

< | Composition (3)

+ | + | Up-to-dateness (2)

+

< |~ | ¢ | Quadrant

+
T
|

2lL|=|£|&]) Evaluation Points

©
&

|
|
T

of+ |1

w

®

1
T
|
w
S

S|+ |+ [+ |+ |+ |+]|+]|+ | Scalability (4)
o+ ||+ |+ |+ |+ |+]|+ | Robustess (4)

w
=]

I

I
)
>3

S}
3

|
of+ |+

8]
N

N
R

olo|t
o
|

o
1

N

R

+ [+ |+ [+ |+]|+ |+]|+]|+]|+]|+]|+]|+]|+|+ | Description (4)

IS
o

[~}
S

+ ||+ |+ |+ |+]|+]|+]|+]|+|+|+]|+]|+]|+]|+]|+ |Reasoning (4)

+ |1
)
S

+|o|+ |1
|
N

+
+

19

|
|
<
|

+ |+
+ |+
1

+

w4+
=2E=1N]
I

o
I

clolt
I

I
JENY Y (S (U U FSVY S (503 X963 IS FNY) Y IS

to express the relevance of a specific criterion for auto-
nomic service discovery. The most important criteria for
service discovery automation are an unambiguous service
description (using semantic technologies) and the associated
reasoning. A stable discovery architecture that is highly
scalable w.r.t. an increase of services and inquiries as well
as robust w.r.t. to failures or crashes is equally important.
Service composition and QoS including CoS are relevant to
improve complex search queries and to further automate the
service selection, but are less weighted. Outdated service
information may give rise to problems and end in additional
searches that hamper an autonomic discovery. Although
being less important compared to service composition and
QoS and hence less weighted, the criterion is more important
than complemental service replacement to avoid anew and
identical searches, which has the lowest weighting.

B. Criteria Rating

In order to make the different criterion gradations clear,
each entry has a rating range from — to zero to + . Each
rating in turn is paired with corresponding numerical values
ranging from 0 to 2. A minus will be assigned, if an approach

198

does not provide or support concepts or mechanisms that
meet this criterion at all, which yields O evaluation points?.
The other ratings are assigned according to the fact, to what
extent a criterion is met. For example, a plus is assigned
for the use of semantic reasoning, good scalability due to a
decentralized architecture, low message and space overhead,
etc. A zero is assigned e. g. for revealing hidden semantics,
distributed respectively hierarchical architectures, simplified
horizontal service composition, etc.

C. Evaluation

The evaluated approaches are ordered based on their
overall evaluation points (rightmost column of Table I).
The evaluation points for an approach are calculated by
summing up all numerical values assigned to its ratings,
each multiplied with its corresponding criterion weighting.
The second last column shows the corresponding quadrant
of Figure 1 the approach has been categorized in.

Apparently, approaches with a higher quadrant ranking
are likely to have higher evaluation points, even though there
are some exceptions: For instance, the Semantic Agent [49]
approach reveals that including only reasoning capabilities is
not enough for an autonomic service discovery, but that the
consideration of other criteria is important as well. In turn,
the Stratus [44], P2P USQL search engine [45], Discovery
by Composition [39], and Fuzzy Model [28] approaches
come out on top of the approaches based on centralized
respectively distributed architectures, as they additionally
provide semantic service descriptions and reasoning capa-
bilities. It is also noticeable that the WS-Discovery [51]
approach is ranked by far the best syntactical and non-
P2P-solution, as it does not need to overcome typical
shortcomings that arise from a registry architecture. Thus,
the autonomic capabilities of a service discovery approach
cannot only be derived from the two dimensions spanning
Figure 1 (represented by the criteria in the four leftmost
columns of Table I), but a more fine-grained evaluation of all
eight criteria is necessary. Nonetheless, Figure 1 represents a
convenient way to categorize the screened service discovery
approaches.

In this regard, the I-Wanderer [62] and the pService [55]
approach, which only differ by one point in our evalua-
tion, have been the two approaches providing the highest
autonomic capabilities for service discovery. Especially the
nature-inspired search mechanism of the I-Wanderer is no-
ticeable as it also takes future requests into account.

