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Abstract—Despite the widespread use of supervised learning
methods for speech emotion recognition, they are severely re-
stricted due to the lack of sufficient amount of labelled speech data
for the training. Considering the wide availability of unlabelled
speech data, therefore, this paper proposes semisupervised autoen-
coders to improve speech emotion recognition. The aim is to reap
the benefit from the combination of the labelled data and unlabelled
data. The proposed model extends a popular unsupervised autoen-
coder by carefully adjoining a supervised learning objective. We
extensively evaluate the proposed model on the INTERSPEECH
2009 Emotion Challenge database and other four public databases
in different scenarios. Experimental results demonstrate that the
proposed model achieves state-of-the-art performance with a very
small number of labelled data on the challenge task and other tasks,
and significantly outperforms other alternative methods.

Index Terms—Autoencoders, speech emotion recognition, semi-
supervised learning.

1. INTRODUCTION

PEECH emotion recognition is of vital importance in many
S real-world applications, such as human-computer interac-
tion and computer-dedicated human communication [1]-[5].
Since its dawn, there has been little doubt that speech emo-
tion recognition is based on supervised learning. Early stud-

This work was supported in part by the BMBF IKT2020-
Grant under Grant 16SV7213 (EmotAsS), and in part by the European Com-
munitys Seventh Framework Programme through the ERC Starting under Grant
338164 (iIHEARu). The work of X. Xu was supported by the Research Grants
from the China Scholarship Council. The work of S. Friihholz was supported
by the Swiss National Science Foundation (SNSF PPOOP1_157409/1).

J. Deng and Z. Zhang are with the Chair of Complex and Intelligent Sys-
tems, University of Passau, Passau 94032, Germany (e-mail: jun.deng @tum.de;
zixing.zhang @tum.de).

X. Xu is with the Machine Intelligence and Signal Processing Group, MMK,
Technische Universitat Miinchen, Munich 80333, Germany, and also with
the Key Laboratory of Underwater Acoustic Signal Processing of Ministry
of Education, Southeast University, Nanjing 210018, China (e-mail: xinzhou.
xu@tum.de).

S. Friihholz is with the Institute of Psychology and Center for Integrative
Human Physiology (ZIHP), University of Zurich, Zurich 8006, Switzerland, and
also with the Neuroscience Center Zurich, University of Zurich and ETH Zurich,
Zurich 8008, Switzerland (e-mail: sascha.fruehholz@psychologie.uzh.ch).

B. Schuller is with the Chair of Embedded Intelligence for Health Care and
Wellbeing, University of Augsburg, Augsburg 86159, Germany, and also with
the GLAM, Department of Computing, Imperial College London, London SW7
2AZ, UK. (e-mail: schuller@ieee.org).

, Zixing Zhang, Member, IEEE, Sascha Friihholz,
, Senior Member, IEEE

ies showed that a wide diversity of supervised learning classi-
fiers are competent to build good speech emotion recognition
systems, which include Hidden Markov Models (HMMs) [3],
[6], Gaussian Mixture Models (GMMs) [7], Support Vector
Machines(SVMs) [8], and the likes. Much of the more recent
speech emotion recognition research rested on supervised learn-
ing methods as well. For example, with the big success of deep
learning in speech recognition and image processing [9], [10], a
large number of current efforts have been made to leverage deep
neural networks for speech emotion recognition [11]-[14].

Despite their widespread use in the speech emotion recogni-
tion community, supervised learning methods are restricted by
requiring that sufficient amount of labelled speech data for the
task of interest are provided at hand. Acquiring a lot of labelled
speech data is notoriously difficult since labelling data requires
experts’ knowledge, which has proven to be prohibitively ex-
pensive and time consuming in large quantity. When labelling
an emotional corpus, even worse, there is no certain ground
truth but a subjective ambiguous “gold standard” because dif-
ferent human raters may interpret the emotional state of the
same speech in different ways. In contrast, with the availability
of vast amounts of speech data obtained from the Internet, un-
labelled speech data are relatively inexpensive and plenty. As a
consequence, semi-supervised learning [15], which uses a small
number of labelled data in conjunction with an additional set
of unlabelled data to improve the generalisation of the learned
model, has lately attracted increasing attention [16]-[21] in the
community.

Recently, leveraging prior knowledge by means of unsuper-
vised learning had played a key role in the early stage of deep
learning [22], [23], which is currently the most active area in the
machine learning community. In 2006, Hinton and Salakhutdi-
nov initialised multiple-layered feedforward neural networks by
prior information exploited by multiple unsupervised Restricted
Boltzmann Machines (RBM) [22]. This is known as the greedy
layer-wise unsupervised pre-training algorithm. Since then, a
large variety of unsupervised and semi-supervised learning
methods have emerged in diverse applications of machine learn-
ing. Most of these methods entail training unsupervised learning
models with unlabelled data, such as deep Boltzmann machines
(e. g., [24], [25]) and autoencoders (e. g., [26]). In this way,
training a deep classifier becomes easy because of the target data
distribution explicitly learnt by unsupervised learning models.

However, an underlying problem with combining such un-
supervised learning models with supervised learning is that
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Tlustration of our proposed semi-supervised autoencoders. (a) Architecture of semi-supervised autoencoders (SS-AE). (b) Architecture of semi-supervised

autoencoders with identity skip connections (SS-AE-Skip), where some layer of the encoder is directly connected to one layer of the decoder and supervised paths.

these unsupervised learning models aim to retain all the
information that is needed to perfectly reconstruct the input ex-
amples, whereas supervised learning preserves only important
information that is useful to predict the class label, and drops
redundant information. In this case, there is a potential conflict
of interest between the unsupervised and supervised learning.
To address this problem, recently, an emerging area of deep
semi-supervised learning has attracted growing interest [19],
[27], [28]. For example, the semi-supervised variational autoen-
coders [28] method and the ladder network [19] were proposed,
which both obtained very impressive results on several image
classification benchmarks using just hundreds of labelled train-
ing examples. One of the main attractions of using deep semi-
supervised learning for speech emotion recognition is the fact
that it supports to simultaneously deploy both unsupervised and
supervised learning. It also facilitates the construction of deep
structures. This is an important benefit because deep structures

always represent many complex functions more concisely than
common shallow models (e. g., SVMs and GMMs) [29].

