Token Analysis of Graph-Oriented Process Models

Mathias Gotz, Stephan Roser, Florian Lautenbacher and Bernhard Bauer
Programming Distributed Systems Lab
University of Augsburg
Augsburg, Germany
{goetz, roser, lautenbacher, bauer}@ds-lab.org

Abstract—In Business Process Management, graph-based mod-
els are used to represent coordination protocols between col-
laborating partners as well as for service orchestration and
composition. At runtime however, current process engines are
commonly based on mainly block-structured languages, such as
BPEL, that differ structurally and semantically from process
graphs. Recent work has accomplished elaborate mappings
between both representations. Although most mappings strongly
depend on the segmentation of the graph-model into components,
the necessary graph-decomposition itself is not described in these
works. This paper presents a novel approach based on Token
Analysis to automatically identify components. The technique
also allows for optimizations by integrating further steps in the
translation of process graphs to executable workflows.

Index Terms—graph-transformation; process; modeling;
bpmn; bpel

I. INTRODUCTION

Graph-based models — commonly expressed in the Business
Process Modelling Notation (BPMN, [1]) — enable intuitive
modeling of processes: they are understandable and usable
also by non IT-staff. A process is described as a state-
transition system by vertex elements representing activities,
events, gateways for decisions or parallel execution, and the
connecting flow between them, represented by arcs. The
expressive power of graph-based languages, however, also
has some disadvantages. The integrity of the model cannot
be ensured on a syntactic level like e.g. by compilers in
imperative programming, but requires further analysis.

However at runtime, current workflow engines are often
based on imperative block-structured languages. The Business
Process Execution Language for Web Services (shortly: BPEL,
[2]) is a block-oriented language including graph-based control
links. Language elements are composed in a tree-structure that
differs essentially from arbitrary, possibly cyclic graphs; while
providing better control over semantics and misuse of syntax,
the block structure requires experience in programming. This
is not suitable for all business analysts.

[3] discusses the conceptual discrepancy between BPMN
and BPEL. Originating from different backgrounds, the lan-
guages differ in their semantic expressiveness because of the
different paradigms in technical and business analysis. BPMN
is relevant at an early stage of BPM design and BPEL in the
late stage of execution. To close the gap between modeling
and execution, recent work present transformation strategies.

[4] and [5] provide mappings from sub-graphs of BPMN
models — henceforth called components— to equivalent BPEL

15

code. Automatic translation requires to determine all com-
ponents and choose the best mapping strategies for them.
For large scaled input, a structured and efficient approach
is needed. [1] informally outlines in its BPMN specification
a translation from BPMN to BPEL based on a technique
called Token Analysis. Conceptual tokens flowing along the
arcs are used to identify the boundaries of structured com-
ponents which are then mapped to BPEL elements. The
method depends on manual interaction for the identification
of the structured components, so it is not suitable for an
automatic export filter. Existing techniques for automatic graph
decomposition into components from related ficlds, in flow
analysis for compilers and multi-threaded processor design,
are complex and not well adjusted to generating BPEL code.

The objective of this work starts with the basic Token
Analysis idea and transforms it into a convenient segmentation
algorithm, customized to business process diagrams (BPDs,
see [1]) not requiring human input. We aim at building a
bridge between the ideas proposed in the papers on token-
flow by [1] and the mapping routines by [5]. From the
given informal description of the Token concept, we derive
a machine-executable algorithm. This involves investigating
cyclic graph structures and their handling during the analysis.

The overall result is an automatic and efficient algorithm
for the segmentation of (process) graphs into components. The
results improve the translation procedure: we introduce a new
method called partial token convergence to detect additional
components that only become available through gateway split-
ting. This enhances the readability of the produced code and
is one major advantage of the algorithm introduced in this
work, that is currently not supported by related techniques.
Our extended Token Analysis approach works for arbitrary
graphs, includes optimizations in the translations procedure
as well as an enhanced readability of generated code. The
implementation of the Token Analysis algorithm, including
automatic mapping to BPEL code, has proven that the algo-
rithm successfully integrates into the overall transformation.
The developed Java framework can be used to enhance existing
modeling tools with BPEL export.

This paper is structured as follows: Section II gives an
overview of transformation strategies from graph to block
structured models. Section III presents the extended Token
Analysis algorithm, which is applied to an example graph in
Section IV. Finally, Section V concludes and discusses future
work.

II. BACKGROUND AND RELATED WORK

Recent work explores transformation strategies from graph
structured process models to block structure. The mapping
concepts involve a trade-off between readability of the output
code and completeness, that is the ability to transform arbitrary
input models.

[6] uses an annotated graph, i.e. annotations at special
vertices that refer to portions of successively translated BPEL
code. In succeeding steps, subgraphs translate to BPEL. The
paper describes several different mapping strategies such
as Element-Preservation, Element-Minimization, Structure-
Identification, Structure-Maximization and Event-Condition-
Action-Rules for the transformation from a process graph to
BPEL.

[7] describes a semi-automatic pattern-based approach
which is based on Petri nets. [8] instead shows a fully au-
tomatic approach based on event-condition-action rules which
is applied to BPMN as input producing BPEL code. The paper
describes event-action rules, using BPEL event handlers that
represent unbounded parallelism by an unbounded number
of threads within a <scope> running simultaneously. The
strategy is further improved in [5] to a compact representation
that can directly be implemented. Although the mappings
provide translations for arbitrary graphs, the produced code
severely lacks readability. As a remedy, [5] suggests the
combination with other translation types for well-structured
sub-graphs on the same basis as Structure-Identification in
[4]. Sub-graphs having one single entry-point and one exit-
point are called components. The reduction of components to
a single vertex is called folding and formalized in detail. Based
on the decomposition of a process graph into components, the
paper presents an incremental bottom-up overall translation.
[9] further extends the translation by mappings for components
that are not well-structured, but can be translated without the
use of event-handlers. However, the resulting BPEL code is
often difficult to maintain due to the use of <links>.

