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Abstract. Model-driven software development facilitates faster and more flexi-
ble integration of information and communication systems. It divides system
descriptions into models of different view points and abstraction levels. To ef-
fectively realize cross-organisational collaborations, it is an important prerequi-
site to exchange models between different modelling languages and tools.
Knowledge is captured in model transformations, which are continuously ad-
justed to new modelling formats and tools. However, interoperability problems
in modelling can hardly be overcome by solutions that essentially operate at
syntactical level. This paper presents a novel approach using the capabilities of
semantic technologies in order to improve cross-organisational modelling by
automatic generation and evolution of model transformations.

1 Introduction

New challenges arise with the development of increasingly complex systems across
enterprises. Systems must be more adaptable to changing requirements. It has to be
possible to compose systems from existing components, to replace parts of systems,
and to integrate existing systems. Model-driven software development (MDSD) is a
young but promising approach to deal with these challenges. However, to enable an
efficient development of flexible cross-organisational information and communication
systems one needs to support interoperability in modelling enterprises and applica-
tions. As enterprises often apply different methodologies, they need to share their
enterprise models and knowledge independent of languages and tools. Therefore, one
needs to develop mappings between different existing enterprise modelling formal-
isms based on an enterprise modelling ontology as well as tools and services for trans-
lating models (IDEAS analysis - gap 12 [21]). The IDEAS network stated in its vision
for 2010 [22] requirements to enable enterprises to seamlessly collaborate with others.
According to this, it is necessary to integrate and adapt ontologies in architectures and
infrastructures to the layers of enterprise architecture and to operational models. This
can be done by applying mappings between different enterprise model formalisms
based on an enterprise modelling ontology. Heterogeneous business models can be
semantically enriched by ontologies to achieve a shared understanding of the enter-
prise domain.
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[10] proposes a rather abstract interoperability framework for MDSD of software
systems, which supports the business interoperability needs of an enterprise. Mutual
understanding on all levels of integration, conceptual, technical, and applicative level,
has to be achieved. One uses the conceptual reference model to model interoperabil-
ity, whereas metamodels and ontologies are used to define model transformations and
model mappings between the different views of an enterprise system. Still, solutions
like [5], [27], and [41], that aim at improving such kind of interoperability, address
the problems of different representation formats, modelling guidelines, modelling
styles, modelling languages, and methodologies at the syntactical level. Their focus is
on metamodels’ abstract and concrete syntax. Approaches providing interoperability
solutions based on ontologies and automated reasoning lack key features for model-
ling [16]. For example they do not store trace information of transformation execu-
tions in order to enable transactions or incremental updates [37].

In this work we propose the approach of ontology-based model transformation
(ontMT). It integrates ontologies in modelling by utilising different technological
spaces [26] (namely MDA and Ontology technological space) to automate the genera-
tion and evolution of model transformations. Interoperability in modelling is fostered
by employing automated reasoning technologies from the ontology engineering tech-
nological space for the generation of model transformations. We present how the
ontMT approach can be realized as a semantic-enabled model transformation tool
(Sem-MT-Tool) in a semantic-enabled modelling and development suite (see [2]).
This tool applies technology bridging MDA and Semantic Web approaches and
makes use of the capabilities and benefits of both approaches.

This paper is organized as follows: After introducing background information in
Section 2, we provide a problem description in Section 3. The approach of ontology-
based model transformation is presented in Section 4. Section 5 provides insights into
the components of a semantic-enabled modelling and development tool realizing the
ontMT approach. Section 6 contains a detailed case study. Section 7 discusses the
ontMT approach and Section 8 provides related work. Finally, we conclude with a
short summary and outlook in Section 9.

2 Background and Context

Model-driven Software Development (MDSD): MDSD, as a generalization of
OMG™’s Model Driven Architecture paradigm (MDA®), is an approach to software
development based on modelling and automated transformation of models to imple-
mentations [15]. In MDSD models are more than abstract descriptions of systems:
they are the key part in defining software systems, as they are used for model- and
code generation. Largely automated model transformations refine abstract models to
more concrete models or simply describe mappings between models of the same level
of abstraction. As model transformations play a key role in MDSD, it is important that
transformations can be developed as efficiently as possible [16].

Models: The definition of the mega-model' presented in [14] describes a model as a
system that enables us to give answers about a system under study without the need to

! Models about modelling are called mega-models, while metamodels are models of modelling
languages.
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consider this system directly. In short, a model is a representation of a system,
whereas systems can be physically observable elements or more abstract concepts like
modelling languages. A modelling language is a set of models, and models are ele-
ments of a modelling language. Models conform to a model of the modelling lan-
guage, i.e. a metamodel. Those metamodels can be used to validate models. For one
modelling language multiple (meta)models can exist, which can differ in the language
they are described in.

Model transformations: Model transformations (MTs) are specified between meta-
models. The execution of a model transformation transforms models conforming to
the source metamodel into models conforming to the target metamodel. Vertical
model transformations refine abstract models to more concrete models, while hori-
zontal model transformations describe mappings between models of the same abstrac-
tion level. With the MOF 2.0 Query/View/Transformation specification [37] (QVT)
the OMG provides a standard syntax and execution semantics for transformations
used in a MDSD tools chain. The QVT relations language allows to specify relation-
ships between MOF models declaratively. It supports complex object pattern match-
ing and implicitly traces the transformation execution. A relational transformation
defines how a set of models can be transformed into another. Relations in a transfor-
mation declare constraints that must be satisfied by the elements of the candidate
models. Domains are part of a relation and have patterns. Patterns can be considered
as templates for objects and their properties that must be located, modified, or created
in a candidate model that should satisfy the relation. A domain pattern consists of a
graph of object template expressions (OTEs) and property template items (PTIs). An
OTE specifies a pattern that matches model elements. It is uses a collection of PTIs to
specify constraints on the values of the properties of model elements.

relation PackageToSchema {

domain uml p:Package {name=pn}

domain rdbms s:Schema {name=pn}

}
Listing 1: QVT sample relation

Listing 1 depicts a relation specified in QVT relational syntax [37, p.13]. Two do-
mains are declared that match elements of the uml and rdbms models respectively.
Each domain specifies a pattern: a Package with a name, and a Schema with a name.
Both name properties being bound to the same variable pn implying that they should
have the same value.

Ontology: Ontologies are considered a key element for semantic interoperability.
They act as shared vocabularies for describing the relevant notions of application
areas, whose semantics is specified in a (reasonably) unambiguous and machine-
processable form [7]. According to [33] an ontology differs from existing methods
and technologies in the following way: (i) the primary goal of ontologies is to enable
agreement on the meaning of specific vocabulary terms and to facilitate information
integration across individual languages. (ii) Ontologies are formalized in logic-based
representation languages. Thus, their semantics is specified in an unambiguous way.
(i11) The representation languages come with executable calculi enabling querying and
reasoning at run time. Application ontologies contain the definitions specific to a
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particular application [19]. Reference ontologies refer to ontological theories, whose
focus is to clarify the intended meanings of terms used in specific domains.

Technological Spaces: Kurtev et al. [26] introduce the concept of technological
spaces (TS) aiming to improve efficiency of work by using the best possibilities of
different technologies. A technological space is, in short, a zone of established exper-
tise and ongoing research. It is a working context together with a set of associated
concepts, body of knowledge, tools, required skills, and possibilities. Initially five
technological spaces (MDA TS, XML TS, Abstract Syntax TS, Ontology TS, DBMS
TS) have been presented in [26], of which the MDA TS and the Ontology TS are im-
portant for our work. In the MDA TS models are considered as first-class citizens,
that represent particular views on the system being built. The Ontology TS can be
considered as a subfield of knowledge engineering, mainly dealing with representa-
tion and reasoning. The ontology engineering space performs outstanding in traceabil-
ity, i.e. in the specification of correspondences between various metamodels, while
the MDA TS is much more applicable to facilitate aspect or content separation. With
the Ontology Definition Metamodel (ODM) [35] the OMG issues a specification
defining a family of independent metamodels and mappings among these metamod-
els. These metamodels correspond to several international standards for ontology
definition. ODM comprises metamodels for RDF(S), OWL, common logic (CL),
topic maps (TM), and as a non normative part description logic (DL). Metamodels for
RDF(S) and OWL represent more structural or descriptive representations, which are
commonly used in the semantic web community. ODM further defines transforma-
tions between the UML2 metamodel and the OWL metamodel defined in ODM.