V. CONCLUSIONS

In this paper we presented a survey and comparison
of service discovery approaches in order to determine the

2We assigned a minus with 0 evaluation points in order to avoid negative
evaluation points. Even though an approach may not meet any of the
established criteria, the approach at least does not act contrary to it. So
the minimal sum of evaluation points is 0, as it is the case for UDDIL.

state of research towards an autonomic service discovery.
We screened 42 approaches and categorized them into nine
fields. Additionally, we evaluated these approaches based on
eight prime criteria for autonomic service discovery, which
we have defined before.

As one can see, research in recent years has focused
especially on semantic service description and reasoning
techniques as well as on scalability and robustness. There
are already some approaches that support or fulfill most
of the proposed criteria, which principally enables self-*
properties. However, the fulfillment of even most of the
criteria does not automatically entail an autonomic service
discovery. Quite the opposite, they are a prerequisite for
autonomic service discovery, but what is missing is an
holistic approach focusing explicitly on providing autonomic
self-* properties. Most of the approaches concentrate only
on one or two autonomic capabilities, if any, but not on
autonomy as a whole.

With respect to our evaluation model, the I-Wanderer and
the pService approach had returned the best result. Please
note that the evaluation model we used in this paper and
the resulting evaluation points served only for the ranking
between the surveyed approaches. If we had used different
weighting factors or a more fine-granular evaluation model,
the result would have looked somewhat different, of course.
But from our point of view the chosen weighting factors
represent the relevance of each criterion correctly. However,
the evaluation points do not provide an indication on the
current level of autonomic maturity.

A qualitative evaluation of the autonomic maturity would
require a different and more complex evaluation model,
which goes beyond the scope of this survey and is hence left
as future research. Additionally, research in autonomic ser-
vice management, business-driven automated composition,
dynamic connectivity capabilities, etc. is required. But as
we have seen, autonomic service discovery is an essential
prerequisite for an autonomic service composition later on
and therefore helps to tackle the high complexity of current
service infrastructures and to reduce TCO.

REFERENCES

[1] M. P. Papazoglou, “The challenges of service evolution,” in
CAISE 2008, ser. LNCS, Z. Bellahsene and M. Leonard, Eds.,
vol. 5074. Springer-Verlag Berlin Heidelberg, 2008, pp. 1-

15.

[2] OASIS, Web Services Business Process Execution
Language, 2007. [Online]. Available: http://docs.oasis-
open.org/wsbpel/2.0/0S/wsbpel-v2.0-OS.html

[3] M. P. Papazoglou, P. Traverso, S. Dustdar,
F. Leymann, and B. J. Kraemer, *“Service-oriented
computing research roadmap,” Dagstuhl Seminar
Proceedings 05462, April 2006, online available at
http://drops.dagstuhl.de/opus/volltexte/2006/524 as of
2008-12-30.

199

[4]

[5]

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

J. O. Kephart and D. M. Chess, “The vision of autonomic
computing,” IEEE Computer, vol. 36, no. 1, pp. 41-50,
January 2003.

M. Parashar and S. Hariri, Eds., Autonomic Computing:
Concepts, Infrastructure, and Applications. = CRC Press,
2006.

M. C. Huebscher and J. A. McCann, “A survey of autonomic
computing—degrees, models, and applications,” ACM Com-
puting Surveys, vol. 40, no. 3, pp. 1-28, 2008.

IBM, “Autonomic computing whitepaper: An architectural
blueprint for autonomic computing,” June 2006.

D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott,
S. Mcllraith, S. Narayanan, M. Paolucci, B. Parsia, T. Payne,
E. Sirin, N. Srinivasan, and K. Sycara, “OWL-S: Semantic
markup for web services,” W3C, Tech. Rep., 2004.

J. de Bruijn, C. Bussler, J. Domingue, D. Fensel, M. Hepp,
U. Keller, M. Kifer, B. Konig-Ries, J. Kopecky, R. Lara,
H. Lausen, E. Oren, A. Polleres, D. Roman, J. Scicluna, and
M. Stollberg, “Web service modeling ontology (WSMO),”
W3C, Tech. Rep., 2005.

