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Abstract Simulating the deformation of the human anatomy is a central element of
Medical Image Computing and Computer-Assisted Interventions. Such simulations
play a key role in nonrigid registration, augmented reality, and several other
applications. Although the Finite Element Method is widely used as a numerical
approach in this area, it is often hindered by the need for an optimal meshing of the
domain of interest. The derivation of meshes from imaging modalities such as CT or
MRI can be cumbersome and time-consuming. In this paper, we use the Immersed
Boundary Method (IBM) to bridge the gap between these imaging modalities and
the fast simulation of soft tissue deformation on complex shapes represented by
a surface mesh directly retrieved from binary images. A high-resolution surface,
which can be obtained from binary images using a marching cubes approach,
is embedded into a hexahedral simulation grid. The details of the surface mesh
are properly taken into account in the hexahedral mesh by adapting the Mirtich
integration method. In addition to not requiring a dedicated meshing approach, our
method results in higher accuracy for less degrees of freedom when compared to
other element types. Examples on brain deformation demonstrate the potential of
our method.
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1 Introduction

Computational models in the field of Medical Image Computing and Computer-
Assisted Interventions play an increasingly important role, in areas such as nonrigid
registration, augmented reality, or surgical training. In this context, the Finite
Element Method (FEM) is often used as the reference numerical approach, and
many works have addressed its computational efficiency and accuracy [3, 10, 15].

An alternative approach are mesh-free methods that can be applied likewise, but
need a separate surface representation and hence dealing with boundary conditions
can become cumbersome. Additionally, mesh-free methods use integration methods
which need a volumetric grid and can be computationally expensive. Thus, mesh-
free methods are less appealing for our purposes and this work is based on the FEM.

To construct a Finite Element mesh, the general procedure consists of the
following steps: The preoperative image is segmented, then a surface mesh is built as
the isosurface of the segmented image, and finally a volumetric mesh is constructed
in the domain enclosed by the boundary surface. At this stage, the geometrical
complexity of anatomical structures makes the generation of volume meshes from a
given surface representation a very challenging task.

Volumetric meshing of the domain is almost always done with linear tetrahedral
elements and remains a very active area of research [8, 13]. While simulations with
tetrahedral elements may lead to numerical issues, such as volumetric locking [1],
hexahedral elements suffer less from volumetric locking and yield an equivalent or
higher accuracy per degree of freedom. However, hexahedral meshes can hardly be
adapted to complex surfaces [7]. Thus, it is advantageous to either extend the partial
differential equation (PDE) outside the actual domain in order to use a domain-
independent mesh, which is known as the Finite Cell Method [14], or to work with
partially filled elements. In the following, we will focus on the latter approach.
The Composite FEM [6, 18, 19], for instance, simulates deformations with a coarse
hexahedral grid efficiently, while a fine grid is used to modify the shape functions
in such a way that they match the boundary conditions to a given accuracy. The
fine grid is also utilized for the numerical integration. Tuning the resolution of
the coarse grid increases the accuracy of deformations, while the resolution of the
fine grid controls the geometric proximity at the beginning of the simulation. Other
popular approaches also require two meshes. For example, the Cut Finite Element
Method [2] operates on coarse elements but requires a sub-mesh in order to integrate
basis functions over the actual domain. The method proposed in [9] is based on two
overlapping Finite Element meshes, a coarse mesh that does not resolve any domain
boundaries and the one that resolves the boundary. The method is then based on
the coarse Finite Element functions enriched by the Finite Element functions of the
resolving mesh. Boundary conditions are enforced in integral form with Nitsche’s
method. The key challenge is to integrate over the cut elements at the boundary and
the boundary segments, where an efficient integration method proposed by Mirtich
[11] is used. The additional Finite Element functions ensure the accuracy at the
boundary but also increase the number of degrees of freedom.
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In this paper, we present a Finite Element approach derived from the Immersed
Boundary Method (IBM), which was first introduced by Peskin [16] to simulate
blood flows: A potentially high-resolution surface mesh is immersed into a coarse
simulation mesh. We solve partial differential equations with a regular hexahedral
mesh that can automatically be built from the bounding box of a segmented image.
To precompute the system matrices, such as the stiffness, the damping, and the
mass matrix, our method uses the extension of an integration method dealing with
arbitrary polygons [11] and thus with arbitrary geometrical shapes. The efficiency of
this integration method yields a fast initialization of our algorithm while the speed
depends upon the resolution of the objects surface.