Encouraged by the recent success of deep semi-supervised
learning, we propose semi-supervised autoencoders for speech
emotion recognition. The idea of the semi-supervised autoen-
coders method is to combine both the generative and the dis-
criminate perspective. In the end, speech emotion recognition
integrated with the proposed semi-supervised leaning would
not only reduce the dependence on the great quantity of labelled
training examples, but would also be endowed with an abil-
ity to distil essential knowledge from unlabelled data into the
supervised learning. To the best of our knowledge, this is the
first work on deep semi-supervised learning in speech emotion
recognition.

To learn from labelled and unlabelled data, the Semi-
Supervised Autoencoder (SS-AE), illustrated in Fig. 1, extends
a popular unsupervised deep denoising autoencoder (DAE) [26]



by adjoining the supervised learning objective of a deep feed-
forward network. As the supervised classifier learns from given
labelled data, in our method, this classifier is also enforced to
predict all unlabelled data as a “dustbin” class, which leads to
explicitly aiding the supervised learning that incorporates prior
information from unlabelled examples. This accomplishes by
just appending an extra class to the supervised task. Guided with
the knowledge of the supervised task, further, the unsupervised
objective comes down to providing representations that are im-
portant for classification. Consequently, this present approach
constructs a joint objective function that must be optimised to en-
sure that the reconstruction error of the unsupervised objective,
as well as the predictive error measured by the supervised ob-
jective, are minimised on both the labelled and unlabelled data.
In addition, to address the problem of exploding and vanishing
gradients in deep neural networks [30], we propose a variant of
SS-AE that introduces skip connections from the lower layer to
the upper one. Such a variant, called SS-AE-Skip, is illustrated
in Fig. 1(b). Because of the use of identity skip connections,
SS-AE-Skip can have paths along which information can flow
smoothly across various layers during the training. Finally, we
demonstrate the effectiveness and efficiency of SS-AE and SS-
AE-Skip through extensive experimental evaluation on the IN-
TERSPEECH 2009 Emotion Challenge database and other four
public speech emotional databases in different scenarios.

In addition to the motivation provided above, the core contri-
butions of this paper can be summarised as follows:

1) Most existing methods in speech emotion recognition are
restricted by requiring that sufficient amount of labelled
speech emotional data are provided at hand. In this paper,
we exhibit, for the first time ever, our proposed semi-
supervised learning method for speech emotion recogni-
tion, which can reach state-of-the-art accuracy with only
a few labelled examples.

2) Unlike the previous autoencoder-based approaches in
speech emotion recognition, which often perform unsu-
pervised feature learning and then train a classifier, we
propose the self-contained SS-AE framework. A dedi-
cated integration of a supervised path and autoencoders is
presented to extend the horizon beyond the current limit of
unsupervised learning autoencoders. In this way, SS-AE
is not only just a powerful feature extractor, but is also a
competitive semi-supervised classifier.

3) We compare our semi-supervised learning approach with
other prominent semi-supervised learning methods as well
as supervised learning methods for speech emotion recog-
nition. We subject this method to thorough evaluation on
the INTERSPEECH 2009 Emotion Challenge database
and other four speech emotional databases. Extensive
experimental results show our semi-supervised learning
method outperforms the counterparts.

The remainder of this paper is organised as follows. Section II
first discusses related work. We then present the proposed semi-
supervised learning methods in Section III. In Section IV, we
briefly introduce the selected real-world classification task for
exemplification of effectiveness, including five chosen speech
emotional databases and acoustic features used. Sections V
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and VI demonstrate experiments on the five corpora. Fi-
nally, a general discuss is provided in Section VII before we
draw a conclusion and point out promising future work in
Section VIIIL.

II. RELATED WORK

Speech emotion recognition has greatly benefited from the
success of deep learning. For example, in [13], the authors pro-
posed convolutional recurrent neural networks to enhance fea-
ture extraction from emotional speech data, which shows an im-
provement in performance when compared to traditional super-
vised learning methods. In [14], the authors obtained impressive
performance by proposing the deep convolutional neural net-
works based framework that directly inferred emotional states
from the raw speech waveform, instead of from the hand-crafted
features. However, there is little work on deep semi-supervised
learning for speech emotion recognition. In this work, we bridge
the gap by exploiting semi-supervised autoencoders for speech
emotion recognition. In particular, we show for the first time
how deep semi-supervised learning methods can be brought to
considerably advance speech emotion recognition.

Most existing semi-supervised learning approaches, such as
self-training [17], [31]-[33] or co-training [34], [35], gener-
ally start with training a weak supervised learning classifier
with a small training set and then iteratively retrain the clas-
sifier on self-labelled examples predicted by the current weak
classier. Obviously, such methods are vulnerable to the train-
ing bias problem, that is, unlabelled data may be predicted
erroneously, which will degrade the model in the next itera-
tion. To overcome this major issue, one usually needs to in-
troduce some scheme for only selecting self-labelled exam-
ples that meet defined requirements. Much recent research
found that integrating active learning and these mentioned semi-
supervised learning approaches would effectively overcome the
problem and embrace the benefit of both (e. g., cooperative
learning [17]). Nevertheless, these heuristic choices may still
yield unreliable predictions. Hence, unlike these approaches
dependent on a self-labelling process, our present model ad-
vances autoencoders considerably in a way that the learning
process is guided by the knowledge from unlabelled and la-
belled data. This allows our semi-supervised learning algo-
rithms to facilitate relating data and labels, and in turn improve
classification.