R. Studer, S. Grimm, and A. Abdecker, Semantic Web Ser-
vices; Concepts, Technologies and Applications. Springer-
Verlag Berlin Heidelberg, 2007.

S. A. for WSDL Working Group, “Semantic annotations for
WSDL and XML schema — usage guide,” W3C, Tech. Rep.,
2007.

NEXOF-RA, “Requirements report,” NESSI Deliverable
DI10.1, October 2008, online available: www.nexof-ra.eu as
of 2008-12-30.

J. Garofalakis, Y. Panagis, and E. Sakkopoulos, “Web service
discovery mechanisms: looking for a needle in a haystack,” in
Proceedings of International Workshop on Web Engineering,
2004, pp. 9-13.

D. Bachlechner, K. Siorpaes, D. Fensel, and 1. Toma, “Web
service discovery - a reality check,” DERI, Tech. Rep., 2006.

J. Garofalakis, Y. Panagis, E. Sakkopoulos, and A. Tsakalidis,
“Contemporary web service discovery mechanisms,” Journal
of Web Engineering, vol. 5, pp. 265-290, 2006.

S. Hagemann, C. Letz, and G. Vossen, “Web service discovery
- reality check 2.0,” in Proceedings of NWESP 2007. 1EEE
Computer Society, 2007, pp. 113-118.

1. Toma, K. Igbal, D. Roman, T. Strang, D. Fensel, B. Sapkota,
M. Moran, and J. M. Gomez, “Discovery in grid and web
services environments: A survey and evaluation,” Multiagent
Grid Syst., vol. 3, no. 3, pp. 341-352, 2007.

Web Services Description Working Group, “Web services
description requirements,” W3C, Tech. Rep., 2002. [Online].
Available: http://www.w3.org/TR/ws-desc-reqs/

Web Services Architecture Working Group, “Web services
architecture requirements,” W3C, Tech. Rep., February 2004.
[Online]. Available: http://www.w3.org/TR/wsa-reqs/

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

[33]

[34]

J. Almeida, V. Almeida, D. Ardagna, and M. Trubian, “Re-
source management in the autonomic service-oriented archi-
tecture,” in Proceedings of ICAC 2006. IEEE Computer
Society, 2006, pp. 84-92.

D. Tosi, G. Denaro, and M. Pezze, “Towards autonomic
service-oriented applications,” International Journal of Au-
tonomic Computing, vol. 1, no. 1, pp. 58-80, 2009.

L. Liu and H. Schmeck, “A roadmap towards autonomic
service-oriented architectures,” International Transactions on
Systems Science and Applications, vol. 2, no. 3, pp. 245-254,
2006.

OASIS, “UDDI version 3.0.2 - UDDI spec technical commit-
tee draft,” Organization for the Advancement of Structured
Information Standards (OASIS), Tech. Rep., 2004.

M. Jeckle and B. Zengler, “Active UDDI - an extension to
UDDI for dynamic and fault-tolerant service invocation,” in
Proceedings of WS-RSD 2002, 2002.

P. C. K. Hung and H. Li, “Web services discovery based on
the trade-off between quality and cost of service: A token-
based approach,” SIGecom Exch., vol. 4, no. 2, pp. 21-31,
August 2003.

S. Degwekar, H. Lam, and S. Y. W. Su, “Constraint-based
brokering (CBB) for publishing and discovery of web ser-
vices,” in LLC, 2007.

Y. Zhang and J. Ma, “Discovering web services based on
probalistic latent factor model,” in APWeb/WAIM, LNCS
4505, 2007, pp. 18-29.

Q. Qiu, Q. Xiong, Y. Yang, and F. Luo, “Study on ontology-
based web service discovery,” in IEEE Internationl Confer-
ence on Computer Supported Cooperative Work in Design,
vol. 11, 2007, pp. 641-645.