Semantics: The notion of the term semantics depends on the context it is used in and
varies by the people using it. As the root of the problem Harel and Rumpe [20] iden-
tify insufficient regard for the crucial distinction between syntax and true semantics.
Thus we clarify a few terms that have particular significance to this work.

e Syntax: Syntax N, is the notation of a language L. It is distinguished between the
concrete syntax, the textual or graphical representation of the language, and an ab-
stract syntax or metamodel, being the machine’s internal representation. A meta-
model is a way to describe the syntax of a language [20].

e Semantics: Semantics is the meaning of language, that is expressed by relating the
syntax to a semantic domain. The description of a semantic domain S (its notation
1s Ng) can vary from plain English to mathematics. Semantics is defined by a se-
mantic mapping M: L — S from the language’s syntax to its semantic domain [20].

e Ontological: According to [35] ‘an ontology defines the common terms and con-
cepts (meaning) used to describe and represent and area of knowledge’. Talking
about ‘ontological’ we mean technology of the Ontology TS. That is to say tech-
nology based on logic like RDF(S) or OWL, which is used by the semantic web
community to describe e.g. vocabularies or ontologies.

3 Problem Description

To enable collaboration in enterprise and systems modelling, enterprises have to be
supported by interoperability solutions for model sharing and model exchange inde-
pendent of modelling languages and tools. Also the evolution of model transformations
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has to be considered. To maintain and reuse existing model transformations, model
transformations have to be adjusted to new modelling languages or styles. This section
illustrates these challenges via a MDSD scenario. It further discusses the problems that
possible automation solutions face.

3.1 A MDSD Scenario

Figure 1 illustrates the application of MDSD to cross-organisational business process
development. The vertical dimension distinguishes the different layers of abstraction
applied in MDSD, and the horizontal dimension represents the collaborative model-
ling between two enterprises A and B. Models of enterprises A and B have to be
shared at different levels of abstraction in order to agree on and develop cross-
organisational business processes.

Enterpr. A CBP-<XDev. Enterpr. B
W r-- MO2GO(IEM)
Business r :
Expert _‘_/___. mapping [ VPs CBP VPS| ™ mapping :_ Y_P_S_ PPs
Q
(D transformation transformation transformation
Q
S W -] Weastro
IT Expert '
Q ----- 1 mapping mapping ‘- ----
g transformation “’ .".’ transformation
E ‘0 ’Q "..
IT System ! :
Syste PPs | VPs! | VPs | PPs

PP = private processes
\/ VP = view processes

CBP = cross-organisational business processes

Fig. 1. Scenario realizing cross-organisational business process modelling and execution

A concrete scenario, implementing cross-organisational business process model-
ling and execution like show in Figure 1, has been developed in the ATHENA project
(more details can be found in [18]). Enterprises A and B develop models for their
processes (privates processes (PPs), view processes (VPs), and cross-organisational
business processes (CBPs)) at three levels of abstraction, i.e. business expert, IT
expert, and IT-system level. Vertical transformations, like presented in [1], encode
knowledge about the architecture and the platform in order to transform models from
higher to lower abstraction level. For example ARIS models (eEPCs [25]) are trans-
formed to models conforming to PIM4SOA [3]. Enterprises A and B use different
modelling tools and languages at the various abstraction levels. To develop
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cross-organisational business processes, both enterprises have to provide public parts
of their models as a basis for discussion during collaborative modelling.
However, some issues prevent a smooth realization of such a MDSD scenario:

e Exchange of models: Models are shared across inter-organisational relationships.
Hence, mappings have to be developed between the various enterprises’ modelling
languages and tools. This is necessary to achieve a shared understanding of cross-
organisational business processes and to enable collaborative MDSD.

e Evolution of model transformations: Over a period of time enterprises will apply
new (versions) of modelling languages, metamodels, and modelling styles. There-
fore, existing transformations have to be maintained, adjusted, or redeveloped.

3.2 Problem Statement

Managing and developing model transformations are error-prone and long lasting
tasks. Since model transformations are a kind of metaprogramming, they require a
deep knowledge of all the underlying modelling technology, which is, in most cases,
quite hard to learn. Thus, it is beneficial to provide support with a solution that
automates model transformation development and adjustment tasks. Despite the mul-
tiplicity of model transformations and application scenarios, the core principles of
modelling (i.e. representing information about real world things in models) and prob-
lems of such automation solutions remain the same. The core barriers to model ex-
change and maintenance of model transformations are multiple representation formats
and different modelling styles, serving the particular application.

e Different representation format: The trend towards the use of domain specific
languages (DSLs) leads more and more people to create their own domain specific
models (DSMs). This naturally results in a variety of different languages and
metamodels. To exchange models that conform to these various metamodels (ab-
stract syntax), model transformations have to be developed. Often there are multi-
ple model transformations for the same modelling language. Also time and again
new versions of metamodels, e.g. the metamodels for UML 1.x and UML 2.x, are
released. Whenever new versions replace the old ones, new model transformations
have to be developed and existing model transformations have to be adjusted.
Though visual representations (concrete syntax) should be decoupled from internal
representation (abstract syntax), different concrete syntax is often considered in
model transformations to provide e.g. views on models.

e Different semantics: Since the semantics of modelling languages’ concepts is
rarely formally specified (in the UML specification this is plain English), different
people and organisations can associate different semantics with the same concepts
used in the metamodel. This is often done by applying special modelling styles and
representation guidelines. Again, model transformations have to be specified ena-
bling sensible exchange of models according to the respective interpretations.

4 Ontology Supported Model Transformations

OntMT facilitates methods to generate and adjust model transformations despite of
structural and semantic differences of metamodels. Different representation formats
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and different semantics (as described in Section 3.2) are overcome by applying se-
mantic web technology of the Ontology TS. In ontMT metamodels are annotated
through the elements of a reference ontology (RO) and reasoning is applied to the RO
and the annotations. OntMT allows to generate and adjust common model transforma-
tions automatically in order to apply MDSD in the MDA TS.

Reference Ontology
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Fig. 2. Ontology-based model transformation — overall approach

Figure 2 depicts the overall approach of ontMT. Different versions of metamodels
are bound to a reference ontology of a certain domain. Bindings (semantic annota-
tions) specify the semantic mapping of metamodels to the semantics of their concepts,
i.e. to the reference ontology. To generate model transformations for various model
transformation languages and to adjust existing model transformations, ontMT makes
use of reasoning mechanisms. The metamodels and the reference ontology are given,
while the bindings of the metamodels to the reference ontology have to be specified.
Finally, an initial model transformation is needed. For the evolution of model trans-
formations the initial model transformation is the model transformation that shall be
reused or adjusted (see Section 4.2). The initial model transformation (e.g. from meta-
model v1.5 to metamodel v2.0) encodes transformation rules and especially the se-
mantics of the model transformation. If for example the metamodel v2.0 is replaced
with a version 2.1 only the delta between these metamodel has to be considered to
adjust the existing model transformation. The new model transformation is generated
by substituting the concepts of metamodel v2.0 with the concepts of metamodel v2.1
in the initial model transformation. In the case of automated mapping generation, a
bootstrapping algorithm generates an initial model transformation (see Section 4.1).

4.1 Generation of Model Transformations

Model transformations between various modelling languages can be automatically
derived and generated with the ontMT approach. In this section we describe the
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procedure to generate mappings, i.e. semantically identical model transformations,
between two modelling languages A and B. We illustrate the procedure via a strongly
simplified example, where A and B both consist of two concepts: A={Process, Task}
and B={EPC, EPCElement].

For both languages exists an abstract syntax N,/Np in various technological spaces:
A has (like B) an abstract syntax in the MDA TS Ny_,4. and the Ontology TS Ny,
which are synchronized. Thus, one can work with the syntax and the capability of that
technological space, that is better suited for solving a problem (see Figure 3). The
semantics of the concepts is described by the means of the semantic domain SD and
its notation in a reference ontology Nz (e.g. OWL) respectively. Semantics of the
languages is defined by semantic mappings from the languages to the semantic do-
main: My: A — SD and Mp: B — SD. In this example, the semantic domain is given
as SD={Activity, Action}, while the semantic mappings are M, ={Process = Activity,
Task =Action} and Mp={EPC = Activity, EPCElement =Action}’.