Graph-based approaches make the smoothness assumption:
labelled and unlabelled examples are nodes connected by a
graph, where undirected edges reflect similarity between ex-
amples. Consequently, connected nodes tend to have the same
label. In other words, label information ‘propagates’ from la-
belled examples to unlabelled examples via graph edges. In
this context, the discriminant function is encouraged to vary
smoothly with respect to the graph [36], [37]. Instead of rest-
ing on the label information propagation, our present methods
assign a single dustbin class for unlabelled data, leading to a
united supervised objective function for unlabelled and labelled
data. Furthermore, graph-based approaches rely much more on
the discriminative quality of the features that are given as input,
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whereas our proposed autoencoders can learn useful non-linear
features themselves using their hidden units.

Autoencoders, which are often an unsupervised learning
model, have been highly successful in addressing the distri-
bution mismatch issue in speech emotion recognition [16], [38].
Most of the existing approaches in the field tend to use au-
toencoders to discover common feature representations across
different domains in an unsupervised way and then feed them
as input to a discriminative classifier (e. g., SVMs). In addi-
tion, they are also usually used to provide salient represen-
tation, leading to notable improvement for speech emotion
recognition. However, all of the above autoencoder-based ap-
proaches perform feature learning and classifier learning in sep-
arate phases [12], [39]. In this case, the unsupervised feature
learning is taught towards minimising the reconstruction er-
ror, rather than towards minimising the classification error. In
contrast, our proposed method is the first self-sufficient deep
semi-supervised structure for speech emotion recognition. That
is, there is direct interaction between feature learning and clas-
sifier learning. In our method, all the parameters of feature
learning and classifier learning are jointly learned by directly
minimising both the classification error and the reconstruction
error.

A recent work proposed a deep semi-supervised learning al-
gorithm using variational autoencoders that perform efficient ap-
proximate inference and learning with generative models [28],
whereas our work that is a just simple feed-forward neural net-
work for semi-supervised learning is easy to be trained via the
backpropagation procedure.

Our semi-supervised learning approach is related to the dis-
criminative RBM [40], [41] in terms of incorporating a dis-
criminative component to training. However, the discriminative
RBM worked only with a negative log-likelihood objective for
the unlabelled data whereas our autoencoders proposed here can
distil simultaneously the information from the unlabelled and
labelled data using a novel joint objective function presented in
Section III, which thus leads to greater expressive and discrim-
inative power.

III. SEMI-SUPERVISED AUTOENCODERS

In this section, we describe the Semi-Supervised Autoen-
coders (SS-AEs) architecture. Let us consider a dataset with
N labelled examples {(x1,v1), (z2,92), - .., (xx,yn )} and M
unlabelled examples {zni1,ZN+9,...,ZN+M }, Where y €
{1,2,...,K}, and K is the total number of labels. The ob-
jective is to learn a function P(y|z) from both the labelled
and unlabelled data. In the SS-AE model, this function is a
deep denoising autoencoder that consists of multiple hidden
layers and includes a stochastic corruption process applied to
the input. Further, the SS-AE model particularly assigns the M
unlabelled examples to the pseudo-class K + 1, resulting in a
supervised path with shared parameters, which is responsible
for the classification (see Fig. 1). In this end, the objective func-
tion is a weighted sum of the supervised cross entropy loss and
the unsupervised mean square error loss for the labelled and
unlabelled data.

A. The Encoder

Formally, SS-AEs inherit an autoencoder architecture, which
consist of an encoder, a decoder, and a supervised path. Given
an input x, the encoder that non-linearly transforms the input
into a new representation via a multi-layer feedforward neural
network is defined as follows:

he = f(z0), (1)

where
ze = WER + b, )
hi=f(W!hIt +bl),and 2 <1< L—1, (3)
hl =z )

The matrix W' and the vector b’ are referred to as weights and
bias respectively, which are adaptive parameters. In the neural
network, they are used to take a weighted linear combination of
the inputs. The function f (-) is a differentiable and nonlinear ac-
tivation function, such as the Rectifier Linear Unit (ReLU) [42]
in this work. L represents the number of layers.

B. The Decoder and the Unsupervised Objective Function

The decoder maps the hidden representation hl from the
encoder back to a reconstruction Z of the original input

& =hk =2k, (5)
where
i = Wihg ™'+ b, 6)
Wy = f (Wihl ™t +0),and 2 <1< L—1, @)
hl =ht. (8)

In order to encourage the encoder and decoder to gener-
ate underlying feature representations, the inputs are stochas-
tically disturbed via a corrupting function. Such autoencoders
are known as DAEs [26].

With the encoder and decoder, the unsupervised objective
function, which is a measure of the reconstruction error, is thus
computed on the labelled and unlabelled data

N+M

u_l . =12
L= ; |z — ]2 )

C. The Supervised Path and the Supervised Objective
Function

In addition, the SS-AE has the supervised path which takes
the hidden representation h” and then learns the link between
it and its label. The output of the supervised path is computed
as follows:

(10)



where
a0 = Whhe T b, (11)
A= f(Wh !t +b),and2 <1< L, — 1, (12)
hy = he. (13)

Here, L, represents the number of layers in the supervised path.
The attractive feature of such autoencoders built in this way is
that they consider supervising information for learning predic-
tive latent features, which are good for classification.

For semi-supervised learning, the supervised path also has a
part to play in incorporating information from unlabelled data
into learning how to recognise emotions. To this end, we further
propose to specially describe the unlabelled data as a dustbin
class. Thatis, the M unlabelled examples have an identical label,
{(mN+17ny+1)a (TN+2,YNs2)s -0 (TNM, yva\J)}’ where
y* = K + 1. In this case, the cross entropy objective function,
which is normally used as the loss function for classification
tasks in neural networks, is computed over all labelled and
unlabelled data

N+M
L= — Z log <
N+j\; K+1
Z (-ﬁi[yi] + log (Z exp (ﬁi[ﬂ))) ;o (15)

i=1 k

exp (Pi[yi]) )

14
7 exp (3 "

where y; is the truth label for the i-th input example, and p; k]
is the k-th element of the vector of class scores p;.