K.-H. Lee and K.-C. Lee, “To maximize web service re-
trieval,” in Proceedings of ICCIT 2007, 2007, pp. 2318 —
2325.

A. Brogi and S. Corfini, “SAM: A semantic web service
discovery system,” in KES/WIRN, LNAI 4694, vol. 3, 2007,
pp- 703-710.

N. Kokash, W.-J. van den Heuvel, and V. D’Andrea, “Lever-
aging web service discovery with customizable hybrid match-
ing,” in Proceedings of ICSOC 2006, ser. LNCS 4294, 2006,
pp. 522-528.

N. Kokash, A. Birukou, and V. D’Andrea, “Web service
discovery based on past user experience,” in BIS 2007, LNCS
4439, 2007, pp. 95-107.

R. Nayak and B. Lee, “Web service discovery with additional
semantics and clustering,” in Proceedings of WI 2007, 2007,
pp. 555-558.

K. Sycara, M. Paolucci, A. Ankolekar, and N. Srinivasan,
“Automated discovery, interaction and composition of se-
mantic web services,” Web Semantics: Science, Services and
Agents on the World Wide Web, vol. 1, pp. 27-46, July 2003.

200

[35]

[37]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

N. Srinivasan, M. Paolucci, and K. Sycara, “An efficient
algorithm for OWL-S based semantic search in UDDI,” in
SWSWPC 2004, LNCS 3387, 2005, pp. 96-110.

J. Yu and G. Zhou, “Web service discovery and dynamic
invocation based on UDDI/OWL-S,” in Proceedings of BPM
2005 Workshops, ser. LNCS 3812, 2006, pp. 47-55.

E. Tamani and P. Evripidou, “Combining pragmatics and in-
telligence in semantic web service discovery,” in Proceedings
of OTM 2007, ser. LNCS 4806, vol. 2, 2007, pp. 824-833.

Z. Shen and J. Su, “Web service discovery based on behavior
signatures,” in Proceedings of SCC 2005, 2005.

L. Aversano, G. Canfora, and A. Ciampi, “An algorithm for
web service discovery through their composition,” in ICWS
2004, 2004.

R. Li, Z. Zhang, W. Song, F. Ke, and Z. Lu, “Service
publishing and discovering model in a web services oriented
peer-to-peer system,” in Proceedings of ICWE 2005, ser.
LNCS 3579, 2005, pp. 597-599.

A. Kassim, B. Esfandiari, S. Majumdar, and L. Serghi, “A
flexible hybrid architecture for management of distributed
web service registries,” in Communication Networks and
Services Research (CNSR), vol. 5, 2007.

7. Du, J. Huai, and Y. Liu, “Ad-UDDI: An active and
distributed service registry,” in Proceedings of TES 2005, ser.
LNCS 3811, 2006, pp. 58-71.

K. Sivashanmugam, K. Verma, and A. Sheth, “Discovery
of web services in a federated registry environment,” in
Proceedings of ICWS 2004, 2004, pp. 270-278.

J. Hu, C. Guo, Y. Jia, and P. Zou, “Stratus: A distributed
web service discovery infrastructure based on double-overlay
network,” in APWeb 2005, LNCS 3399, 2005, pp. 1027-1032.

M. Pantazoglou, A. Tsalgatidou, and G. Athanaspoulos, “Dis-
covering web services and JXTA peer-to-peer services in a
unified manner,” in Proceedings of ICSOC 2006, ser. LNCS
4294, 2006, pp. 104-115.

S. Willmott, H. Ronsdorf, and K. H. Krempels, “Publish and
search versus registries for semantic web service discovery,”
in Proceedings of WI 2005, 2005.

E. Al-Masri and Q. H. Mahmoud, “WSCE: A crawler engine
for large-scale discovery of web services,” in Proceedings of
ICWS 2007, 2007.

K. Verma, K. Sivashanmugam, A. Sheth, A. Patil, S. Ound-
hakar, and J. Millder, “METEOR-S WSDI: A scalable P2P
infrastructure of registries for semantic publication and dis-
covery of web services,” Information Technology and Man-
agement, vol. 6, pp. 17-39, 2005.