In [10] a control flow normalisation algorithm is used for
process-graph to BPEL transformation. The graph is trans-
formed into a set of continuation equations consisting ol a
label, an instruction (<invoke> or <if>-branch) or goto-like
references to labels; they can be concatenated via a sequence
operator.

[11] identifies all single-entry single-exit (SESE) regions
in a graph and structures them in a tree, with larger SESE
regions at the top and smaller regions at the bottom. They
claim that their algorithm “runs faster than Lengauer and
Tarjan’s algorithm” using cycle equivalence. Their approach
does also identify quasi-structured patterns whereas our work
seeks only for perfect SESE regions in the first place.

The problem of finding SESE graphs in workflows is a
concern in compiler construction and parallel programming.
Control regions facilitate instruction scheduling for pipelined
machines [12]. In the field of interval analysis, irreducible
loops are characterized by single entry regions. [13] describe

16

a method of transforming control flow into a hammock!
graph. This is done by a threefold process: single branches
(reducible loops) are replaced by block structured elements,
the remaining code around backward and forward branches
is converted into loops where the branch is replaced by an
exit statement. The loop is then followed by a conditional
branch. The technique assumes that the input control graph is
already in block-structure. A lexical order of the operations is
required, that exists for sequential code, but not for workflow
graphs. The proposed algorithm is therefore not suitable for
the problems addressed by this work. Also the algorithm runs
on connected structures for each branch, meaning if this were
applied on general workflow, each edge in the graph (apart
from simple sequences) would have to be considered a branch.

[14] present an algorithm to build a loop nesting tree for
arbitrary control flow from which reducible and irreducible
regions can be identified. For building the loop tree, the paper
uses an extended version of Tarjan’s algorithm [15], that does
not stop at unstructured regions, but rather marks them and
continues processing. The algorithm uses the depth-first search
tree for computation. As the dfs-tree is not unique, results
depend on the tree structure and thus some reducible portions
can be missed. To mend this problem, the paper introduces a
preparation step, based on the dominator tree: reducible loops
can be found from the dominator tree, then empty nodes are
inserted into the input graph (preserving semantics), so that
reducible loops are guaranteed to be found.

[16] also computes SESE regions in process models.
Therefore, they require that first a process structure tree of
the target model is build which can afterwards be traversed
in order to generate BPEL-code. Similarly [17] describes a
refined version of the process structure tree and how it can be
computed for the transformation between BPMN and BPEL. In
our approach the SESE regions are computed directly without
building the process structure tree first.

As already mentioned, [1] describes informally a mapping
based on Token Analysis. The token concept is related to
Petri Nets but different in its realisation. The tokens are not
indistinguishable but have individual markings. Furthermore,
token-flow is not used to express parallel execution but is
used for the analysis of graph propertics. Conceptual tokens
traverse along the flow of the process. They are used to identify
the boundaries of fragments of the graph that map to BPEL
activities. The segmentation of the graph is a main aspect of
the strategy and the technique is described by a set of informal
rules. Tokens are created at vertices with multiple out-flow
and then propagate downstream along the arcs of the process
graph, carrying information on their origin and the number of
paths being traced. They recombine with tokens from the same
origin. This serves to determine the boundaries of components.
The beginning of an activity is “...usually a gateway...” and
the end is at the object where “...all the Tokens [...] can be
recombined.”

!In the literature, different definitions for hammock graphs exist; they are
subgraphs with a single entry and exit point, in analogy of what is called
components in this work.

For loops, the section of the graph is taken from where
“...the loops first merge back (upstream) into the flow until
all the paths have merged back to normal flow” [1, pp. 202ff].
Simple loops with an out-degree of two map to <while>
activities. For interleaved loops, the whole block containing
the loops is mapped to a new process. Nested gateways trans-
late to switch activities where branches connecting upstream
are handled by goto-like <invoke> operations. The idea has
similarities with Ouyang et al.’s Event-action rules and also
with Mendling et al.’s Element preservation. Infinite loops
translate to <while> statements with a false loop condition.
The paper and the additional example [18] make it clear, that
the approach relies on human interaction.

Section III extends this concept to work automatically.
Unlike in [1], the method does not stop whenever a component
can be identified, but calculates the labeling in one run (token-
flow) from which component boundaries are deduced (Token
Analysis). Quasi-structured patterns as in [9] can be identified
by introducing Partial Token Convergence. All concepts in
this paper are oriented towards a seamless integration of the
mappings described in [5], [9].

III. ALGORITHMS

The following presents a formal description of the token-
flow algorithm that grounds on the concepts outlined in [1].
First, we summarize basic mathematical foundations about
set theory. The problem that cycles cause deadlocks in this
algorithm is investigated in Sect. III-B, and contraction is
proposed as a solution. The developed techniques to handle
arbitrary cyclic graphs are formalized in Sect. III-C. Finally,
Sect. III-D shows how the components are derived covering
maximum sequences and partial convergence.

Much of the used notation is adapted from [5] except that
the discussion is not restricted to BPDs, but rather based upon
directed graphs. This develops more general results that can
be applied to different problems.

Let S be some set. P is the power set of all subsets: P(S) =
{s | s € S}. The element function elt selects the only element
from a singleton set: elt({2'}) := x. Similarly first((a,b)) :=
a. For a function f : § — X we lift the function symbol
to apply to subsets of S by element-wise application, that
is: define f : P(S) — P(X) for some subset S C S as
F(9):={f(s) [s 5} .