The introduction of a dustbin class for the unlabelled data is
of importance because it acts as a regulariser during training to
improve generalisation and reduce overfitting by preventing the
network from assigning full probability to each labelled training
example.

D. Joint Objective Function

The objective function in SS-AE ends up a joint function
between the reconstruction error and the cross entropy loss,

L=L4+CLY, (16)

where C' > 0 is a term controlling the trade-off between the
unsupervised and supervised objectives.

For evaluation, we pick out the index of the highest probable
element in the output score vector as the prediction for a test
input

= arg max p[k],
1<k<K

a7

where p is the output of the supervised path. Note that the score
from the dustbin node is just ignored in the evaluation process.

Introducing a dustbin class to unlabelled data in the SS-AEs
has two properties, which are crucial for recognition. First, us-
ing a single dustbin class for unlabelled data forces all inputs
to contain supervising information, allowing us to trick a clas-
sifier into learning from all given data for the problem. Second,
because speech data are typically characterised by high degrees
of variation, an extra supervised learning task to recognise the
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dustbin class encourages the neural network classifier to be in-
sensitive to rich variations among the unlabelled and labelled
speech emotional data.

Although the SS-AE structure excluding the decoder corre-
sponds to a special case of a deep supervised neural network,
which is able to deal with a semi-supervised learning task, the
decoder plays a key role in SS-AEs. In speech emotion recog-
nition, we are always faced with a small amount of data, which
easily leads to over-fitting in regular deep neural networks and
heavily limits the capacity due to the lack of a large size of
training data to train deep neural networks well. SS-AEs allevi-
ate these problems by including the reconstruction process into
regulating the supervised learning, which significantly improves
the model capacity to learn good representations.

As shown in Fig. 1, we apply Batch Normalisation before
applying a nonlinear activation function for all hidden layers in
this work so as to address the internal covariance shift issue [43],
leading to the fast learning.

E. Semi-Supervised Autoencoders with Skip Connections

More recently, using identity skip connections has been found
helpful for easing optimisation in learning very deep feedfor-
ward neural networks, such as the highway networks [44] and
the residual networks [45], since the use of identity skip con-
nections can mitigate the problem of exploding and vanishing
gradients [30]. These skip connections between internal lay-
ers of neural networks can allow the information to flow more
freely in both forward and backward passes. Motivated by these
works, we extend SS-AEs by including skip connections, called
SS-AE-Skip. As shown in Fig. 1(b), some layer of the encoder
is directly connected to one layer of the decoder and supervised
path. Mathematically, the outputs of these layers are defined as
follows

hl, = nl + 2, (18)

AL = hl +2L. (19)

These skip connections in SS-AE-Skip are appealing because
unlike SS-AEs which take an effort to maintain the informa-
tion flow, the SS-AE-Skip method fully focuses on discovering
expressive features which are relevant for the task at hand.

IV. EXPERIMENTS
A. Selected Task and Data

We first perform the INTERSPEECH 2009 Emotion Chal-
lenge five-class task [46] using our proposed semi-supervised
learning method. It is based on the spontaneous FAU Aibo Emo-
tion Corpus (AEC), where each utterance is assigned one of five
class labels: Anger, Emphatic, Neutral, Positive, andRest. In to-
tal, the training and test sets have 9 959 and 8 257 chunks. Table I
briefs on FAU AEC. For the experiments to follow, we always
evaluate the emotion recognition model on the test set of the
AEC as was used in the challenge. Further, we choose Un-
weighted Average Recall (UAR) to measure the performance
as was the competition measure in the challenge. The AEC
dataset often serves as a benchmark dataset in speech emo-
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TABLE I
SUMMARY OF THE FIVE CHOSEN DATABASES

Corpus Age Language  Content Type # Emotion #All h:mm  #m  #f Rec Rate (kHz)
AEC children German variable  natural 5 9959 /8257 9:20 21 30  normal 16
ABC adults German variable acted 6 430 1:15 4 4 studio 16
EMO adults German fixed acted 7 494 0:22 5 5 studio 16
SUSAS adults English fixed natural 4 3593 1:01 4 3 noisy 8
GeWEC adults French fixed acted 4 1200 0:14 2 2 studio 16

Content fixed/variable (spoken text). Type of material (acted/natural). Number of emotion categories (# Emotion). Overall number of turns (# All) — for
AEC divided into official training and test set by “/”. Total audio time (h:mm). Number of female (# f) and male (# m) subjects. Recording (Rec) conditions

(studio/normal/noisy).

tion recognition. The baseline system in [46] achieved a 38.2%
UAR with a standard feature set plus linear-kernel SVMs.
The best performance system in the 2009 challenge achieved
a 41.7% UAR [47]. The best known result, 45.6% UAR was
achieved by using hidden Markov models with deep belief net-
works [11]. More recently, a Convolutional LSTM net was pro-
posed to enhance feature extraction, resulting in an average of
39.7% UAR [13]. Based on contractive autoencoders, a semi-
supervised feature learning framework was proposed in which
a 40.2 % UAR was achieved [12]. However, this work first
made use of autoencoders to generate good features and then
employed SVMs to perform classification.

Secondly, we investigate effectiveness of the proposed
method with a whispered speech database. Specifically, the
Geneva Whispered Emotion Corpus (GeWEC) is used to provide
normal phonated/whispered paired utterances [48]. Two male
and two female professional French-speaking actors in Geneva
were recruited to speak eight predefined French pseudo-words
(e. g., “belam” and “molen”) with a given emotional state in
both normal and whispered speech modes as in the GEMEPS-
corpus that was used in the INTERSPEECH 2013 Computa-
tional Paralinguistics Challenge [49]. Speech was expressed in
four emotional states: angry, fear, happiness, and neutral. The
actors were requested to express each word in all four emotional
states five times. The utterances were labelled based on the state
they should be expressed in, i. e., one emotion label was as-
signed to each utterance. As a result, GeWEC consists of 1 280
instances in total. In the upcoming experiments, the whispered
speech is used for training while the normal speech mode data
are used for testing.