A M,:A —»SD SD
7N N | |
// N N i | represenationOf
\ \ |
/ \ N | |
/ N
M
NA-mda NA-ont s NRO
MDA TS Ontology TS

Fig. 3. Modelling language, semantic mapping, semantic domain and their representations

The ontological grounding3 is a notation of the semantic mapping from N,_,,, to
Nro. The goal of the transformation to generate is to define ‘identity’ relationships
between the concepts of A and B. The model transformation MT,,,,45: A <> B between
A and B has the following semantics: Myzmapap’ MTnapap — id, where id is the identi-
cal mapping. The generation procedure works on the model of the model transforma-
tion and the models of the modelling languages. It exploits the ontological grounding
to the reference ontology. On the basis of reasoning results gained in the Ontology TS
({Process =EPC, Task = EPCElement}), modification operations are called to obtain
the new model transformation working solely on the model of the model transforma-
tion. To generate the model transformation MT,,,,5, the following steps are per-
formed (see Figure 4a):

e © A bootstrapping algorithm generates the model transformation M7,,,44: A <> A,
which is a mapping of A on itself. This bootstrapping step is necessary to obtain a
first model of the model transformation (transforming N, to N,') * which only has
to be adjusted by modifications operations. Assuming the same ontological
grounding for N4 and N,', the bootstrapping model transformation is an id: My,

? = stands for equivalence.

3 The definition of the ontological grounding is a semantic annotation comprising static seman-
tics of the metamodels, i.e. the semantics of the concepts and an ontology respectively.

* Such a mapping can be generated on the basis of a metamodel in the MDA TS. The appropri-
ate mapping rules are generated by traversing the metamodel via its composite aggregation (in
short composition) relationships.
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paas MT 4044 — id. In our example the model transformation relations identified by
the bootstrapping are MT,,,,aa{ Process <> Process, Task <> Task}.

e O The inference engine derives relationships between N,' and Np in the Ontology
TS. This is possible, since both N4’ and Ny are mapped to the same reference
ontology Ngo. It is automatically computed, how the concepts of N,' can be substi-
tuted by semantically identical concepts of Ny (6(MT,,4paa)=MT,,4pa5). Those rela-
tionships can be transferred to the MDA TS as the modelling languages A and B
have synchronous representations in both MDA TS and Ontology TS. The substitu-
tions computed for our example are [ EPC/Process] and [ EPCElement/Task].

e @ Finally, the concepts of N,' are substituted with the concepts of N in the model
of MT,,,pax and we obtain a model of the model transformation MT,,,,4z With
Myitmapas: MT,qpa5— id. The substitution is performed via modification operations
on the model of the model transformation M7,,,,44 in MDA TS. In the example the
following model transformation relations are generated: MT,,,,25{ Process <» EPC,
Task <» EPCElement).

©® wMT, A-A MT,5: A< B
N,«e—— N,' N,«— N
F’(M Tan )=MT 5 F"(M Tas )=MT ¢
N N
NA MTas NB NA MTac Nc
2) @ MT,z: A~ B b) @ MT,.:A—C

Fig. 4. Procedure of a) automated mapping generation, b) model transformation evolution

4.2 Evolution of Model Transformations

OntMT also fosters the evolution and reuse of existing model transformations. Instead
of performing the bootstrapping step, the procedure for model transformation evolu-
tion takes the model transformation that shall be reused as input (see Figure 4b). This
initial model transformation M7,,,,4: A <> B encodes knowledge about how model-
ling language A is translated into B. The steps @ and @ are the same as for automated
mapping generation. In step @, a substitution o(MT,,pa5)=MT 4pac is computed on
the basis of inference results. Step @ applies this substitution and generates a new
version of the initial model transformation MT,,,,,4c: A <> C. The bootstrapping step
helps to extend ontMT to scenarios where existing model transformations are ad-
justed. Avoiding to derive model transformations directly from ontologies results in a
more flexible and well-structured architecture. OntMT can both generate new model
transformations and reuse knowledge encoded in existing transformations. Issues
concerning the model transformation, like checking if its model conforms to the QVT
metamodel or considering the cardinality of associations’ ends, are all dealt within the
MDA TS. The Sem-MT-Component invokes modifications operations on the basis of
the reasoning results and the application of heuristics.
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5 Realization of OntMT

This section presents the components and concepts of ontMT realized as a tool for a
semantic-enabled modelling and development suite, its parts and functionality.

5.1 Components of a Sem-MT-Tool

OntMT, as part of our vision of a semantic-enabled modelling and development suite,
is realized as Sem-X-Tool (see Figure 5) [2]. The infrastructure provides basic func-
tionality including a bridge © between models of the MDA TS and application on-
tologies of the Ontology TS (like it is described in [6]) and an inference component,
which can be individually configured and used by Sem-X-Tools registered at the
infrastructure. Sem-X-Tools, like the Sem-MT-Tool presented in this paper, are built
on top of the infrastructure. They consist of a model manipulator, a Sem-X-
Component, and a rule set. The model manipulator reads, creates, modifies and de-
letes models of the model repository @. It delivers information about models to the
Sem-X-Component @ and provides interfaces for model manipulation ®. The Sem-
X-Component implements the core functionality of a Sem-X-Tool. It makes use of the
reasoning results gained by inferring ontologies and computes the respective model
manipulation @. Since Sem-X-Tools are based on different relationships between the
ontologies’ elements, each Sem-X-Tool has its own set of reasoning rules.

Semantic-enabled modelling and development suite

Sem-X-Tools

M.Odel _@_’ Sem-X-Component RuleSet
Manipulator |+—@y—

Infrastructure

Fig. 5. OntMT as part of a semantic-enabled modelling and development suite

Figure 6 shows the architecture of the components building the Sem-MT-Tool
which is an instantiation of the Sem-X-Tool. The model manipulator provides func-
tionality via three interfaces: one that identifies the concepts of a metamodel that have
to be substituted in a model transformation, one that performs a substitution of a
metamodel’s concepts in the model transformation, and one that provides validation
functionality for the generated model transformation. The inference component pro-
vides an interface for accessing the reasoning results, i.e. the relationships between
the metamodel elements. The Sem-MT-Component is the component of the Sem-MT-
Tool, which connects the inference results of the Ontology TS to concrete modifica-
tion actions on the models of the model transformation in the MDA TS.
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Sem-MT-Tool
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Manipulator 4—@—
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Fig. 6. Sem-MT-Tool component architecture

5.2 Architecture of OntMT

To validate our approach we have implemented a prototype that realizes the crucial
parts of ontology-based model transformation. The following section provides more
details about the architecture and the implementation. Therefore the architectural
figures additionally depict the technologies we used to implement our prototype.

5.2.1 Inference Component

Figure 7 depicts a detailed architectural view on the inference component of ontMT.
The inference component consists of a knowledge base and a reasoner. The base
graph contains all facts of the knowledge base before the reasoning, i.e. the reference
ontology, application ontologies’, and the ontological groundings. The reasoner is
triggered by rules specific to the Sem-MT-Tool, and computes the inference graph on
the basis of the base graph. As the result of the reasoning, the knowledge base con-
tains information about all relationships that are important for ontMT. These are the
relationships between the application ontologies.

Rnovledse B o G 17T | e |
Base-Graph /

(Reference Ontology, Jena Reasoner
E— /L OL LR A/ —

™~
Application Ontologies, etc.)
Reasoner
/ 7
Inference-Graph L
A Inference Component
v query_ ____.
r———e e ———— s ---—————-—————————- -

| Sem-MT-Component I

Fig. 7. Inference component

In [9], [29], and [40], equivalence, containment, and overlap are described as the
main relationships for mapping ontologies. The inference component identifies (for
ontMT) these relationships between the ontology elements. The relationships are also
used for the ontological groundings by specifying mappings between the application
ontologies and reference ontologies. This is possible, since the model elements are
represented in application ontologies via the UML to OWL mapping described in the
ODM standard [35, p.201ff].