A partial function g : S — X U {L} is indirectly
referred to as a set containing the elements that have a defined
mapping:

g(s) # L = s € dom(g)

A directed graph is a tuple (V, A). V contains the vertices,
A C V x V the directed arcs. We refer to the start- and
end-vertex of an arc via the functions from((v,w)) = v and
to((v,w)) = w. The incoming and leaving arcs of a vertex v
are addressed by the mappings

in(v) = {(w,v) € A|weV},
out(v) ={(v,w) € AlweV} .

17

Now let p € V¥ p = wvy,...,v,. pis called a path, if V i €
1,..,n—1: (v;,v;41) € A. Furthermore, if i # j = v; #
vj, we call p a simple path. Also we define vertices(p)
{vi |1 €1,...,n}and arcs(p) := {(vi,vi41) |1 € 1,...;n—1}.

We assume w.l.o.g. graphs to have exactly one start and
one end vertex, each with exactly one entering/leaving arc.
Multiple start events in a BPD can be connected to one single
start vertex through a fork gateway. For multiple end vertices
a join gateway is used.

Definition III.1 (Cycle). A path ¢ = vq,...,v, forms a
cycle, il and only il (v,,v1) € A. For cycles, let arcs(c) :=
{(i,vig1) 1€ 1,yn— 1} U {(vp,v1) }

A cycle s is called strongly connected component (SCC), if
it is maximal, i.c. if for all cycles ¢ : vertices(c)Nvertices(s) 7
() = vertices(c) C vertices(s).

In this paper we do not consider graphs that contain
unreachable cycles. We assume that all vertices are reachable
from the start-vertex. Components are connected subsets with
the following properties.

Definition IIL.2 (Component). A subgraph C = (V¢, Ac) of
a graph (V, A) with Ve CV, Ac = AN (Ve x Ve) is called
component, it and only if all of the following conditions hold:

Ci) |in(Ve)\Ac| =1,
Cii) |out(Ve)\Ac| =1,
Ciii) Vv e Ve:lin(v)] >0A |out(v)] >0 .

Let source(C) elt(in(Ve)\Ac) and sink(C)
elt(out(Ve)\Ac). If to(source) = from(sink) then the com-
ponent is trivial.

All flow must enter a component through its source arc and
leave it through its sink arc:

Lemma III.1. For a component C and for all v € V¢ :
from(in(v)\{source(C)}) U to(out(v)\{sink(C)}) C V¢ .

Proof: Let v € V. From Ci and Cii follows, that v’s
entering arcs in(v)\{source} and leaving arcs out(v)\{sink}
must also be included in Ac. By construction of Ac, this
means that all vertices connected to these arcs also belong
to the component. O

Furthermore, Ciii states that no start or end arcs (having
in or out degree of one) may be contained in components
(otherwise, e.g. the graph in Fig. 1 would contain a component
with source = a1 and sink = a»).

3
e
\A' 4”/'
3

Fig. 1. Components do not contain start events.

A. Token-flow Algorithm

We now give a precise and formal description of the token
propagation mechanism described in [1]. The token-flow is
calculated in two steps: first, single tokens propagate through
the graph and second, tokens from the same origin re-combine.

In the first step, tokens are created at the out-flow of splitting
gateways carrying information on their origin. They propagate
along the flow and can compound with other tokens. To each
arc a subset of tokens called token labeling is assigned. For a
single token, the propagation through the graph is calculated
by tracking its routc along the arcs. When tokens arrive at a
gateway with several out arcs, all of the gateway’s out-arcs are
labeled with the same token: At vertices with out degree > 1,
new tokens are created. The out-arcs are labeled with the union
of the arriving token sets and the newly generated tokens.
At merging gateways, the out-arc is labeled with the union
of all incoming tokens. Calculating the flow for each token
separately is inefficient because arcs have to be visited several
times, once for each token. It becomes more efficient when
handling complete sets of tokens, by successively calculating
the out-flow at nodes where all entering flow has been labeled.
This strategy performs a blocking wait, and it does not work
for arbitrary graphs. Deadlocks can only occur at cycles. They
can be separated from the graph by applying the techniques
described in Section III-B.

In the second step, the recombination of tokens is calculated.
When all tokens belonging to the same gateway have arrived at
one arc, they are removed from the labeling (re-combination).
Components can be derived by matching pairs of arcs with
equal token sets. Different to [1], the process does not stop
whenever a component is encountered but continues until all
the arcs have been labeled. The procedure does not have to
start again, and enables the recognition of more advanced,
interleaved structures.

We now define the set of tokens T. A token carries
information on the parallelization for which the token was
generated, i.e. the origin vertex v and a number ¢ referring to
the corresponding out-arc:

Tv,a) = {(v,i) |[ve VAie NAi < |out(v)[} .

Each arc in the graph is assigned a subset of T by the token
labeling function t : A — P(T)U{L}. Token creation occurs
at vertices with |out(v)| > 1. Tokens propagate and unite
at vertices with |in(v)| > 1. Figure 2 illustrates the flow of
tokens created at vertices 1 and 2. After all arcs have been
labeled, tokens originating from the same vertex converge and
are removed from the labeling (indicated in the figure by the
curly brackets).

Finally, the labeling is used to determine the components of
the graph. If for two arcs a,b € A,a # b : t(a) = t(b) holds,
they mark the beginning and the end of a component C, i.e.
{a,b} = {source(C), sink(C)}.