In addition, three further publicly available and popular
databases, namely the Airplane Behavior Corpus (ABC) [50],
the Berlin EMOtional speech database (EMO) [51], and the
Speech Under Simulated and Actual Stress (SUSAS) set [52]
are chosen as unlabelled training sets. ABC was introduced for
the special application of automatic public transport surveil-
lance about passenger emotions. Eight German-speaking sub-
jects actively participated in the recording. In total, there are 431
utterances which were annotated using a closed set of emotion
categories, including neutral, tired, aggressive, cheerful, intox-
icated, and nervous. EMO contains 494 German utterances ex-
pressed in one of seven emotions: anger, boredom, disgust, fear,
happiness, neutral, and sadness. SUSAS was a first reference
for spontaneous recordings. The 3 593 actual stress speech sam-

TABLE II
OVERVIEW OF THE STANDARDISED FEATURE SET PROVIDED BY THE
INTERSPEECH 2009 EMOTION CHALLENGE

LLDs (16 x 2) Functionals (12)

(A)ZCR mean

(A) RMS Energy  standard deviation

(A) FO kurtosis, skewness

(A) HNR extremes: value, rel, position, range

(A) MFCC 1-12 linear regression: offset, slope, MSE

ples are used for the upcoming evaluation in this work, which
were recorded in subject motion fear and stress tasks.

As the above outlined, five publicly available emotion corpora
were selected to evaluate the effectiveness of the proposed meth-
ods. Table I summarises the five selected databases and shows
the existing difference between them. Our work differs from the
previous work for speech emotion recognition in that we use a
small set of labelled data and a set of unlabelled data to do a
speech emotion recognition task. To the best of our knowledge,
it is the first work to show that the semi-supervised learning
algorithm with just a few labelled examples will achieve perfor-
mance as competitive as others in speech emotion recognition.

B. Acoustic Features

To keep in line with the INTERSPEECH 2009 Emotion Chal-
lenge [46], we decided to use its standardised feature set of
12 functionals applied to 2 x 16 acoustic Low-Level Descrip-
tors (LLDs) including their first order delta regression coeffi-
cients as shown in Table II. In detail, the 16 LLDs are zero-
crossing-rate (ZCR) from the time signal, root mean square
(RMS) frame energy, fundamental frequency (normalised to
500 Hz), harmonics-to-noise ratio (HNR) by autocorrelation
function, and Mel-frequency cepstral coefficient (MFCC) 1—
12. Then, 12 functionals — mean, standard deviation, kurtosis,
skewness, minimum and maximum value, relative position, and
ranges as well as two linear regression coefficients with their
mean square error (MSE) — are applied on the chunk level. Thus,
the total feature vector per chunk contains 16 x 2 x 12 = 384
attributes. To ensure reproducibility as well, the open source
openSMILE toolkit was used with the pre-defined challenge
configuration [53], [54].
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TABLE III
AVERAGE UAR WITH STANDARD DEVIATION OVER TEN TRIALS ON THE AEC TEST SET WITH 100, 200, 500, AND 1000 LABELLED TRAINING EXAMPLES

# of labelled examples from AEC

100 200 500 1 000 All
Supervised methods:
DNN 33.549.1 34941 8 36.841.9 38.641.3
SVM 32.811.9 33.849.4 36.041.6 37.641 5
Semi-Supervised methods:
Self-training+SVM 321490 341491 36.941.2 39.610.6
Label propagation+SVM 29.9{_)_2 32-7i1.7 33.911 .3 35.6i1_3
Label spreading+SVM 3(].6i2_1 33'7i1,5 35~0i1.4 36.4i1.2
DAE+SVM 34.741.3 35.342.9 389411 40.340.9
Previously reported methods:
Challenge baseline [46] 38.2
Convolutional LSTM [13] 39.740.2
Semi-sup. contractive autoencoders [12] 40.2
Bayesian logistic regression [55] 41.6
GMM [47] 41.7
uL.SIF [56] 42.7
Ranking SVM [57] 44.8
Deep belief networks [11] 45.6

Our proposed methods:
SS-AE
SS-AE-Skip

36.6+1.6 (39.9)
36.541.8 (40.1)

384401 (424)
38.549. 5 (43.1)

40.141 .6 (42.6)
41.141 .3 (43.1)

41.54.1 (43.2)
41.841.0 (43.6)

Unlabelled data are from the AEC training set. We compare our proposed methods with previously reported AEC test UARs and other semi-supervised

learning (Semi-sup.) methods. Best UAR in parentheses.

C. Experimental Setup and Evaluation Metrics

In the neural network learning process, we applied the Adam
optimisation algorithm [58] with maximum 100 epochs to op-
timise the parameters. For training the SS-AE neural networks,
we inject Gaussian noise with a variance of 0.3 to generate the
corrupted input. We used grid search to search over the learning
rate {0.1,0.01,0.001, 0.0001} and the number of hidden nodes
{128,256, 512, 1024}. The number of hidden layers for the en-
coder and decoder is set to two while the supervised path has
only one hidden layer. Each hidden layer has the same hidden
nodes. The hyper-parameter C' in the objective function is set
as to one in order to reduce the effort of parameter search. In-
put and target features are standardised to zero mean and unit
variance on the training set.

We evaluate the performance by UAR, which is often used as
the officially-recommended measure for speech emotion recog-
nition. It equals the sum of recalls per class divided by the
number of classes, and better reflects overall accuracy in the
given case of presence of class imbalance. Besides, significance
tests are conducted by computing a one-sided z-test.

V. EXPERIMENTAL RESULTS ON AEC
A. Emotion Recognition with Unlabelled In-Domain Data

First, we pay attention to four semi-supervised emotion recog-
nition tasks with 100, 200, 500, and 1000 labelled examples
for the Emotion Challenge. Labelled examples are chosen ran-
domly from the officially training set but the number of exam-
ples in each class is balanced. In order to determine the hyper-
parameters, we held out 1 000 training examples for validation.
Each experiment is repeated ten times with different seeds and

different selections of labelled examples to reduce singularity
effects. Unlabelled examples are the rest AEC training exam-
ples, which is from same domain as the test set.