> An application ontology corresponds to a metamodel in the Ontology TS.
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e “Equivalence” (=) means that the connected elements represent the same aspect of
the real world. An element of an application ontology corresponds to an element in
the reference ontology or can be precisely expressed by a composition of elements.
Later, we will refer to this relationship by the relationship type <equal>.

e “Containment” (A,B) states that the element in one ontology represents a more
specific aspect of the world than the element in the other ontology. The relation-
ship can be defined in one or the other direction, depending on which concept is
more specific. When an element is not sufficiently refined, i.e. it does not match
the accuracy level of the ontology, we use the relationship <general>. When an
element is described at a level of refinement that does not match the level of re-
finement of the other ontology we use the relationship <special>.

e “Overlap” (o) states that the connected elements represent different aspects of the
world, but have an overlap in some respect. This relationship is of the type
<overlap>.

Implementation

In our current prototype we use the Jena ontology API° to create and handle ontolo-
gies. The inference is realized through rules deployed to the rule engine included in
Jena. Jena also uses this rule engine to provide (partial) RDFS and OWL reasoning’.
The rule 2 in Listing 2 for example states, that if A overlaps B and B is an intersection
of C and D then A overlaps C and D. The inference results are obtained with
SPARQL, which queries the knowledge base for the relationships between the appli-
cation ontologies.

rulel;: AoBABC C—>Ao0C
rule2: AoBAB=CnD—>Ao0oCAAO0D

Listing 2: Sample reasoning rules

The decision to use the Jena framework and its rule based reasoning support for
the prototype implementation was mainly based on two decisions. First, it better
met our requirements, which were mainly a combination of TBox reasoning, rule
support, and good documentation, than other open source projects. Second, the Jena
framework provides the possibility to integrate other reasoners like Pellet® or future
implementations of ontology mapping approaches using local domains like
C-OWL [8].

5.2.2 Model Manipulator

The model manipulator provides modification operations on model transformations. It
implements a language for model transformation modification that is used by the Sem-
MT-Component to trigger the modification of the model transformations via modifica-
tion programs. The semantics of this model transformation modification language treats
model transformations as models. The fact that model transformation languages like
QVT are represented through metamodels and modeltransformation programs are

% http://jena.sourceforge.net/tutorial/ RDF_API/
" http://jena.sourceforge.net/inference/
8 http://pellet.owldl.com/



44

models allows higher-order transformations, like transformations taking other transfor-
mations as input and producing transformations as output [4].

Due to the gap between the concepts of DSLs and metamodels implementing these
DSLs, the semantics of the model transformation modification language needs to
provide mechanisms to allow the Sem-MT-Component to adapt a modification pro-
gram to the best possible solution. Hence the semantics is divided into a modification
semantics and a checking semantics (see Figure 8).

Model Transformation
Modification Engine

Modif. Semantics

—) MT modification

Checking Semantics
e —

OCL checks

1
1
1
1
1
1
program i
] ».
' !
i i , i %
Mt D — Mt - .- - : ....... > Mt ‘:
1 H
: - YN
:{ @ E ,:‘ @ ;' Mt
1
Mt [ : ....... »| Mt — +
' Checking Results

Fig. 8. Semantics of model transformation modification

Modification semantics

The modification semantics defines how the modification of model transformations,
which is specified in modification programs, is executed. A simplified picture that
helps to work with the model transformation modification language is to imagine the
modification program as a substitution. The elements of the modification program's
source metamodel are substituted with the elements of the target metamodel. The
detailed implementation realizing the semantics is encapsulated in a separate compo-
nent of the model manipulator. Currently realized substitution operators provide func-
tionality for one-to-one, one-to-many, and removal substitutions of both classes and
properties. In the following we give a short outline of the substitution operators' func-
tionality via short examples.

Metamodel 1 Metamodel 2
(= Task {=) EPCElement
{3 Function {5 Event

Fig. 9. Two example metamodels

relation rule {
checkonly domain 1 mm varl:Task { };
enforce domain r mm varl’:Task { };

}

Listing 3: Example model transformation specification (notation similar to QVT)
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¢ One-to-one substitution: If the Task in the sample model transformation rule shall
be substituted by EPCElement in the right-hand model, then the one-to-one substi-
tution for classes has to be applied: [EPCElement/Task]. The result of applying this
one-to-one substitution to the transformation rule of Listing 3 is as follows:

relation rule’ {
checkonly domain 1 mm varl:Task { };
enforce domain r mm varl’:EPCElement { };

}

Listing 4: Model transformation after applying one-to-one substitution

e One-to-many substitution: If the Task in the sample model transformation rule
(see Listing 3) shall be substituted by Function and Event, then the one-to-many
substitution for classes has to be applied: [{Function,Event}/Task]. The result of
the one-to-many substitution is not so obvious like the result of the one-to-one sub-
stitution since the model transformation rule has to be duplicated. Details about
one-to-many substitutions can be found in the case study in Section 6.

relation rule’ a {
checkonly domain 1 mm varl:Task { };
enforce domain r mm varl’:Function { };

}

relation rule’ b {
checkonly domain 1 mm varl:Task { };
enforce domain r mm varl’:Event { };

}

Listing 5: Model transformation after applying one-to-many substitution

e Removal substitution: A removal substitution is sensibly applied when an ele-
ment of the source metamodel cannot be substituted by any element of the target
metamodel. If e.g. a removal substitution [-/Task] is applied to the Task, the whole
transformation rule of Listing 3 would be removed from the model transformation.

Checking semantics

The checking semantics represents the second part of the model transformation modi-
fication language's semantics. It tests the generated model transformations for so-
called problems, which can occur by applying the modification semantics. One set of
problems affects the consistency of model transformation programs with respect to
the model transformation language, i.e. the generated model transformations are not
valid and cannot be executed. Another kind of problems is caused, when knowledge
encoded into the original model transformation is not preserved or lost. This is the
case when modifications and substitutions are applied to relations where they (nor-
mally) do not make sense. To detect the second kind of problems the generated model
transformation has to be compared with the original model transformation. In general,
problems are detected via OCL [34] constraints. Only for a few problems, where
additional information about the execution of the modification is needed, we extend
this mechanism with information from the modification execution. The following list
describes the main problem types and provides some sample OCL constraints:
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e The substitution of property failed (PropertySubstitutionFailed): This problem
occurs, when the model transformation modification program did not specify a
substitution for a property that is used in the model transformation. Since in such
cases the modification semantics sets the value of the property to UNDEFINED,
the OCL constraint in Listing 6 checks whether the value of the property
(referredProperty) is not empty.

package gvttemplate
context PropertyTemplateltem

inv referredProperty must be set: self.referredProperty—notEmpty ()
endpackage

Listing 6: OCL constraint: substitution of property failed

e The substitution of class failed (ClassSubstitutionFailed): This problem occurs,
when the model transformation modification program did not specify a substitution
for a class that is used in the model transformation.

e A property is not part of class (PropertyNotPartOfClass): The generated model
transformation would require a property to be part of a class, what is not the case in
the respective metamodel (model types as described in [41] do not match). The
OCL invariant property_part_of_class in Listing 7 is used to check this fact. The
constraint is satisfied, if the OTE’s referred class (cp. QVT relational description in
Section 2) contains the property or if the OTE does not reference a class. The sec-
ond case occurs when the class of the OTE could not be substituted.

package gvttemplate
context PropertyTemplateltem
inv property part of class:
self.objContainer.referredClass.hasProperty(self.referredProperty)

or self.objContainer.referredClass—isEmpty ()
endpackage

package emof
context Class
def: hasProperty(property: Property): Boolean =

self.ownedAttribute—exists(p: Property | p = property)
or self.superClass—exists(c: Class | c.hasProperty(property))
endpackage

Listing 7: OCL constraint: property part of class

e A property has not the type of class (PropertyNotTypeOfClass): This constraint
checks, whether a property of the generated model transformation has only types in
the model transformation that are compatible with the types of the respective
metamodel. The constraint is not satisfied, when the types of the properties inferred
from the model transformation and the metamodel do not match (model types as
described in [41] do not match).

o Granularity of initial model transformation is not appropriate (InitialMTGranular-
ityNotAppropriate): This problem occurs when a one-to-many substitution has to
be applied to top level relations. Since the granularity of the initial model transfor-
mation does not match the level of refinement of the new metamodel, i.e. the
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model transformation relations are too coarse grained, the substitution operators
(especially one-to-many) cannot be sensibly applied.’

e Pattern removal (PatternRemoval): A loss of information occurs when a class or a
property could not be substituted and therefore the respective patterns had to be
removed from the model transformation.