The resulting components can be overlapping, ambiguous,
and include trivial components. In Fig. 2 the converged label-
ing {(1, 1)} appears at four arcs. Each pair of these arcs marks

18

Fig. 2. Example of converging token-flow

Algorithm 1 Token-flow

Input: ¢t : A — P(T) U {L} // initial marking
N C V' // to-do set of vertices
Output: ¢t : A — P(T)
1: processVertex(v € V) {
:P(T) M := Uuet(in(w) u;
:if |out(v)| = 1 then
t(elt(out(v)) := M;
else
int i := 0;
for each a € out(v) do
ta) == MU {(v,i++)};
end for
. end if
!

. tokenFlow (¢, N) {

. while N # 0 do

pick(v € N | t(in(v)) # L);

processVertex(v);

N = N\v;

timestamp (v);

. end while

: for each a € A do

for each v € first(t(a)) do
if t(a) D {(v,i) | i < |out(v)|} then

t(a) = t(a)\{(v,i) | i < |out(v)[}

end if

end for

: end for

27: }

a valid component, but not all of them are desirable. This can
be avoided by a strategy presented in Sect. III-D which shows
how to derive the correct partitioning, covering sequences, and
further component types.

Algorithm 1 summarizes the token-flow procedure. For
an acyclic graph with start node start, call the tokenFlow
function with an initial labeling ¢(start) := (), and with
N := V\{start}. The function pick(e € E | prop : e — B)
non-deterministically selects an element e from a set E,
that meets a required property, i.e. prop(e) = true. The
function timestamp assigns an incrementing index to the
visited elements, thus imposing an ordering on them. The main
loop of the algorithm in line 14 picks an arbitrary vertex,
for which all in-arcs have been labeled with tokens, and calls
the processVertex function for it. This function computes the
leaving flow from the entering flow by first merging all token
sets from the entering arcs (line 2), and then propagating the
resulting set to the leaving arcs. For multiple leaving arcs, a
new token is assigned to each arc in line 8. After processing,
to each arc a timestamp (line 18) is assigned, which is later
used to identify sequence-boundaries (see Sect. III-D). Once
the main loop in tokenFlow terminates, converged tokens are
removed (line 22).

back-arc

Fig. 3.

A deadlock at node 1

B. Contracting Cycles

Algorithm 1 only works for acyclic graphs. Vertex 1 in the
cycle in Fig. 3 cannot be processed until the back-arc (4,1)
has been labeled; this would require the flow leaving vertex 1
to be processed first, as it must pass along the vertices 2, 3, and
4. The result is a deadlock. All cycles have a back arc in the
depth-first-search tree, pointing to a connecting vertex which
cannot be processed because the required flow through the
back-arc must pass through the vertex itself; hence, the flow
cannot proceed from there. This section introduces a method
to avoid this deadlock problem.

Theorem IIL.1. Let ¢ be a cycle, C = (Ve, Ac) a component.
Then

source(C) € arcs(c) < sink(C) € arcs(c) .

Theorem III.1 provides an important insight into the mean-
ing of cycles for the algorithm (the proof can be found
in [19]). It states that source and sink of a component are never
positioned across the boundaries of any cycle. For example, in
Fig. 4 (a) the bold arcs do not identify any component because
only one belongs to a cycle the other does not. In (b) both arcs
are in the same cycle and indicate a valid component. More
restrictions for inter-cyclic components, as shown in (c), are
discussed later.

No information on the location of components passes from
the outside into any cycle interior and vice versa. Tokens con-
vey information on component boundaries. Therefore cycles
can be isolated from the token-flow without losing informa-
tion. To achieve this, two requirements must be met: i) the
flow around cycles (external) and ii) the flow inside cycles
(internal) must lead to a correct identification of components.

In the following we introduce the necessary preparations to
enable arbitrary cyclic graphs to be processed by the token-
flow algorithm. We specify the external flow, the behaviour of
cycle internal flow, and give a solution to problems that arise
when cycles are nested within others.

1) Cycle-External Flow: Figure 5 shows two components
C; and Cy containing (simple) cycles. Each source and sink
pair must carry the same token labeling: t(az) = t(ay) =

0 A tas) = tlas) = 0.

19

create ., create

-

) (vy.».\f«;‘/' .conver.ge . 0 ./(' .j‘.)'.*- converge
.?- v k ;.532 ag k ¢ \.4».
(1\>*$/‘7 H\\;,/ “
| o P % |
Fig. 5. Cycle external flow

Fig. 6. A cycle is contracted to a replacement vertex

To achieve this for Cy, the tokens (v,0) and (v, 1) flowing
into the cycle must converge at ay. This could be achieved by
tracking the tokens separately, as they would finally arrive at
as. Because the flow inside the cycle is independent of the
exterior, this is possible if all incoming f{lows merge when
entering the cycle. In Cy the two branches flowing out of the
cycle do not belong to the same component and therefore must
have a different token labeling. In order to keep the branches
separate the tokens must be created by the cycle itself.

Token creation and convergence are vertex properties. This
gives rise to the idea of treating cycles and vertices equally.
For this purpose we introduce replacement vertices for cycles,
and call the process of embedding them into the graph
contraction. Figure 6 illustrates the process: each arc a; is
replaced by an arc @ connected with the replacement vertex.

To map a cycle c onto a vertex, we first determine its
incoming and leaving flow. Formally, the connectivity of a
cycle c to its environment is defined by the functions in and
out in analogy to those of a vertex:

in(c)

out(c)

{(u,v) € A\arcs(c) | v € vertices(c)},
{(u,v) € A\arcs(c) | u € vertices(c)} .