Table III collects the average UARs with standard deviation
over ten trials for SS-AE and SS-AE-Skip and other models for
comparison. Furthermore, the best UAR over ten trials is present
in the table as well. In Table III, these comparison models in-
clude two supervised baseline methods, four semi-supervised
learning methods, and eight previous methods that reported per-
formance on the AEC benchmark database. A supervised base-
line, DNN, consisted only of the encoder and the supervised
path. Another one, SVM, which is similar to the challenge
baseline, is a linear SVM trained using exclusively the small
amount of labelled data. In addition, we compare our proposed
methods with four classic semi-supervised learning algorithms,
including self-training, label propagation [59], label spread-
ing [60], and DAE [26] in combination with SVMs, for the four
semi-supervised tasks. For fair comparison, we follow the same
experimental validation procedure. Note that the eight previ-
ously reported methods achieved good performance using all
the AEC training data.

As can be seen from Table III, both SS-AE and SS-AE-
Skip outperform the two supervised methods and the classi-
cal semi-supervised learning methods in terms of the average
UAR by a large margin. It is worth noting that even when
using 100 labelled examples, our proposed models reach a
40.1% UAR and surprisingly surpass the challenge baseline
that uses 9 959 labelled examples for training. Further, the best
UAR achieved by our proposed methods with only 1 000 la-
belled examples is 43.6%, which is comparable with the best
known UAR (45.6%) obtained by [11] and exceeds the UAR ob-
tained by other modern models (e. g., [12], [47], [56] ). In this
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TABLE IV
CLASSIFICATION PERFORMANCE OF THE SS-AE AND SS-AE-SKIP FEATURES +
SVM ON THE SPEECH EMOTION RECOGNITION BENCHMARK DATABASE AEC

TABLE V
IMPACTS OF THE VARIANT OF AUTOENCODERS ON OUR PROPOSED METHODS
(SS-AE/SS-AE-SKIP)

Feature Type # of labelled examples from AEC

100 200 500 1 000
Sparse-AE+SVM 32.8 35.5 38.8 39.8
WTO-AE+SVM 34.8 38.6 40.5 40.6
SS-AE/SS-AE-Skip+SVM  41.1/41.1  42.1/42.5  43.6/42.8  44.3/44.3

Feature Type # of labelled examples from AEC

100 200 500 1 000
Sparse-AEs-Based 37.2/37.77  39.6/40.2  40.7/42.0  42.0/43.2
WTO-AEs-Based 32.1/37.9  34.3/40.2  35.1/41.4  38.8/42.8
DAE-Based (default)  39.9/40.1  42.4/43.1 42.6/43.1 43.2/43.6

Two representative autoencoders (e. g., Sparse Autoencoders (Sparse-AE) and Winner-
Take-All Autoencoders (WTO-AE) [61]) are considered for comparison. The best UAR
over ten trials is presented.

scenario, our proposed methods have a statistical significance
test at the 0.01 level, when compared to the best performance
system in the challenge (i. e., GMM [47]). Although the SS-AE
method almost performs as well as the SS-AE-Skip method, it
seems that skip connections indeed provide a beneficial effect
on the information flow in SS-AE-Skip, resulting in better per-
formance than SS-AE particularly for the very small labelled
sets.

In addition to the four semi-supervised tasks mentioned
above, we continue to investigate the impact of increasing the
number of labelled examples on the proposed method. Here,
we increase the number of labelled examples to either 1 500 or
2000. With 1500 labelled training examples available, SS-AE
and SS-AE-Skip reach an average UAR of 42.3% and 42.5%,
respectively, which consistently provides a noticeable boost in
performance. For the 2 000 labelled training examples setting,
SS-AE and SS-AE-Skip obtain an average UAR of 42.7% and
42.8%, respectively. These results suggest that, our proposed
methods profits greatly from the labelled training examples
while the performance improvement gradually levels off as the
increase in the labelled training examples.

B. Feature Learning

As mentioned earlier (see Section II), a major advantage of
autoencoders is the ability to learn useful non-linear features.
Hence, here, we evaluate the quality of features learnt by the
proposed autoencoders by training a separate linear classifier
(i.e., SVM) on top of them. Table IV shows the classifica-
tion performance of SS-AE and SS-AE-Skip where only NV
labels are available. We compare our method with the perfor-
mance of two representative autoencoders (e. g., Sparse Autoen-
coders (Sparse-AE) and Winner-Take-All Autoencoders (WTO-
AE) [61]), where the feature learning process is only governed
by an unsupervised learning objective. For fair comparison, the
two autoencoders are trained on the whole training dataset, but
the SVM is trained only on the /N labelled examples. We can
see that, the existing unsupervised autoencoders fail to extract
good acoustic representations from the unlabelled data, whereas
our SS-AE method can learn salient features and thus achieve a
better classification. This strongly supports that the supervised
path (see Section III-C) is of direct benefit to improve the feature
learning ability of our proposed autoencoders.

The best UAR over ten trials on AEC is presented.

TABLE VI
EFFECTS OF THE VARIANT OF STANDARD ACOUSTIC FEATURES AS INPUT TO
OUR PROPOSED METHODS (SS-AE/SS-AE-SKIP)

Feature Type # of labelled examples from AEC

100 200 500 1000
IS09 EC (default, 394)  39.9/40.1  42.4/43.1 42.6/43.1  43.2/43.6
IS10 LOI (1 582) 39.6/40.0  41.2/43.0  42.3/43.0  43.5/43.7
IS11 SS (4 368) 40.0/40.2  41.9/41.1  43.2/43.6  44.5/44.0
IS12 ST (6 125) 39.9/40.4  40.9/42.4  43.2/42.8  44.0/43.9
IS13 EMO (6 373) 40.9/40.0 41.7/43.1  43.0/43.1  43.9/44.1

The best UAR over ten trials on AEC is presented. The number of features is given in
parentheses.