Architecture and Implementation

The model manipulator component is divided in a front and a back end (see Figure
10). The front end primarily conducts tasks that depend on the source language, while
the back end deals with all issues specific to the target language. The metamodels and
the bootstrap model transformation are brought into an intermediate representation
format by the scanner and the parser. The substitution algorithm performs the substi-
tutions proposed by the Sem-MT-Component. The validator checks whether any per-
formed substitution leads to problems in the new model transformation.

1
: Inference Component InferenceGraphA |

Sem-MT-Component

report substitution problems propose substitutions

Model Manipulator

Metamodels Fl‘Ollt'Elldi EMF !

-------- ¥
D D \§§ ~ Substitution Algorithm E___-@j/!-f____i
Scanner & Parser &
Bootstrap ] {ANTLR Validator | EMF yalidation_!
Transformation
| oAW_
Back-End A 4
Transformation [ Transformation
Generator | Optimiser

Model Transformation

Fig. 10. Model manipulator

Our prototypical implementation of the model manipulator is based on Eclipse. It
uses the Eclipse Modeling Framework (EMF). EMF allows the model manipulator to
treat the metamodels and the model transformations with a single model manipulation
API. This reflective API allows to handle EMF objects regardless of which meta-
model they are (EMOF, QVT, OCL, etc.) generically. The metamodels are instantia-
tions of the EMF EMOF implementation and the model transformation models are
treated as instantiations of the EMF QVT relational implementation. Since the first
final adopted version of the QVT standard [36] contains some inconsitencies we had
to make some adjustments which are documented in our implementation.

? As we can see in the case study example in Section 6, an automatic bootstrapping algorithm
can avoid this problem, if the refinement levels of the metamodels do match.



48

e Parser: The implementation of the parser makes use of the ANTLR parser genera-
tor [38] and parses a QVT relational textual syntax into EMF QVT relational mod-
els. It has been made available under GPL via the QVT Parser project'.

e A prototype of the model manipulator implementation is part of the OntMT pro-
ject''. The substitution algorithm is totally based on the EMF API. The validation
component uses the EMF validation framework to check the EMF model of the
generated QVT relational transformation with OCL constraints. Since we use the
Eclipse Modeling Framework (EMF) [11], the Eclipse Validation Framework [12]
is a consequent choice for implementing and performing the OCL checks. The re-
sults of EMF validation lend themselves very well to determine the exact position
of problems or inconsistencies in a model transformation. OCL constraints, check-
ing whether a model transformation is syntactically correct, can be automatically
generated from the QVT metamodel. It is checked whether the model transforma-
tion conforms to the grammar that the QVT metamodel was generated from. With
further manually implemented OCL constraints the model manipulator checks
whether the generated model transformation is valid and can be executed or
whether knowledge has been lost through the substitution.

e The bootstrapping generates from a metamodel expressed in MOF a QVT rela-
tional model transformation. It is implemented with templates expressed in the
0AW'? expand-language and available via the OntMT project. The bootstrapping is
well integrated in the model manipulator, since EMF models can be used for oAW
code generation. In fact the same metamodels that are used by the QVT-Parser and
the model manipulator are also used for the bootstrapping.

5.2.3 Sem-MT-Component
The Sem-MT-Component implements the core part of the ontMT approach. It pro-
vides the main functionality of the Sem-MT-Tool. It makes use of the inference re-
sults of the Ontology TS and computes modifications programs for the generation and
evolution of model transformations in the MDA TS. Listing 8 illustrates the algorithm
implemented by the Sem-MT-Component to generate the new model transformations.
The Sem-MT-Component takes as input an initial model transformation, the meta-
model which has to be substituted in the model transformation, and the new meta-
models. In a first step (1) it requests the model manipulator to compute a set of all
classes and properties that have to be substituted in the initial model transformation.
Second, it invokes the inference component to obtain possible substitutions for all
classes and properties to substitute (2). Next the computation of a substitution pro-
posal begins. A substitution proposal contains the model transformation modification
program, the problems that occur by applying the substitutions to a model transforma-
tion, and a rating of the performed substitutions. After a substitution proposal is
calculated by the Sem-MT-Component (3), the model manipulator performs the
substitution (4) and validates (5) the generated model transformation. Then the substi-
tution proposal is rated by the Sem-MT-Component (6). The Sem-MT-Component
tries to compute alternative substitution proposals until their application does not lead

10 http://sourceforge.net/projects/qvtparser/
" http://sourceforge.net/projects/ontmt/
12 http://www.eclipse.org/gmt/oaw/
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to any problems, or no further substitution proposals can be found. Finally the
Sem-MT-Component chooses the substitution proposal with the best rating from all
computed substitution proposals (7) and the new model transformation is generated
on the basis of this substitution proposal (8).

input: initialMT: the initial model transformation
subMM: metamodel to substitute in the model transformation
newMM: new metamodel

output: newMT: new generated model transformation

begin
let sCS = set of concepts to substitute in the model transformation
let sCRS = set of tuples with concepts to substitute in the model
transformation and their possible substitutions
let subProp = current substitution proposal
let setSubProp = set of substitution proposals

(1) sCS := identifyConceptsToSubstitute(initialMT, subMM, newMM) ;

foreach c € sCS
(2) SCRS := sCRS U {(c, findPossibleSubstitutionsForConcept(c))};
end foreach

do
(3) subProp := calculateSubstitutionProposal (cCRS) ;
(4) tempMT := performSubstitution (subProp);
(5) subProp := validateSubstitution (tempMT, subProp) ;
(6) subProp := rateSubstitution (subProp);
until subProp.problems == & OR NoOtherSubProposalsPossible end do
(7) subProp := chooseSubPropWithBestRating (setSubProp) ;
(8) newMT := performSubstitution (subProp);

return newMT
end

Listing 8: Algorithm to compute new model transformation (Sem-MT-Component)

Rating substitutions proposals

The choice of the substitution proposal, which is used to generate the new model
transformation, is based on the ratings of the substitution proposals. A rating of a
substitution proposal is a measure of the generated model transformation’s quality.
The rating is based on factors that are measured for each substitution proposal:

e Problems occurring in the substitution proposal: This measure counts the prob-
lems that were detected by the validator in the generated model transformation.
The measure distinguishes between the different kinds of problems and assigns dif-
ferent weights to the various problem types according to the severity.

e Number of concepts that could be substituted: This measure counts how many
class and properties could be substituted. From this measure can be derived how
many concepts could not be substituted.
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¢ Relationships used for substitution: This measure counts and rates the relation-
ships that are used in the modification program of the substitution proposal. In
general a substitution derived from an <equal> relationship gets a better rating
than substitutions derived from other relationships.

e Position of the problems and used relationships in the model transformation:
This is an optional factor that can influence the three other ratings describe above.
The assumption for this factor is, that some relations of the model transformation
are more important to the overall result than others.

Concrete ratings depend always on the purpose ontMT is used for. For the different
application scenarios separate metrics are defined. A metric, which was developed for
automated mapping generation, will put more emphasis on an executable model trans-
formation than on the relationships used for substitution. If ontMT is used to support
developers in adjusting their model transformations, ontMT will only make sugges-
tions to the developer. Hence, the metric puts more emphasis on exact substitutions of
metamodel elements than on the execution of the new model transformation.

Implementation

The OntMT project currently provides a simple implementation of the correlation
algorithm, which is described in Listing 8. However, an automated synchronisation of
the modelling and the reasoning world (see © in Figure 5) is not yet fully integrated.
We are developing a prototype that synchronizes EMF and Jena OWL models and
allows to answer SPARQL like queries on EMF models with reasoning support. The
synchronization mechanism makes use of the UML to OWL mapping described in the
ODM standard [35, p.201{f]. However, we plan to replace our prototype with an im-
plementation of the Eclipse EODM project'. This projects aims to provide inference
capabilities for OWL models implemented in EMF and model transformations of
RDF/OWL to other modelling languages such as UML.