Our approach is very similar to the one presented in [9]. Both methods use
Nitsche’s method to apply boundary conditions and Mirtich’s integration method to
integrate over boundary elements. The key advantage of our method, however, is that
we do not need a second volumetric mesh to resolve the boundary and only use the
basis functions of the coarse volumetric mesh. While this difference results in less
accuracy at the boundary itself, the information gathered from the exact integration
is enough to efficiently simulate the coarse behavior of an object. The fewer degrees
of freedom are particularly appealing since we aim for dynamic simulations in real
time. Other methods, such as [9], that resolve the boundary are less suitable for
dynamic simulations because of the higher number of degrees of freedom which
results in larger linear systems to be solved in every time step. The main difference
compared to the Composite FEM or the Cut FEM lies in the fact that no additional
refined mesh is needed to resolve complicated structures. Moreover, those methods
are mainly based on distance functions to characterize the boundary and not on a
surface mesh.

To further increase the speed of the dynamic simulation, we enrich the IBM with
the corotational approach, preventing recomputations of the system matrices and
thus allowing for real-time computation. The stability of our approach is ensured by
the removal of elements that are only filled with a small portion of the complete
cube. Evaluations reveal the improved accuracy per degree of freedom of our
approach when comparing to the conventional methods, particularly for objects with
complex geometries. Thus, our method has an improved efficiency which decreases
computational costs. Since the meshing with different resolutions is not an issue,
it can be adapted to the power of the device performing the computation. This
underlines the importance for the simulation of surgical interventions.

Our paper is structured as follows: After a brief overview of the Immersed
Boundary Method from which we derived our approach, Sect. 2 explains the core
of the method. Then we present a numerical comparison against other techniques in
Sect. 3.1. Finally, we apply our method on a complex brain geometry to simulate a
brain shift (Sect. 3.2), and conclude in Sect. 4 discussing future extensions.
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2 Method

This section explains an Immersed Boundary Method (IBM) [17, 20] for dynamic
simulations, which has been adapted using an extension of an efficient integration
method [11]. This approach allows embedding a discrete representation of complex,
highly detailed surfaces into the hexahedral simulation mesh, which is potentially
coarse and sparse. With the corotational approach, the method keeps its compu-
tational efficiency over time. Image processing methods can be used to provide
the surface representation. Then our approach can transform this representation
directly to a fast, accurate, patient-specific biomechanical model. Circumventing
cumbersome and time-consuming volume meshing algorithms thus makes our
approach a competitive tool for medical simulations.

Figure 1 summarizes our approach, separating the theory (Sect.2.1) from the
algorithmic details and the numerical integration method (Sect. 2.2).

2.1 From a Continuous Problem to a Discrete Formulation

In order to allow for reasonable computation times while providing accurate
deformations, we consider the deformation of objects with initial geometry §2 on
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a macroscopic scale, which is commonly referred to as the continuum approach. We
denote the displacement of a point X € £2 to the point x by u(X, 7) = x(X,7) - X
at a time T > 0. Using Cauchy’s stress tensor o, the gravity g, and density p of
the considered material, one can state Cauchy’s equation of motion for the dynamic
scenario as div(o (1)) + pg = pii. Additionally, we define boundary conditions
fixing the displacement at u = ug on I'p C 952 and the boundary force or traction
att(u) = o(u)n = tyon I'y = 382\ I'p, where n is the outer normal of our domain
£2. The equation of motion is usually transformed to an integral equation, the so-
called weak formulation. In contrary to the standard approach, the IBM incorporates
the boundary terms, that is, as well the Dirichlet boundary condition, in this form.
Violations of the conditions are penalized by additional integral terms and using the
stabilization parameter yp. This is referred to as Nitsche approach [12]. Thus, we
search a displacement function u that satisfies

/,oii-vdV—l—/a(u):s(v)dV—/ pg-vdV
Q Q Q2

_/ ,O.UdA_f t(u)-vdA—/ u-1(v)dA (1)
I'y I'p I'p

-I—/ upg-t(v)dA — yp (up—u)-vdA =0
I'p I'p

for all test functions v and all times t > 0. The terms in the first row and the first
term in the second row relate to Cauchy’s equation of motion and the remaining
terms are introduced as a result of the Nitsche approach. The linear elasticity theory
defines the linear relationship between the Cauchy stress tensor o and the strain
tensor ¢. Since the linearized Green-Lagrange strain is nonzero for rigid body
motions such as rotations, we use the corotated strain tensor () = S — I with
the symmetric stretch matrix S, which is obtained from the deformation tensor.