To contract a cycle ¢, we need to set the references to
the replacement vertex; for all entering arcs a € in(c),
set to(a) := ¢, and for all leaving arcs a € out(c), set
from(a) := c. Contraction is only a temporary process to
determine the token labelings. Storing the original references
of the replaced arcs allows to restore them after the algorithm
has finished. Thus, the original input graph can be mapped to
its corresponding components.

2) Cycle-Internal Flow: After contraction, external flow
does not arrive inside cycles. A kind of bootstrapping internal
flow is required. We define an initial labeling at certain internal
arcs for each cycle. The places where to start naturally seem
to be the vertices, that have a connection to the environment.
We call internal vertices that are connected to a cycle c¢’s

ports *
oLy

initflow —pp

Fig. 7. A cycle with its ports and initflow (a). Internal tokens do not converge

(b)

(int,0)

(int,0) /4 ’

T
NS

Fig. 8.

\&nw)
ﬂinm)

v

An embedded cycle (a) and its deadlock resolution (b)

environment ports:
ports(c) := to(in(c)) U from(out(c)).

Ports of a cycle cannot be contained in internal components
(sce Fig. 4(c)): if a port would be included in a component,
then (because of its connection to the exterior) some vertices of
the environment would need to be included, too. Theorem III.1
states that this is not possible. To ensure that ports are not
identified as parts of components, each flow between two ports
needs different token-ids. The token-flow shall begin at the
ports, thus we set the initial labeling at the out arcs of ports
belonging to the cycle. Formally, they belong to the set

initflow(c) := out(ports(c)) Narcs(c).

Figure 7(a) depicts the ports and initflow arcs of a simple
cycle. The initial tokens must not converge, as can be seen in
Figure 7(b): if the initial labelings ¢(a1) and ¢(a2) did converge
at vertex v, then t(a3) would be) and thus a3 would falsely
be identified with the in and out arcs of the cycle.

Therefore, we expand the token set by a non-converging
internal token type:

—, — P
/4 . / . £ 60
> 1 *> >0 2 o> —>i ;
Y N N £y
4 X . . [o
(@) \-«0/ ®) \-k-'/ ©

Fig. 9. An SCC c consisting of the simple cycles c¢1 and c2

4
‘\/
¥

o——Po

/4
LV

*

o —

Fig. 10. The SCCs without the ports

in this case produces correct results. Only contracting the
whole SCC is required.

As we have seen, contracting nested cycles is only appro-
priate, if they cause internal deadlocks. The sub cycles that
cause deadlocks can be determined by taking the ports from a
cycle (their leaving flow has already been labeled) and if any
cycle remains in the subgraph, it must also be contracted.

Remaining cycles can again contain sub cycles causing
deadlocks. The following recursive top-down strategy iden-
tifies all sub cycles that need contraction:

1) Find all SCCs within the (sub-) graph.

2) Contract them.

3) Repeat step 1 on the subgraph of each found SCC

without its ports.

Taking the ports from the cycle in Fig. 9 opens up both
simple cycles c¢; and co; no sub-cycle is left, thus only the
top SCC is contracted. In Fig. 8(a) the sub-cycle does not
contain ports and thus is contracted. The remaining subgraphs
are shown in Fig. 10.

C. Preparations for the Token-flow Algorithm

Toy.a) := {(v,9)| v € VA € NAi < [out(v)|Ju{(int,4)| i € N} Algorithm 2 makes the necessary preparations for the token-

The initflow arcs must be labeled with different int-tokens.
In Figure 7(b) for instance, the labeling is ¢(a1) = {(int,0)}
and t(az) = {(int,1)}.

3) Substructure of Cycles: A cycle s is called strongly con-
nected component (SCC), if it is maximal, i.e. if for all cycles
c : vertices(c) N vertices(s) # () = vertices(c) C vertices(s).
SCCs and sub cycles can consist of several simple cycles.
Contracting the SCC in Fig. 8 (a) leaves a simple cycle within
the SCC. Without further treatment, a deadlock occurs in the
internal flow of the cycle at node v. Therefore, the sub-cycle
needs to be contracted, as shown in Fig. 8 (b).

Only contracting all simple cycles, however, is not always
sufficient. The cycle in Fig. 9 consists of two simple cycles ¢
and co. Contracting each cycle separately leads to the situation
shown in (c), producing a deadlock. For the SCC in the figure,
contracting sub-cycles is not necessary. The resulting labeling

20

flow algorithm on graphs containing cycles. The recursive
function contractAll is initially called on the sct containing
all vertices of the graph. First all (non-trivial) SCCs are deter-
mined (line 21). Algorithms for detecting SCCs are broadly
available, e.g. see [20]. Each SCC is contracted (line 22) which
returns the replacement vertex v. The contraction replaces the
in and out arcs incident on the cycle by new arcs incident
on the new replacement vertex. Then in line 23, the arcs are
labeled for the initial flow by assigning each arc a unique
token. For each SCC a recursive call (line 27) handles the
sub-cycles, as described in Sect. III-B.

D. Exploiting Results for Component Identification

From the arc labeling, components can be derived. Compo-
nents should be contained within a tree-like structure, meaning
for two components that either one is contained within the
other (a child in the tree) or that they are disjoint (on different

Algorithm 2 Mark initial flow and contract SCCs.