C. Impacts of the Variant of Autoencoders

In order to assess the impact of the choice of autoencoders on
the semi-supervised performance of SS-AE and SS-AE-Skip,
we further consider Sparse-AE and WTO-AE [61] in place of
DAE. Table V shows the performance change in autoencoders
of SS-AE and SS-AE-Skip on the AEC database. We see all
the alternate methods still retain the noticeable performance on
the speech emotion recognition benchmark database when very
few labelled data are available. In the meanwhile, it is worth
noting that, the DAE-based framework generally outperforms
other alternatives. For this reason, the DAE-based algorithm is
used for the further experiments.

D. Impacts of the Variant of Acoustic Features

It is well known that acoustic features have a big effect
on speech emotion recognition systems. Generally speaking,
a good acoustic representation can facilitate model learning.
Therefore, here, we assess the impact of different acoustic fea-
tures as input to our proposed method. In addition to the de-
fault acoustic features from the INTERSPEECH 2009 Emotion
Challenge (referred to as IS09 EC), four alternative feature sets,
including Level of Interest in 2010 [62] (referred to as IS10
LOI), Speakers States in 2011 [63] (referred to as IS11 SS),
Speaker Traits in 2012 [64] (referred to as IS12 ST), Emotion
in 2013 [49] (referred to as IS13 EMO), are used for compar-
ison. Table VI presents the effects of the variant of acoustic
features on the performance of our proposed methods for the
four semi-supervised tasks.

As can be seen from Table VI, the variant of acoustic features
indeed have an effect on the classification performance. For



example, SS-AE obtains a 44.5% UAR using the IS11 SS fea-
ture set when 1 000 labelled examples are available, which is
slightly higher than a43.2% UAR obtained by our default feature
set using ISO9 EC. However, the observed effect is not too pro-
nounced. One possible explanation is that our proposed autoen-
coders naturally learn useful representations from the inputs; in
turn, the learning process discovers the intrinsic attributes nec-
essary to solve the emotion recognition. In order to keep in line
with the INTERSPEECH 2009 Emotion Challenge, we stick to
the IS09 EC feature set for the following experiments.

E. Emotion Recognition With Unlabelled Out-of-Domain Data

In Section V-A, we have evaluated our proposed methods in
matched conditions where all training data and test data come
from one corpus. Here, we further evaluate our proposed meth-
ods in two cross-corpus settings based on the absence (mis-
matched) or presence (semi-matched) of in-domain data in un-
labelled training data, i. e., whether unlabelled training data
include some data from the same domain as the test set. In
the two cross-corpus settings, the domain mismatch issue im-
mediately emerges, which tends to considerably degrade the
performance of conventional methods [8]. Here, we focus ex-
clusively on our proposed methods for the four semi-supervised
learning tasks presented in Section V-A on the AEC dataset. To
avoid expensive computation for hyper-parameter optimisation
by grid search, the best architecture previously found in each
semi-supervised task is borrowed to be trained in cross-corpus
settings.

Let us first consider the mismatched setting where unlabelled
data are only chosen from ABC, EMO, and SUSAS, or the
combinations of them while labelled data are chosen from the
AEC training set. It appears that all these unlabelled data are
significantly different from the AEC dataset, as shown in Table I.
Table VII presents the experimental results for SS-AE and SS-
AE-Skip. It is observed that different selection of unlabelled
data has a strong impact on the recognition performance of
our proposed methods. Also, as expected, the disparity between
the labelled training data and unlabelled training data causes
a decrease in UAR obtained by SS-AE and SS-AE-Skip, the
decrease is negligible.

Encouraged by the above good results, we further evaluate
our methods under semi-matched conditions. Here, unlabelled
training data come from a combination of in-domain and out-
of-domain data. In this setting, unlabelled training data consist
of a partition of the AEC training data and a mixed partition of
ABC, EMO, and SUSAS. Fig. 2 depicts the results achieved by
SS-AE and SS-AE-Skip under the semi-matched conditions as
well as the results under matched conditions. Although under
semi-matched conditions the whole training data are increas-
ingly augmented by including other corpora when compared
with matched conditions, such augmentations fail to result in
the substantial performance improvement and sometimes even
hurt the performance. One possible explanation is that simply
augmenting unlabelled training data with other out-of-domain
data for semi-supervised learning could cause a domain mis-
match issue, which hurts classification performance. Regard-
less of the differences caused by the domain mismatch problem,

39

TABLE VII
BEST UAR OVER TEN TRIALS OBTAINED BY OUR PROPOSED METHODS (SS-AE
AND SS-AE-SKIP) ON THE AEC TEST SET WITH LABELLED DATA FROM THE
AEC TRAINING SET AND UNLABELLED DATA FROM ABC, EMO, AND SUSAS
WITH SEVERAL COMBINATIONS

Unlabelled data # of labelled examples from AEC
ABC EMO  SUSAS 100 200 500 1000
SS-AE:
+ 36.1 38,0 392 41.2
+ 386 415 424 432
+ 352 364 376 39.7
+ + 386 422 422 433
+ + 354  38.0 404 40.5
+ + 394 410 426 43.2
+ + + 388 420 417 42.1
Mean 374 399 409 41.9
SS-AE-Skip:
+ 372 394 414 40.8
+ 39.7 416 433 429
+ 38.0 38.0 417 422
+ + 395 416 431 42.8
+ + 355 390 413 41.8
+ + 392 407 429 43.6
+ + + 385 411 426 42.7
Mean 382 402 423 424

however, we still observe that our proposed methods retain im-
pressive performance particularly when 1 000 labelled exam-
ples are available. This indicates that our proposed methods are
highly efficient in learning from data and can naturally prevent
the harmful effects of the domain mismatch problem.