In order to discretize the object, the surface d£2 is replaced by polygons of
arbitrary shape representing a closed, manifold surface d£2j, potentially of high reso-
lution, that can be obtained by a marching cube algorithm or other image processing
methods. Likewise, we replace the boundary domains I'p, I’y by their discrete
counterpart I'p », I'nv . Then we overlap the object §2, enclosed in 952, with a
regular grid of hexahedral elements £2, s.t. £, C |, §2., and call the hexaeder
corner nodes P;. Note, that the standard Finite Element approach requires equality,
that is, £2, = . §2., which is a strong restriction for the choice of the hexahedral
elements. We define the mesh size parameter as 1 = max,(maxy, x,ce, | X1 —X2|),
which indicates the deformation accuracy of the hexahedral mesh and is independent
of the resolution of the surface mesh. The element-wise trilinear shape functions ¢;
of the conventional FEM allow to replace the displacement function by its discrete
counterpart u ~ ) . ¢;u;, with the displacements u; at the node P;, forming the
vector of displacements u(7) that depends on time. With the Galerkin approach, the
integral equation transforms to the semi-discrete equation
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pMii(t) +Du(r) + Ku(r) — BlT)u(t) — Bpu(r) + ypMpu(r) )
= Mntp — Bpug + pMqo g+ ypMpug

where the terms with the matrix Bp relate to the integral terms in (1) over the
Dirichlet boundary I'p and are due to the method of Nitsche. The stiffness matrix K
1s constructed similarly to the conventional FEM, but integrals are computed over
the actual domain £2;, # |, §2.. K relates to the second term in (1). Similarly,
the mass matrices are adapted to the IBM, that is, My;; = [, ¢j@; for ¥ =
I'p.n, I'n.n, 2. Note that the term Du(7) in (2) is artificial and does not correspond
to any term in (1). However, the introduction of the damping term is reasonable in
the context of dynamic simulation, as damping effects occur in dynamic motions.
We choose the damping term to be constant and obtain it using the mass and the
stiffness matrix. Such a representation is called modal or Rayleigh damping and can
be expressed as

D = oM + BK.

In the general case, an experimental verification of the parameters o and S is
essential for real applications [21].

Solving this system of linear equations yields the displacements u;(7) for any
time T > 0 of the object £2 at the points P;, which are propagated to the surface
052 using the trilinear shape functions and the initial barycentric coordinates of
the surface in the hexahedral mesh. Since (2) is still a continuous formulation with
respect to time, the next step to obtain a fully discrete model consists in applying a
time-stepping scheme with step size At. Here, we use the implicit Euler scheme

Upi1 = Up+ AT Upqq,
3)

lln+1 — lln + At l:ln_l’_l.

Inserting the scheme into (2) leads to a system of linear equations that have to be
solved in every time step. For better readability, we only state the equation for the
(n + 1)th time step under the additional assumption uy = 0.

(,oM + AtD + AT3 (K —BL —Bp + yDMD)> Up1
4
— Atfy+ (,OM — At(K-BT —Bp+ )/DMD)> g,

where fo = pMg-+Mnyty. Finally, u,41 can be calculated using the equations in (3).
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2.2 Numerical Considerations

The construction of the matrices in the system of linear equations (2) is one of
the key challenges of the IBM. To integrate, the domain is split into the volumes
of the hexahedral elements. For completely filled elements with £2, N 982 = {,
Gauss points commonly yield the integral value. For elements intersecting with
the boundary, standard integration techniques do not work as the integration
domain might have an arbitrary complexity: The integration domains are either
the boundaries intersected with an element, that is, I'p , N §2, or I'y , N $2,, or
the intersection of the object with the hexahedral elements, that is, £2;, N £2,. We
integrate exactly over these domains, by using an integration approach depicted in
Fig. I(bottom), which has been proposed for polynomials up to degree two [11].
The integrands in the last subsection are polynomial functions where the sum of the
polynomial degrees is maximally six, due to the multiplication ¢;¢; of the trilinear
shape functions ¢; and ¢; to compute the mass matrices. In the following, we use
the space of polynomials Py, (R") that acts on R”, constructed with monomials,
whose sum of degrees is smaller than or equals M. Thus the trilinear shape
functions fulfill ¢; € P3 (R3) and we need to calculate integrals for P (R3). For
this, we extend [11] to arbitrary polynomial degrees: First, the divergence theorem
transforms the volume integral to a sum of integrals of P7(R>) over polygons in
3D. Then these integrals are projected onto the plane with the biggest surface
and one needs to calculate P7(R?) over polygons in 2D. Finally, these integrals
are simplified using Greens’ theorem to PPg (R2) over lines in 2D, which can be
integrated analytically using binomial coefficients and the positions of the line start
and end. For the boundary matrices, the first step is left out but the subsequent steps
stay the same with the polynomial degree reduced by one.