6 Case Study about Automated Mapping Generation

This section provides further insights about how the Sem-MT-Tool works. It illus-
trates the automated mapping generation application scenario of ontMT that has been
introduced in Section 4.1. A mapping between two metamodels (Figure 11 and 12) for
process modelling is generated. The first metamodel Process is an excerpt of a meta-
model for process orchestration in a service-oriented environment. The second meta-
model EPC is also for process modelling. "

The reference ontology in this example (see Figure 13) is an excerpt of the Web
Ontology Language for Services (OWL-S). For the ontological grounding we use a
notation similar to SMAIL [29] (Semantic Mediation and Application Interoperability
Language). ‘=:" stands for a lossless annotation, where the annotation fully captures
the intended meaning. *>:” denotes an overspecification, where the level of refinement

3 http://www.eclipse.org/modeling/mdt/?project=eodm
4 The QVT model transformations of this case study together with the EMOF metamodels, and
a few test models have been executed with ModelMorf [31] beta version 2.
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Fig. 12. Metamodel EPC

of the annotated element is greater than the level of refinement of the concepts in the
reference ontology.

e In a first step, the bootstrapping generates the initial model transformation by
traversing metamodel MM via its composition (see Listing 9). The bootstrap-
ping works as follows:

e For each class in the Process metamodel one top relation mapping rule is gen-
erated for the bootstrapping model transformation (Process, Flow). 1f there
occurs inheritance, mapping rules for the concrete leaf classes (Task, Deci-
sion, Merge) are generated instead of mapping the abstract superclass (Step).
This enhances the granularity of the model transformation specification. The
mandatory properties are specified as part of the top relation (in the example
the name property). Optional properties would be outsourced to separate rela-
tions, which are used to further constrain the fop relations via where-
statements.

e Composition associations are realized in the initial model transformation as
properties of the contained elements (namespace). These properties constrain
the top relations via when-statements (e.g. in the FlowToFlow relation).

e Other associations are realized via separate relations in the initial model trans-
formation (StepToStep_out, StepToStep_in).
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Table 1 and 2. Ontological Grounding of MM1 and MM2

Process CompositeProcess
[name,steps,flows] [name,composedOf,composedOf]
Step ProcessComponent

[name,outFlow,inFlow,namespace]

[name,connected,inverseOf(followed),
inverseOf(composedOf)]

Task
[name,outflow,inFlow,namespace]

AtomicProcess
[name,connected,inverseOf(followed),
inverseOf(composedOf)]

Flow
[sink,source]

FollowedBy
[followed,inverseOf(connected)]

EPC

CompositeProcess

[name,connectors] [name,composedOf]

EPC CompositeProcess
[name,functions,connectors] [name,composedOf,composedOf]
EPC CompositeProcess
[name,controlelements,connectors] [name,composed Of,composed Of]
EPCElement ProcessComponent

[name] [name]

Function AtomicProcess
[name,outConnectorF,inConnectorF, [name,connected,inverseOf(followed),
namespace] inverseOf(composedOf)]
Connector FollowedBy

[sinkFunction,soureFunction,
sinkJoin,sourceJoin,
sinkSplit,souceSplit]

[followed,inverseOf(connected),
followed,inverseOf(connected),
followed,inverseOf(connected)]

......... J» DatatypeProperty
—-  ObjectProperty
» > SubClass/Property
name,’
¢
’
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xsd:String
L)
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Fig. 13. Reference Ontology

e The model of the initial model transformation serves as input for the model ma-
nipulator. The first task of the model manipulator is to determine the classes and
properties of the right-hand metamodel, which have to be substituted in the rela-
tions of the input model transformation.
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transformation ProcessToProcess(prc l:processMM 1; prc 2:processMM 2) {

key processMM 2::Process {name};

key processMM 2::Task {name, namespace};

key processMM 2::Decision {name, namespace};
key processMM 2::Merge {name, namespace};
key processMM 2::Flow {name, namespace};

top relation ProcessToProcess {
pn: String;
checkonly domain prc_ 1 p l:Process { name=pn };
enforce domain prc 2 p 2:Process { name=pn };

}

top relation TaskToTask {
tn: String;
checkonly domain prc 1 t 1:Task { namespace=p l:Process {}, name=tn };
enforce domain prc 2 t 2: :Task { namespace= p_2:Process {}, name=tn };
when { ProcessToProcess(p_l p 2); }
where { StepToStep out(t 1, t 2); StepToStep in(t 1, t 2); }

}

top relation DecisionToDecision {
dn: String;
checkonly domain prc_ 1 d l:Decision { namespace=p_ l:Process {},
name=dn };
enforce domain prc 2 d 2:Decision {namespace=p_ 2:Process {}, name=dn};
when { ProcessToProcess(p 1, p 2); }
where { StepToStep out(d 1, d 2); StepToStep in(d 1, d 2); }
}

top relation MergeToMerge {
mn: String;

checkonly domain prc 1 m 1l:Merge { namespace=p_l:Process {}, name=mn};
enforce domain prc 2 m 2:Merge { namespace=p 2:Process {}, name=mn};
when { ProcessToProcess(p_ 1, p 2); }

where { StepToStep out(m 1, m 2); StepToStep in(m 1, m 2); }
}

relation StepToStep out {
fn: String;
checkonly domain prc 1 s 1:Step { outFlow=out 1:Flow { name=fn } };
enforce domain prc 2 s 2:Step { outFlow=out 2:Flow { name=fn } };

}

relation StepToStep in {
fn: String;
checkonly domain prc_1 s 1:Step { inFlow=in 1:Flow { name=fn } };
enforce domain prc 2 s 2 Step { inFlow=in 2: “Flow { name=fn } };

}

top relation FlowToFlow {
fn: String;
checkonly domain prc 1 f 1:Flow { namespace=p l:Process {}, name=fn };
enforce domain prc 2 f 2: :Flow { namespace= p_2:Process {}, name=fn };
when { ProcessToProcess(p_l p 2); }

}

}

Listing 9: The initial model transformation in QVT relational syntax
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For each concept to substitute the Sem-MT-Component queries the inference com-
ponent for relationships. The inference component searches the knowledge base for
triples like <Step:Process> <?> <?:EPC>". The result for <Step:Process> is:

<Step:Process > <equal> <EPCElement:EPC>
<Step:Process > <general> <Function:EPC>
<Step:Process > <general> <ControlElement: EPC>
<Step:Process > <general> <Split:EPC>
<Step:Process > <general> <Join:EPC>

With this input (metamodels, reference ontology, ontological groundings and initial
transformation and possible substitutions) the computation of the substitution of N,
with Njp can start:

In the first substitution proposal, the Sem-MT-Component considers only facts
with the predicate <equal>, in order to find the best possible substitution. Since for
the ObjectProperty <outFlow(Flow):Process> and <inFlow(Flow):Process> no substi-
tution in the context of <Epcelement:EPC> is possible, this ObjectProperty is
omitted in the substitution, in the hope that this does not affect the model transfor-
mation. Thus the substitutions of the first substitution proposal are:

Table 3. Substitution proposal SP1/

Process[name]
Step[outFlow,inFlow]
Task[name,namespace]
Decision[name,namespace]
Merge[name,namespace]
Flow[name,namespace]

EPC[name]
Epcelement[---,---]
Function[name,namespace]
Join[name,namespace]
Split[name,namespace]
Connector[name,namespace]

VIV

The model manipulator generates a new model transformation on the basis of the first
substitution proposal.

transformation ProcessToEpc_vl (prc_1l:processMM_1; epc_l:epcMM 1) {

top relation TaskToFunction {

}

tn: String;
checkonly domain prc_1 t_1:Task { namespace=p_1l:Process {}, name=tn };
enforce domain epc_1 f_1:Function { namespace=e_1l:Epc {}, name=tn };
when {
ProcessToEpc(p_1, e _1);
}
where {
StepToEpcelement_out (t_1, f_1);
StepToEpcelement_in(t_1, f£_1);
}