Input: (V, A) directed graph

Output: ¢ : A — P(T) U {L} // initial marking
N C V /I to-do set of vertices

: Init: N := V\{start};

D t(start) == 0;

o int ¢ := 0; // counter for int tokens

: contractAll(V);

: contract(c € V*){

: V' wv; //new replacement vertex
1V =V u{vh

: for each a € in(c) do

A = A U (from(a),v);
A =A\a;

. end for

: for each a € out(c) do

A =A U(v,to(a));

SOEDRoSeRNoUEwL S

A =A\a;
: end for
17: return v;
18: }
19:
20: contractAll(V' C V){
21: for each s € SCCs(V') do
22: V v := contract(s);
23: for each a € initflow(s) do
24: t(a) := {(int,i + +)};
25: end for
26: N = N \ports(s);
27: contractAll(vertices(s)\ports(s));
28: end for
29: }
 _=ar bl r B
— - - -
o — %.&.+.< \.4>.4>.,>< \.—y
B Y SN SO V.Y 2
C' C1 C2 C3
[- L J L a L J
@ © (% —1
Fig. 11. Sequence Components

branches). The only case where this might occur is within
sequences. In this section we describe their handling and
extend the token concept to enable the detection of further
structures.

1) Maximum Sequences: Two arcs with equally labeled to-
ken sets are the source and the sink of a valid component. If the
component is trivial, it only contains a single vertex and can
be neglected. Non-trivial components are cyclic components if
they contain any contracted vertices, otherwise they are acyclic
components.

Whether an arc is a source or a sink is determined by
its finishing timestamps of the token-flow algorithm: the arc
carrying the earlicr timestamp is the source. This follows from
the flow properties: in depth-first search, the source must be
encountered before the sink arc.

More than two arcs with equal sets of tokens represent a
sequence. Figure 11(a) depicts a simple chain with the labeling
t(a1) = t(az) = t(az) = t(aqg). Of all possible and valid
components following from combinations of these tokens (e.g.
source = as,sink = ay), only the maximum sequence is of
interest; it contains all subsequences. The maximum sequence
component C; can be identified by the finishing timestamps:
its source carries the earliest and the sink the latest timestamp.
In the example: source(Cy) = aq,sink(Cy) = aq.

21

Sequences can also contain subcomponents, like C;4 con-
taining Cq,Co,Cs in Fig. 11(b). Each subcomponent is located
between a pair a;, a;41 of arcs. The pair (aq,as) belongs to a
cycle component, whereas the pairs (a2, a3) and (a4, as) be-
long to acyclic components, and (a3, a4) is trivial. Eventually,
component C4 maps to a sequence including three components
and one single vertex.

To summarize the component identification for arcs with
equal labelings:

« For exactly two equally labeled arcs, add a component

(if non-trivial).

o For more, add a sequence for the earliest and latest

labeled arc.

o For each pair of arcs with succeeding timestamps, add a

component (if non-trivial).

Token Analysis yields a classification of components into
categories, which can be used to associate the derived com-
ponents with concrete BPEL elements:

o Cyclic components containing contracted vertices either
translate to <while> or <repeat> activities or can be
translated using event handlers, as in [5].

o Acyclic components translate to <swifch>, <pick> and
<flow> activities (flow pattern-based translation in [9]
can be used here), and

« Sequence components.

2) PFartial Convergence: Token-analysis can be extended to
identify additional components, outlined by quasi-structured
translation by [9]. The BPD in Fig. 12(a) depicts a pair of
XOR gateways that can be matched to a component by intro-
ducing a new gateway to the graph, as shown in Fig. 12(b):
the intermediate arc labeled a V b is created by splitting the
gateway. To identify such components we introduce partial
token convergence.

Fig. 12.

Dividing a gateway into sub-branches

The idea is to introduce virtual arcs with a token combina-
tion belonging to the arc in a splitted gateway. For a gateway
there are several different possibilities to split. Figure 13 shows
a gateway with three branches (a) and the different possibilities
to split the gateway (b,c,d). Each splitted gateway has a
different partial token set. The virtual token sets are calculated
for each gateway, but the gateway is only splitted, if a virtual
token set matches another real labeling in the token-flow. This
introduces a new component and improves the structure of the
graph decomposition.

Figure 14 shows the token-flow for splitting a gateway
with multiple out-arcs (i) and multiple in-arcs (ii), as in the

Fig. 13. Virtual Token Sets of Splitted Gateways

(u,0)

(v,0) w,0)

(v,0)
(V1)

Fig. 14.

Requirements for partial convergence

situation in Fig. 12. The gateway v in (i) has the virtual
token sets {(v,0), (v,1)}, {(v.1), (v,2)}, and {(v,0), (v,2)}.
At node w, the tokens combine, such that the resulting set
t(out(w)) = {(v,0), (v,1)} matches a virtual configuration:
gateway v must be splitted accordingly.

Likewise, merging gateways enable for splitting, like v in
Fig. 14(ii). Here, the virtual token sets are partial combi-
nations of the entering arcs. There are three entering token
sets {(u,0), (w,0)}, {(u,0), (w,1)}, and {(u, 1)}. The virtual
token sets consist of combinations of two entering sets each:
{(u,0)} (after (w,0) and (w,1) have converged), {(w,0)}
(after (u,0) and (u,1) have converged), and {(w,1)} (after
(u,0) and (u, 1) have converged). t(in(w)) = {(u,0)} has a
match, so the gateway splitting is identified.

Generally, at gateways with three or more entering or leav-
ing arcs, each such intermediate token set must be considered.
In the following we describe how to calculate the partial token
sets.

Case i) |out(v)| > 2. Any combination of the leaving token
sets must be considered. For all subsets M C TN {(v,i)]i €
N} of tokens created at vertex v, with |M| > 2, define virtual
token sets (where j is a running index for the subsets)

tpart,; (in(v)) == t(in(v)) UM .