Regarding the constitutive model, we use a corotational approach rather than a
simple linear strain tensor. This also permits to expand the range of applications
of the method. Identically to the conventional approach a rotation matrix R, is
calculated based on the deformed configuration u, of each hexahedral element
and incorporated into the system of equations by using K, = R,KoRI, but it
is not applied to the other matrices in (2). The rotation matrix in the undeformed
configuration equals the identity matrix and is updated when the system of
linear equations yields new positions at a time step. In contrary to hyperelastic
approaches, the stiffness matrix does not have to be recalculated for every time
step, but is updated by multiplying the rotation matrices from both sides. Note that
partially filled elements can result in elevated computational costs when integrating
for a recalculated matrix, while the calculation of the rotation matrix and the
multiplication on the stiffness matrix from both sides are computationally cheap.
Thus, the corotational approach is particularly interesting for contexts where the
speed of calculation matters, for example, for simulations in real time. Moreover, the
corotational approach combines nonlinear characteristics with the simplicity of the



62

stress-deformation relationship. However, despite our choices for the corotational
approach, we want to emphasize that the IBM we propose is not limited to small
strain problems.

Finally, we maintain the numerical stability by ignoring hexahedral elements
which are only partially inside the domain. For that, we remove elements where
the volume of the integration domain is under 5% of the volume of the hexahedral
element. Ignoring these elements has nearly no impact on the end result, improves
stability, and leads to a slightly smaller system of linear equations.

In summary, the construction of the system matrices and thus the choice of
the integration method impact the initialization time of our algorithm, while the
corotational approach reuses the system matrices in order to prevent such time-
consuming procedures in every time step. To conclude, our method allows for

1. A fast initialization depending upon the number of edges in the high-resolution
surface mesh

2. A fast and stable simulation that depends upon the size and the quality of the
linear system of equations which is based on the coarse simulation grid

3 Results

Here, we present the results of an implementation of our approach into the
open-source framework SOFA [4]: First, we perform a convergence analysis that
compares our algorithm to the classical FEM in beam compression and bending
scenarios. Then, we apply the method to simulate a brain shift, a deformation of the
brain often observed during neurosurgery.

3.1 Cylinder Compression and Bending Scenarios

To numerically compare our method against the classical FEM, we simulate the
compression and bending of beams under gravity while being fixed at one end.
The classical bending test results in a deflection, which requires a geometrically
nonlinear model of deformation. Thus this example shows one of the motivations to
use the corotational approach presented in the previous section.

We consider different cross sections (see Fig.2): a circle and a cross section
that has convolutions that are similar to the surface of a brain, see Fig.4 bottom.
The beam cross sections of the compression example have a radius » = 0.06 m,
which is expanded / = 0.1 m in the length, while for the bending example we have
r = 0.02m and / = 0.2m. We choose a Young’s modulus of E = 3000 Pa and
a Poisson’s ratio of v = 0.49 for the compression example and £ = 1 MPa and
v = 0.4 for the bending to represent deformations close to the application in a brain
shift.
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Fig. 2 Compression (top) and bending (bottom) examples with different cross sections (left/right):
Top: Setup of the example in front (left) and top (right) views with the initial (gray) and final (red)
configuration of the beam and the point at which we measure the distance in furquoise; Bottom:
Convergence analysis, with the comparison of only the z values as dashed curves and the dashed

black line depicts a relative error of 2%

We compare our method to the conventional FEM using tetrahedral elements,
obtained using the open-source meshing library GMSH [5]. For tetrahedral elements
with four nodes, incompressible behavior can yield stiff behavior, called volumetric
locking [1]. Thus, we also compare to the conventional FEM using non-cuboid
irregular hexahedral elements in the compression example. Since, to the best of
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Fig. 4 Bending example: Several chosen resolutions of simulations with a regular hexahedral
topology, showing the two-dimensional cross section with the grid: for the sparse grid, all displayed
elements are simulated as completely filled, while for the IBM green elements are deleted (since
they have less than 5% of the hexahedral volume) and boundary elements are partially filled

our knowledge, available meshing algorithms cannot provide hexahedral meshes,
we first mesh a circle with quadrilaterals using GMSH (see Fig. 3) and then extrude
them to hexahedral elements. To show the effect of regular partially filled elements,
we compare as well to a sparse regular hexahedral grid: Similar to our idea, a surface
is overlaid by a regular grid and elements outside of the topology are removed.
Contrary to our approach, all elements are filled completely, even elements that are
filled only to a small part (see Fig. 4).