15 The facts of in the knowledge base are of the form <subject> <predicate> <object>.
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relation StepToEpcelement_out {
fn: String;
checkonly domain prc_1l s_1:Step { outFlow=out_1l:Flow { name=fn } };
enforce domain epc 1 e_1l:Epcelement { };

}

relation StepToEpcelement_in {
fn: String;
checkonly domain prc_1l s_1:Step { inFlow=in_1:Flow { name=fn } };
enforce domain epc 1 e_1l:Epcelement { };

}

}

Listing 10: Model transformation generated from substitution proposal SP/

e The model transformation is validated by the model manipulator, which detects
two PropertySubstitutionFailed problems for the inFlow and outFlow properties of
the class Epcelement.

e Thereon the Sem-MT-Component searches for an alternate substitution, which also
considering facts with predicates other than <equal>. For a substitution decision it
applies a hierarchy, where the predicate <equal> is better than <special> and <spe-
cial> 1s better than <general>. The facts provided by the inference component are:

<outFlow:Process> <general> <outConnectorF:EPC>
<inFlow:Process> <general> <inConnectorF:EPC>
<outFlow:Process> <general> <outConnectorJ:EPC>
<inFlow:Process> <general> <inConnectorJ:EPC>
<outFlow:Process> <general> <outConnectorS:EPC>
<inFlow:Process> <general> <inConnectorS:EPC>

Based on its history of previously proposed substitutions'® and the fact, that no
facts with the predicates <equals> or <special> exist, the Sem-MT-Component
computes a new substitution proposal SP2. This substitution proposal proposes to
substitute the outFlow property with the three different outConnector properties:

Table 4. Substitution proposal SP2

Process[name] > EPC[name]

Step[outFlow,inFlow] > Epcelement
[outConnectorF&outConnector]J&outConnectorS,
inConnectorF&inConnectorJ&inConnectorS]

Task[name,namespace] > Function[name,namespace]

Decision[name,namespace] | = Join[name,namespace]

Merge[name,namespace] -> Splitlname,namespace]

Flow[name,namespace] > Connector[name,namespace]

' The Sem-MT-Component has a history of its previous substitution proposals, so that it will
not make the same proposal a second time and the search for substitutions terminates.
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e The model manipulator generates a model transformation from the new substitu-
tion proposal:

transformation ProcessToEpc_vl (prc_1l:processMM_1; epc_l:epcMM_1) {

relation StepToEpcelement_out_F {
fn: String;
checkonly domain prc_1l s_1:Step { outFlow=out_1l:Flow { name=fn } };
enforce domain epc_1l e 1:Epcelement {
outConnectorF-out_2:Connector { name=fn } };

}

relation StepToEpcelement_in_F {
fn: String;
checkonly domain prc_1 s_1:Step { inFlow=in_1:Flow { name=fn } };
enforce domain epc_1 e_1:Epcelement {
inConnectorF=in_2:Connector { name=fn } };

}

relation StepToEpcelement_out_S {
fn: String;
checkonly domain prc_1l s_1:Step { outFlow=out_1l:Flow { name=fn } };
enforce domain epc_1 e 1:Epcelement {
outConnectorS=-out_2:Connector { name=fn } };,

}
}

Listing 11: Model transformation generated from substitution proposal SP2

The model transformation is validated by the model manipulator, which detects six
PropertyNotPartOfClass problems, since e.g. the property outConnector is part of the
class Function and not part of the class Epcelement.

e Thus the Sem-MT-Component calculates an alternative substitution proposal SP3,
where a Step is substituted by Function, Join, and Split:

Table S. Substitution proposal SP3

Process[name] - | EPC[name]

Step[outFlow,inFlow] - | Function[outConnectorF,outConnector]]
Split[outConnectorS,inConnectorF]
Join[inConnectorJ,inConnectorS]

Task[name,namespace] - | Function[name,namespace]

Decision[name,namespace] | = | Join[name,namespace]

Merge[name,namespace] - | Split[name,namespace]

Flow[name,namespace] - | Connector[name,namespace]

e The model transformation generated on the basis of SP3 is as follows:

transformation ProcessToEpc_Trans (prc_1:processMM _1; epc_l:epcMM_1) {

key epcMM_1::EPC {name};
key epcMM_1::Function {name, namespace};
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key epcMM_1::Split {name, namespace};
key epcMM_1::Join {name, namespace};
key epcMM_1::Connector {name, namespace};

top relation ProcessToEpc {
pn: String;
checkonly domain prc_1l p_1l:Process { name=pn };
enforce domain epc_1l e_1l:Epc { name=pn };

}

top relation TaskToFunction {
tn: String;
checkonly domain prc_1l t_1:Task { namespace=p_1:Process {}, name=tn };
enforce domain epc_1 f_1:Function { namespace=e_1l:Epc {}, name=tn };
when { ProcessToEpc(p_1l, e_1); 1}
where {
StepToEpcelement_out_F(t_1, f_1);
StepToEpcelement_in_ F(t_1, f_1);
}

relation StepToEpcelement_out_F {
fn: String;
checkonly domain prc_1l s_1l:Step { outFlow=out_1l:Flow { name=fn } };

enforce domain epc_1 e_1l:Function {
outConnectorF=out_2:Connector { name=fn } };

when { FlowToConnector (out_1, out_2); }

3

relation StepToEpcelement_in_F {
fn: String;
checkonly domain prc_1l s_1:Step { inFlow=in_1:Flow { name=fn } };
enforce domain epc_1 e_1l:Function {
inConnectorF=in_2:Connector { name=fn } };

when { FlowToConnector (in_1, in_2); }

top relation FlowToConnector {
fn: String;
checkonly domain prc_1 f_1:Flow { namespace=p_1l:Process {}, name=fn };
enforce domain epc_1 c_1:Connector { namespace=e_1l:Epc {}, name=fn };
when { ProcessToEpc(p_1l, e_1); }

Listing 12: Model transformation generated from substitution proposal SP3

e The validator of the model manipulator comes to the result, that this substitution
proposal leads to a new model transformation in which none of the problems men-
tioned above occur.

e Thus the Sem-MT-Component stops computing new substitution proposals and
compares the ratings of the substitution proposals already tested:



58

Table 6. Rating of the substitution proposals

Substitution | Problems occurred Substituted Used

Proposal Concepts Relationships

SPI 2x PropertySubstitutionFailed | 5x class 13x <equal>
8x property

SP2 6x PropertyNotPartOfClass 5x class 13x <equal>
10x property | 6x <general>

SP3 --- 5x class 12x <equal>
10x property | 9x <general>

e The Sem-MT-Component decides to use the substitution proposal SP3 to generate
the new model transformation. This is based on the consideration that a model
transformation generated from SP2 will not be able to be executed due to typing
problems. Furthermore SP3 can substitute more concepts of the original model
transformation than SP/. The model transformation between metamodel N4 (Proc-
ess) to N (EPC) generated by ontMT is listed in Listing 12.

7 Assessment of OntMT

This section discusses the ontMT approach with respect to its partical application, its
limits, and possible weaknesses.

7.1 Application Areas

Ontology-based model transformation fosters the exchange of models and the evolution
of model transformations. Model exchange scenarios are build on the generation of
new model transformations, while model transformation evolution scenarios aim at
reusing model transformations. As introduced in Section 2, one can distinguish
between horizontal and vertical model transformations. Horizontal model transfor-
mations are mappings between models at a certain abstraction level, where no
information is lost and no additional information is added. Vertical model transfor-
mations are refinements that add additional information to the generated model
about e.g. architecture or platform. Thus, the target model of a refinement is more
detailed than the source model.

Mapping Refinement
Model Exchange | autom.gen. (+ man.) n/a
. autom.gen.
MT Evolution autom.mod. | autom.mod.