Casc ii) |in(v)| > 2. At a merging gateway, the combina-
tions of entering sets must be considered, i.e. for any subset
e C in(v) of entering arcs with |e| > 2, we define a virtual
token set t,,,+ of the tokens:

U

u€et(e)

tpart,;j (OUt(v))

There are 2/°*'(")l — |out(v)| — 2 partial combinations for
case i) and 2/"(")| —|in(v)| —2 for case ii). Token Analysis must

22

Rate Item
‘Class B

Evaluate
Result

Repair
Demage

Analyse
Performance

Calculate
Failure
Frequenc:

Derive

possible
Improvements

Update
Statistics

Fig. 15. A BPD for Quality Control of Production

Fig. 16.

One SCC in the Quality Control Graph

consider partial tokens for AND and XOR gateways. Tokens in
Lpare converge in the usual way. If tokens match with partial
arcs, they are generated by splitting gateways (as shown in
Fig. 12). For instance, if t(a) = tp4(b) then the gateway
node b is divided, generating a new valid component. If the
gateway type is XOR, guard conditions need to be handled.
The guard-condition of the intermediate arc is the disjunction
of the guards of the corresponding splitted branches.

IV. USE CASE

In the following we describe our approach utilizing our
proof-of-concept implementation. It can be downloaded from
http://sourceforge.net/projects/tokenanalysis/. We present the
mapping steps from the BPD input model to the graph-
based model for BPEL and use a realistic example to give
an overview of how techniques described in Sect. IIT work
together. We show the single steps of the transformation with
a sample process graph for quality control in Fig. 15.

The first step in analysis is according to Sect. III-B the
identification of the SCCs that need to be contracted. The
graph contains one SCC (2,3,4,5,6,7,8) with ports 2,5, and
8 (Fig. 16). Taking the ports from the only SCC in Fig. 16
leaves no internal SCCs, as shown in Fig. 17a. Thus, only
one SCC needs to be contracted to the replacement vertex
SCC 0. Next, the initflow arcs of the cycle, (2, 3), (5,6), and
(8,2), are given internal token labels along the init-flow arcs
for boot-strapping. The result is shown in Fig. 17b.

The token-flow algorithm is launched for the initial labeling
of the SCC and an () label at (S, 1). First consider cycle exter-
nal flow. Figure 18 shows the flow around the contracted vertex
SCC' 0 and the token configurations for the arcs, after token
convergence. Three tokens are created at vertex 1. Therefore,

SCco Scco

) LERS,)
(int,0)
) , Lo O

Fig. 17.

The SCC without its Ports and the init flow for the SCC

Fig. 18.

Cycle External Flow in the Control Graph

additional partial token configurations are created; they are
{(1,0), (1,1}, {(1,1),(1,2)}, and {(1,0),(1,2)}. The first
token (1,0) enters the cycle replacement vertex. SCC 0 has
two leaving arcs (8,9), (5,10). Here, the replacement vertex
creates two new tokens (SCC' 0,0) and (SCC 0,1). The
tokens propagate along the flow and at vertex 10, the ones
belonging to SCC' 0 converge. At an intermediate arc of
vertex 1 there is a partial match with the arc (14, 15) carrying
the tokens {(1,1),(1,2)}. Thus the gateway is splitted; the
result of the splitting is depicted in Fig. 19, together with the
remaining internal flow. Finally, all branches merge back at
node 17. In the cycle internal flow no branching takes place.
Therefore, the tokens simply propagate up to the next ports.
Fig. 20 shows the resulting process graph with the final token
sets.

In the next step, components are identified by arcs with
equal token sets. The pair (S,1) — (17,F) marks the
super component C; representing the entire scope. The arcs
(1,2),(10,11), (11,17) have the same labeling. According to
the rules in Sect. III-B, they must form a sequence, therefore
the outer pair of arcs (1,2) — (11, 17) belongs to the sequence
component Cy. Inside there is one non-trivial sub-component

(1,0)
(scco, 1)

1,0
T} gscz: 0,1)
U

Fig. 19. Token-flow in the Control Graph

23

10)
(scco 1)

(10)

o o)scCon
__J

(int0) - (int.0) @
c, wo §

3

(int2) o

(int1)

a0

(1.0) (SCC0,0)

=)
;

.1

'z an 1) an

1.0
(12) (1.2) (1.2)
e E e €l ey 2-©

Fig. 20. Components as Identified by the Token Labels

(1,2) — (10,11) that includes the SCC (cyclic component
C3) and one trivial component, which is omitted. Inside the
cycle exist two further sequences C; : (5,6) — (7,8) and
Cy @ (2,3) — (4,5) with only trivial sub-sequences. The
partial arc (1,1p4,+) matches the arcs flowing out from 14
and the partial component Cs is created. The subsequence 15
to 17 contains only trivial components. The whole identified
sequence Cg is (1, 1pgre) — (16,17).

The final step is the generation of BPEL code. As the
correspondence of graph elements to BPEL blocks has now
been established, this can be done using templates. The whole
process component C7 maps to a structured BPEL <flow>.
One parallel branch consists of the structured sequence compo-
nent Cg, which contains the structured <flow> sub-component
Cs. The fact that Cg only consists of structured elements is due
to the partial convergence. Here the strength of the approach
becomes apparent. The simple integration of the gateway
detection in the Token Analysis algorithm enables structured,
readable output code. If gateway 1 had not been splitted, then
Cg could not be detected and all nodes in Cs would have to
be translated in an unstructured acyclic component C7.