VI. EXPERIMENTAL RESULTS ON GEWEC

By now, we have shown that our proposed method is appli-
cable for general speech emotion problems, where all the train-
ing data are the normal phonated speech. In this section, we
further exemplify our proposed semi-supervised learning meth-
ods to the domain mismatch problem introduced by GeWEC
(cf. Section IV-A), which contains the normal phonated speech
mode data and whispered speech data. In this setting, we train a
model on the whispered speech data while testing on the normal
speech data from GeWEC. This task is challenging because of
the fundamental differences between normal phonated speech
and whispered speech in vocal excitation and the vocal tract
transfer function. As a result, it is implausible to train a good
model with whispered speech for normal phonated speech. Pre-
vious work suggested that using transfer learning methods, such
as uLSIF [56] and DAE [8], can reduce the existing differences
among the training and test set.

In this work, we propose to use our semi-supervised learning
to exploit other emotional corpora such as ABC or EMO in
hope to compensate for the lack of the prior knowledge of nor-
mal phonated speech in the training data. In these experiments,
three normal phonated speech mode databases, ABC, EMO, and
SUSAS, are used as unlabelled data. Labelled training data are
only from a subset of the GeWEC whispered data. Note that the
remaining whispered data are excluded in the training phase.
In total, we consider five semi-supervised learning tasks with
50, 100, 200, 500, 640 (all whispered data) labelled training
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Best UAR over ten trials obtained by our proposed methods under semi-matched and matched conditions with labelled data from the AEC training set.

Semi-matched conditions: (SS-AE and SS-AE-Skip) on the AEC test set with unlabelled data from various combinations of the AEC training set, ABC, EMO,
and SUSAS. Matched conditions: SS-AE (AEC) and SS-AE-Skip (AEC) are trained with unlabelled data from the AEC training set.

data. The experimental setup shown in Section IV-C is adopted.
Since the GeWEC dataset is quite small, we apply five-fold val-
idation to hyper-parameter tuning. Each experiment is repeated
10 times with different seeds for parameter installation and data
selection.

In comparison with the state-of-the-art models, three mod-
ern methods, including a supervised leaning method, SVM, two
transfer learning methods, DAE and uLSIF, are considered. In
the experiments, they are trained on the whole labelled whis-
pered examples while tested on the normal speech data.

Fig. 3 presents all the experimental results for ABC, EMO,
and SUSAS with several combinations. The previous reported
UAR obtained by using the Modified Group Delay (MGD) fea-
tures with SVMs [48] is given Fig. 3 as well. As shown in Fig. 3,
SVM and MGD achieve a 53.4% UAR and a 54.8% UAR while
uL.SIF and DAE achieve an average UAR of 49.2 £ 0.1% and
53.1 £ 1.7%, respectively. On the other hand, our proposed
semi-supervised learning methods, SS-AE and SS-AE-Skip,
have comparable performance to other methods when only 50

labelled examples are available. This suggests that our proposed
methods have the powerful capability to incorporate the prior
knowledge of the unlabelled normal speech phonated data into
learning, thus improving the recognition performance. Besides,
SS-AE and SS-AE-Skip also consistently benefit from the in-
crease in the number of the labelled data. When the whole
whispered data (i. e., 640 examples) are used as labelled train-
ing data and the EMO data servers as unlabelled training data,
SS-AE-Skip gets the best average UAR of 63.6 &= 1.4%, which
yields 8.8% absolute improvement when compared to MGD.
This improvement has a high statistical significance at the 0.001
level. It can also be found that SS-AE-Skip generally outper-
forms SS-AE in performance, emphasising the benefit of skip
connections once again.

VII. DISCUSSION

Despite remarkable advances in speech emotion recognition,
the ability of previous emotion recognition engines to deliver
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EMO, and SUSAS. We compare our methods with results from the supervised learning method, SVM, two transfer learning methods, DAE and uLSIF, and the

MGD method [48].

good performance comes at the cost of the large number of la-
belled speech data, even in state-of-the-art systems built from
deep learning approaches. Acquiring a lot of labelled speech
data is a tedious and time-consuming process that prevents
speech emotion recognition from embracing the vast amount
of data from the Internet. For this reason, we have striven to
perform semi-supervised learning for speech emotion recogni-
tion, aiming to open up the possibility of leveraging unlabelled
data. In Sections V and VI, we have shown that our proposed
method using a few labelled data and unlabelled data achieve
competitive results with state-of-the-art supervised learning ap-
proaches. Furthermore, we have extensively tested the applica-
bility of our proposed deep semi-supervised learning framework
in various situations, ranging from different number of labelled
data (see Section V-A), through different speech data obtained
from different devices and varied recording conditions (see Sec-
tion V-E), and different base autoencoders (see Section V-C),
to different acoustic features (see Section V-D). The present
method performs favourably in each experiment, substantiating
the claim that the proposed framework increases the robustness
to complex variations among the unlabelled and labelled speech
emotional data (see Section III-D).

VIII. CONCLUSIONS AND OUTLOOK

Unlike previous research focusing on unsupervised learning
with autoencoders for speech emotion recognition, this paper
focuses on semi-supervised learning with autoencoders. Specif-
ically, we put the considerable emphasis on combining genera-
tive and discriminative training, by presenting semi-supervised
learning algorithms tailored to settings where unlabelled data
are available. The proposed methods have been systematically
evaluated with five databases in various settings. The experi-
mental results demonstrate that the proposed methods clearly
improve recognition performance by learning the prior knowl-
edge from unlabelled data in situations with a small number
of labelled examples. Furthermore, the proposed methods can
overcome the difficulties in mismatched settings and incorporate
the knowledge from several different domains into the classi-
fiers, eventually resulting in state-of-the-art performance. This
indicates that the present model is capable of making good use
of the combination of labelled and unlabelled data for speech
emotion recognition.

More recently, the residual neural network showed that very
deep architectures make the classifier advantageous to extract
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complex structure in image processing [45]. Thus a future line of
research will be to construct very deep semi-supervised learning
algorithms for speech emotion recognition. Other future work
includes to study how to extend our proposed semi-supervised
autoencoders to Recurrent Neural Networks (RNNs), such as
Long Short-Term Memory RNNs [65]. This will benefit from the
current powerful RNN model for effective sequence learning.
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