Fig. 14. Application of ontMT to model exchange and model transformation evolution
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Figure 14 categorizes the support that ontMT can provide to the described applica-
tion scenarios and the different types of model transformations.

e To exchange models between different DSLs, metamodels and modelling styles,
ontMT is able to automatically generate mappings. However, the level of automa-
tion depends on how different the DSLs and their modelling approaches are. It may
be necessary to provide additional mapping information through an initial model
transformation, which cannot be inferred from the ontologies.

e OntMT supports the evolution and reuse of existing mappings. The new model
transformation can be either generated from scratch or obtained through adjusting
the existing mapping. The more individual features, which are different to the core
structure of the metamodels, are encoded in existing mappings, the more preferable
it is to adjust existing mappings. The generation of new mappings is better, if the
new metamodel provides extensions to the old one or a new modelling style speci-
fies a fundamentally different composition of modelling elements.

e For the evolution and reuse of refinements, ontMT provides the possibility of
automated modification and adjustment of existing model transformations. Re-
finement model transformations cannot be generated without human interaction,
since they contain individual knowledge about software architecture or the plat-
form, e.g. patterns like broker, model-view-controller, etc..

7.2 Evaluation

The ontMT approach adjusts initial model transformations in order to generate or
maintain model transformations. Since mapping knowledge is captured in bindings of
the metamodels to the reference ontology, one could favour an approach that derives
model transformation rules directly from these bindings. This may very well work for
model exchange scenarios. However, in model transformation evolution scenarios the
model transformation itself would have to be encoded in the bindings. In our opinion,
it is better to encode this transformation knowledge in an initial model transformation,
1.e. the model transformation to reuse.

The level of automation that ontMT can provide highly depends on how different
metamodels, DSLs, and modelling approaches are. If for example two DSLs totally
differ in their modelling approaches, their metamodel bindings will be two mostly
unconnected sets of the reference ontology. OntMT does not add real transformation
knowledge that changes the semantics of model transformation. It depends on the
results that are inferable via the ontologies that are used to adjust the syntax of model
transformations.

We also made scalability considerations and tests for ontMT in terms of memory re-
quirements, runtime, and size of model transformations that can be processed. This was
done for the three components of ontMT (see Section 5.1) separately. Memory require-
ments and runtime of the model manipulator rise linear to the number of rules a model
transformation contains. We tested this with model transformations that contain up to
200 rules. In ontMT reasoning has only to be performed once at runtime. Its memory
requirements and runtime depends on the size and the complexity of the ontologies.
Since the application scenarios of ontMT do not have hard real-time constraints, we do
not see problems in practice concerning memory requirements, runtime, and size of
model transformations for the model manipulator and the inference component.
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However, the Sem-MT-Component can be seen as the ‘bottleneck’ of the ontMT
approach. This component has to combine the reasoning results to a sensible input for
the model manipulator. For this combination the size of the solution space grows
exponentially with the relationships that are inferred for each concept. The size of the
solution space is ¢", where c¢ is the number of concepts in a metamodel and 7 is the
number of relationships inferred for each concept. We try to solve this problem by
restricting the solution space. As exemplified in the case study we apply heuristics
that first guess an ‘ideal’ solution and the try to solve problems locally in the solution
space, i.e. where the problems in the generated model transformation were detected.

7.3 Discussion

The ontMT approach assumes the existence of an appropriate reference ontology.
However, developing or agreeing on a reference ontology is a non-trivial task. For
example there may exist different versions of (reference) ontologies, what would
transfer the problem of heterogeneous models from the MDA TS to the ontology TS.
In those cases techniques for matching and merging ontologies, like linguistic,
schema-based, or probabilistic approaches, combined with human intervention have
to be applied to obtain a suitable reference ontology. Ontology alignment, matching,
and mapping approaches can be also very useful to discover and define bindings from
the metamodels to the reference ontology. [28] describes an approach and a concep-
tual framework for mapping distributed ontologies. It can provide the basis for an
interactive and incremental mapping process that is needed for developing the bind-
ings in ontMT. In such a process the SKOS mapping vocabulary [42] could be used to
specify mappings between concepts from different ontologies. For this vocabulary a
search algorithm has been developed [17] that can discover potential candidates for
substitutions in ontMT.

To provide ontological groundings and to find reference ontologies may require
investing a lot of effort. Depending on the concrete application scenario, this effort
may not be justifiable with the generation and evolution of model transformations.
Developing or adjusting model transformations by hand may be cheaper. Hence, the
goal is to reuse reference ontologies and ontological groundings with other applica-
tions that are part of a semantic-enabled modelling and development suite (see
Section 5.1).

A totally automated solution may also have to cope with acceptance problems of
software engineers. Software engineers will probably not be willing to give up overall
control of model transformation to an automated tool, which makes its choice based
on metrics and heuristics. Hence, the majority of application scenarios will be of such
a form, that the Sem-MT-Tool makes suggestions with a change and problem history
to the software engineer. The engineer has the possibility to accept, correct, or reject
the suggestions.

8 Related Work

In [41], the authors introduce model typing as extension of object-oriented typing and
propose an algorithm for checking the conformance of model types. It is presented,
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how model typing permits more flexible reuse of model transformations across vari-
ous metamodels while preserving type safety. This approach improves the reuse of
model transformations whenever small changes to metamodels occur, like altering the
cardinality of an association. In case of major change in models’ representation for-
mats or modelling guidelines model transformations still have to be modified manu-
ally. Furthermore automatic mapping generation is not provided.

The ATLAS Model Weaver (AMW) tool implements the model weaving approach
introduced in [5]. It enables the representation of correspondences between models in
so-called weaving models, from which model transformations can be generated.
Model weaving aims to improve efficiency in the creation and maintenance of model
transformations. Nevertheless, creating weaving links is not automatic and weaving
models have to be adjusted whenever changes DSLs, metamodels or model guidelines
of source and target models are made.

The work described in [13] presents an approach to semi-automate the develop-
ment of transformations via weaving models of the model weaving approach. It de-
scribes an iterative and incremental procedure of weaving link generation, similarity
calculation, and weaving link selection.

The Model-based Semantic Mapping Framework (Semaphore) [27] follows a simi-
lar approach as the ATLAS Model Weaver. By aiming to support mappings between
domain models, it supports (graphically) specification of mappings between DSLs.
These specifications are saved in mapping model, which for example can be used to
generate code to transform the models. Like in AMW mappings have to be specified
manually and have to be adjusted when ever changes to the model representations or
modelling guidelines occur.

The ATHENA Semantic Suite provides tools for improving interoperability
between organisations. In this approach e.g. XML Schemas can be annotated by a
reference ontology and reasoning rules can be specified, so that reasoner can convert
XML documents. The reasoner can be used as mediator transforming messages at
runtime. This approach could be extended to modelling by transforming XML
serialisations of models. The problem is that there would be no traceability of
transformation executions between models. However, this is a key feature for MDD
[16] and cross-organisational modelling. Since this is provided by model transforma-
tion languages it is also supported by our approach.

The ModelCVS project [23] provides a framework for semi-automatic generation
of transformation programs. By explicitly representing the concepts modelling lan-
guage in ontologies, the goal is to derive bridgings (transformations) between the
original metamodels from the mapping between the ontologies. The approach focuses
on mappings in order to foster tool interoperability [24]. For reusing existing (refine-
ment) model transformations, knowledge about the transformation would have to be
captured in the ontologies or ontology mappings.

9 Summary and Outlook

The approach of ontology-based model transformation provides technology that fos-
ters interoperability in model exchange and the evolution of model transformations. It
integrates ontologies in MDSD and makes use of the reasoning capabilities of the



62

Ontology TS. By automated generation of mappings it offers new possibilities for the
integration of domain specific languages and ‘legacy’ models in a plug&play manner.
This makes it easier for new organisations to join collaborations. OntMT also sup-
ports organisations evolving their modelling techniques like using new and more
advanced versions of modelling languages. It yields more efficient reuse of model
transformations and the knowledge that is captured in those transformations. Never-
theless, ontMT uses additional information, which has to be provided by the people
developing metamodels and domain specific languages.

Future work to extend and improve ontMT is manifold. The model manipulator
will be extended with more expressive substitution mechanisms, which for example
allow more complex pattern matching. The metrics and heuristics of the Sem-MT-
Component have to be tested and improved via more case studies and application
scenarios from various domains. Other reasoners and implementations of ontology
mapping approaches have to be integrated in the inference component. Finally, the
ontMT approach has to provide or adopt methodologies, which support discovery
and development of reference ontologies and bindings between metamodels and
ontologies.
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