V. CONCLUSION

We have demonstrated how Token Analysis can be used to
identify the components of a process graph. The identification
works for cyclic graphs, too. Describing the necessary steps,
we gathered theoretical results for cycles, that yield a cycle
internal and external view of the flow. The approach also
provides a classification of the components (sequence, cyclic,
flow) allowing to speed up further translation steps; the actual
mapping to code can be achieved with methods described in
[5], [9]. Also, the described approach enables the detection
of partial components, that cannot be identified by simply
checking the definition of components.

Our implementation has already been successfully employed
in the workflow code generation framework [21] which is
e.g. used in the AgilPro process suite (www.agilpro.eu). The
workflow code generation framework provides adapters in
order to connect it to different modeling tools, transforms
the graph as described above and generates code according
to predefined code-templates. This allows (different to [16])
to switch to other modeling tools (such as a BPMN modeler)

easily and to change the transformation templates from BPEL
1.1 to BPEL 2.0 very quick.

We sce high potential that our work can contribute also to
other research areas besides the generation of block-structured
code (such as BPEL). We already applied it for the validation
of process models (similar to [22]) as well as for an adaptation
mechanism of existing process models.

The extended component identification provides also a basis
to display changes in the workflow code in the process
model more easily. Such reverse engineering as well as formal
analysis and proof of correctness is topic of future research.

REFERENCES
[11
[2]

OMBG, “Business Process Modeling Notation Specification, Version 1.2,”
formal/09-01-03, January 2009, http://www.omg.org/spec/BPMN/1.2.
OASIS, Business Process Execution Language for Web Services 1.1,
2003.

J. Recker and J. Mendling, “On the Translation between BPMN and
BPEL: Conceptual Mismatch between Process Modeling Languages,”
CAISE, Luxembourg, vol. 4001, June, 5-9 2006.

J. Mendling et al, “Transformation Strategies between Block-Oriented
and Graph-Oriented Process Modelling Languages,” in MKWI, vol. 2,
2006, pp. 297-312.

C. Ouyang et al, “From BPMN Process Models to BPEL Web Services,”
IEEE ICWS, pp. 285-292, 2006.

J. Mendling et al, “On the Transformation of Control Flow between
Block-oriented and Graph-oriented Process Modeling Languages,” Int. J.
Business Process Integration and Management, vol. 3, no. 2, September
2008.

W. van der Aalst and K. B. Lassen, “Translating Unstructured Workflow
Processes to Readable BPEL,” Information and Software Technology,
vol. 50, no. 3, pp. 131-159, 2008.

C. Ouyang, M. Dumas, S. Breutel, and A. H. ter Hofstede, “Translating
Standard Process Models to BPEL,” in Proceedings of CAISE 2000, ser.
LNCS, vol. 4001. Springer, 2006, pp. 417-432.

C. Ouyang, M. Dumas, A. H. ter Hofstede, and W. M. van der Aalst,
“Pattern-based Translation of BPMN Process Models to BPEL Web
Services,” Internat. Journal of Web Services Research (JSWR), 2007.
J. Koehler et al, “Declarative techniques for model-driven business
process integration,” IBM Systems Journal, vol. 44, no. 1, 2005.

R. Johnson, D. Pearson, and K. Pingali, “The program structure tree:

[3]

[4

=

[51

[6]

[7]

[8]

[91

[10]

[11]

computing control regions in linear time,” in PLDI *94: Proceedings of

the ACM SIGPLAN 1994 conference on Programming language design
and implementation. ~ New York, NY, USA: ACM Press, 1994, pp.
171-185.

R. Gupta and M. L. Soffa, “Region scheduling,” 2nd Int. Conf. on
Supercomp., pp. 141-148, 1978.

F. Zhang and E. H. D’Hollander, “Using Hammock Graphs to Structure
Programs,” IEEE Trans. Softw. Eng., vol. 30, no. 4, pp. 231-245, 2004.
P. Havlak, “Nesting of reducible and irreducible loops,” ACM Trans.
Program. Lang. Syst., vol. 19, no. 4, pp. 557-567, 1997.

R. E. Tarjan, “Testing flow graph reducibility,” J. Comput. Syst. Sci.,
vol. 9, pp. 355-365, 1974.

L. Garcia-Banuelos, “Pattern identification and classification in the
translation from BPMN to BPEL,” in OTM 2008, Part I, ser. LNCS,
R. Meersman and Z. Tari, Eds., no. 5531. Springer-Verlag Berlin
Heidelberg, 2008, pp. 436—444.

J. Vanhatalo, H. Volzer, and J. Koehler, “The refined process structure
tree,” in Proceedings of BPM 2008, ser. LNCS, M. Dumas, M. Reichert,
and M.-C. Shan, Eds., no. 5240. Springer-Verlag, 2008, pp. 100-115.
S. A. White, “Using BPMN to Model a BPEL Process,” BPTrends,
March 2005.

M. Gétz, S. Roser, F. Lautenbacher, and B. Bauer, “Using Token Anal-
ysis to Transform Graph-Oriented Process Models to BPEL,” University
of Augsburg, Tech. Rep., 2008, TR 2008-08.

T. H. Cormen, C. E. Leiserson, R. L. Reivest, and C. Stein, Introduction
to Algorithms, ser. The MIT electrical engineering and Comp. Sci.
Series. Cambridge: MIT Press, 2001.

[12]
[13]
[14]
[15]

[16]

[17]

[18]

[19]

[20]

24

[21] S. Roser, F. Lautenbacher, and B. Bauer, “Generation of Workflow Code
from DSMSs,” in Proceedings of the 7th OOPSLA Workshop on Domain-
Specific Modeling, Montreal, Canada, 2007.

[22] J. Vanhatalo, H. V&lzer, and F. Leymann, “Faster and more focused
control-flow analysis for business process models through SESE de-
composition,” in ICSOC, 2007.