The different results are compared by computing the relative error d = | pref , —
Dnl/| Pret.n — pol, where | - | is the Euclidean norm, prer , 1s the reference beam tip
in the middle of the beam, and p,, is the tip position for a given simulation after a
few simulation steps n (we use subscript O for the initial position). The points are
depicted as turquoise crosses in Fig. 2.

The compression example uses a reference solution composed of hexahedra
(40,887 and 46,242 degrees of freedom), while the bending example uses a
tetrahedral reference solution (592,899 and 514,047 degrees of freedom). The high
resolution of the chosen reference solutions allows neglecting possible locking
error. The results are summarized in a convergence analysis depicted in Fig.?2
and Table 1 compares the number of degrees of freedom for an accuracy of 2%.
As expected, our approach yields a higher accuracy per degree of freedom than
the existing approaches. For the complex geometry with the convolutions in the
cross section, the effect is amplified in the second example. When comparing to
tetrahedral meshes, our method is particularly interesting for a small number of
degrees of freedom. The convergence analysis of the compression example shows
for our approach that the error in the z direction depicted as a dashed line and the
relative error are approximately the same. Thus, despite the potentially asymmetric
(see Fig.4) removal of elements for the immersed boundary method, the impact on
the complete mesh stays reasonably low and the deformation is symmetric.
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Table 1 Comparison of the number of degrees of freedom for an accuracy of 2%

Degrees of freedom Factor Dofs IBM vs.

Example Tetrahedra | Hexahedra |IBM | Tetrahedra | Hexahedra
Compression - - 4956 | — —
Compression with — 22,892 4368 | — % ~52
convolutions
Compression—only z — 18,984 4809 | — B8~ 3.9
direction
Compression with 8363 22,326 3578 |88 ~03 |2~ 602
convolutions—only z direction

: 15924
Bending 15,924 — 1969 | 355 ~ 8.1 | —
Bending with convolutions 28,871 — 5813 % ~5 -

Fig. 5 Simulation of brain shift using a detailed surface mesh embedded into an hexahedral grid.
Boundary conditions are applied onto the exact surface, not the grid (left)

3.2 Brain Shift Simulation

In order to assess our method in the medical context, it has been applied to simulate
a brain deformation, frequently occurring after a craniotomy, see Fig. 5. The brain
surface mesh is highly detailed, with 88,580 triangles and 44,261 points, and
contains a lot of anatomical details due to the presence of sulci and gyri. The
bounding box of the surface mesh is then simply subdivided into a regular grid with
9, 11, and 11 points in each principal direction, resulting in a sparse grid with 675
nodes P;. Dirichlet boundary conditions are then applied to the actual surface (and
not to the nodes of the grid) as explained in Sect. 2 and depicted in Fig. 5 (left). Other
interactions such as collision between the scull and the brain are disregarded. The
convolutions are in most cases inside one element or two neighboring elements that
are connected, which allows to handle auto collisions without external algorithms,
iff the elements should not invert themselves. Since Dirichlet boundary conditions
in the standard FEM are applied to the nodes and not on a part of a face as in our
approach, no comparisons to existing approaches were performed. Using a Young’s
modulus £ = 3000 Pa, a Poisson’s ratio of 0.49, and a mass density of 1027 kg/m3,
the computation of the brain shift did not involve complex volumetric meshing and
has been performed using the damping parameters @ = = 0.1.
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4 Conclusion and Perspectives

In this paper, we have introduced an adaptation of the Immersed Boundary Method,
generally used for fluid dynamics problems, to the context of patient-specific
simulation of soft tissue deformation. The benefit of our method over conventional
Finite Element Methods lies in the ability to handle complex geometries while using
a regular, relatively coarse, hexahedral unfitted mesh. In particular, no auxiliary
mesh is required. The complexity of the nonstandard numerical integration over the
cut elements remains proportional to the number of surface elements. The number
of degrees of freedom and thus the size of the linear system in every time step are
only proportional to the number of coarse elements and independent of the number
of geometric features of the boundary. In contrast to the standard Finite Element
approach, fixed displacement boundary conditions can be applied to the high-
resolution surface mesh and are propagated to the potentially coarse hexahedral
simulation mesh. These different advantages make the method a promising approach
for building patient-specific coarse simulations in an automated way.

Yet, we believe this is only a first step toward a new way of constructing
Finite Element simulations over complex domains defined in medical images. As
the underlying integration can deal with holes in the surface, the approach has
the built-in potential to compensate for incomplete surface reconstruction due to
missing or wrong data. This could make the method even more robust and adapted
to medical images. Furthermore, the fact that dynamic simulations are directly
obtained from surface meshes segmented from medical images and do not require
dedicated volumetric meshing techniques could make the method a very valuable
and user-friendly tool in the context of medical simulation.
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