D. Celeik and A. Elci, “Discovery and scoring of semantic
web services based on client requirement(s) through a seman-
tic search agent,” in Proceedings of COMPSAC 2006, vol. 30,
2006.

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[571

[58]

S. Li, C. Xu, Z. Wu, Y. Pan, and X. Li, “ABSDM: Agent
based service discovery mechanism in internet,” in Proceed-
ings of ICCS 2004, ser. LNCS 3036, 2004, pp. 441-444.

J. Beatty, G. Kakivaya, D. Kemp, T. Kuehnel, B. Lovering,
B. Roe, C. StJohn, J. Schlimmer, G. Simonnet, D. Wal-
ter, J. Weast, Y. Yarmosh, and P. Yendluri, “Web services
dynamic discovery (WS-Discovery),” Microsoft Corporation
Inc., Tech. Rep., April 2005.

Y. Li, F. Zou, F. Ma, and M. Li, “Build a distributed repository
for web service discovery based on peer-to-peer network,” in
Proceedings of NPC2 004, ser. LNCS 3222, 2004, pp. 175—
182.

C. Schmidt and M. Parashar, “A Peer-to-Peer approach to
web service discovery,” World Wide Web: Internet and Web
Information Systems, vol. 7, pp. 211-229, 2004.

F Yan and S. Zhan, “A Peer-to-Peer approach with semantic
locality to service,” in Proceedings of GCC 2004, ser. LNCS
3251, 2004, pp. 831-834.

W. Lv and J. Yu, “pService: Peer-to-Peer based web services
discovery and matching,” in Proceedings of ICSNC 2007,
vol. 2, 2007.

O. D. Sahin, C. E. Gerede, D. Agrawal, A. E. Abbadi,
O. Ibarra, and J. Su, “Spider: P2P-based web service discov-
ery,” in Proceedings of ICSOC 2005, ser. LNCS 3826, 2005,
pp- 157-169.

R. Romeikat and B. Bauer, “Towards semantically-enchanced
distributed service discovery,” in Proceedings of ICIW 2007.
Washington, DC, USA: IEEE Computer Society, 2007.

Y. Li, S. Su, and E Yang, “A Peer-to-Peer approach to
semantic web service discovery,” in Proceedings of ICCS
2006, ser. LNCS 3994, vol. 4, 2006, pp. 73-80.

201

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

L.-H. Vu, M. Hauswirth, and K. Aberer, “Towards P2P-
based semantic web service discovery with QoS support,” in
Proceedings of BPM 2005 Workshops, ser. LNCS 3812, 2006,
pp- 18-31.

S. Yu, J. Liu, and J. Le, “Intelligent web service discovery
on large distributed system,” in Proceedings of IDEAL 2004,
ser. LNCS 3177, 2004, pp. 166-172.

B. Sapkota, L. Vasiliu, I. Toma, D. Roman, and C. Bussler,
“Peer-to-Peer technology usage in web service discovery and
matchmaking,” in Proceedings of WISE 2005, ser. LNCS
3806, 2005, pp. 418-425.

7. Changyou, Z. Dongfeng, Z. Yu, and Y. Minghua, “A web
service discovery machanism based on immune communica-
tion,” in Proceedings of ICCIT 2007, 2007, pp. 456—461.

B. Sapkota, D. Roman, and D. Fensel, “Distributed web
service discovery architecture,” in Proceedings of ICIW 2006,
2006.

E. Tamani and P. Evripidou, “A pragmatic methology to web
service discovery,” in Proceedings of ICWS 207, 2007.

J. Aspnes and G. Shah, “Skip graphs,” ACM Transactions on
Algorithms, vol. 3, no. 4, 2007.

W3C, “OWL web ontology
Tech. Rep., February 2004.
http://www.w3.org/TR/owl-features/

language,” W3C,
[Online]. Available:

S. Yu, J. Liu, and J. Le, “DHT facilitated web service
discovery incorporating semantic annotation,” in Proceedings
of DS 2004, ser. LNAI 3245, 2004, pp. 363-370.

