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ABSTRACT

The multimodal recognition of eating condition – whether a person
is eating or not – and if yes, which food type, is a new research
domain in the area of speech and video processing that has many
promising applications for future multimodal interfaces such as
adapting speech recognition or lip reading systems to different
eating conditions. We herein describe the ICMI 2018 Eating Anal-
ysis and Tracking (EAT) Challenge and address – for the first
time in research competitions under well-defined conditions – new
classification tasks in the area of user data analysis, namely audio-
visual classifications of user eating conditions. We define three
Sub-Challenges based on classification tasks in which participants
are encouraged to use speech and/or video recordings of the audio-
visual iHEARu-EAT database. In this paper, we describe the dataset,
the Sub-Challenges, their conditions, and the baseline feature ex-
traction and performance measures as provided to the participants.
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1 INTRODUCTION

To date, there is an increasing interest in monitoring automatically
eating and drinking patterns using a diverse range of information
streams such as audio and video signals [7, 18, 26], accelerome-
ters [31], piezoelectric strain gauge sensors capable of detecting
skin motion in the lower trachea [1] or movement of the lower
jaw [21], or also by acoustic sounds of chewing [14, 15], or swallow-
ing [2, 16, 22]. In this context, we proposed the audio only Eating
Condition (EC) Sub-Challenge in the INTERSPEECH 2015 Compu-
tational Paralinguistics Challenge (Interspeech 2015 ComParE) [26]
and herein introduce our first, open, audio-visual challenge, namely
the ICMI 2018 Eating Analysis and Tracking (EAT) Challenge.
We proposed three Sub-Challenges, where participants could con-
tribute based on classification tasks in which participants were
encouraged to use speech and/or video recordings:

(1) Food-type Sub-Challenge: Perform a seven-class food clas-
sification per utterance

(2) Likability Sub-Challenge: Recognise the speaker’s lika-
bility of each food type

(3) Chewing and Speaking Difficulty Sub-Challenge:
Recognise the level of difficulty to speak while eating.

Participants performed one or more of these Sub-Challenges. For
all Sub-Challenges, a target class label had to be predicted per clip,
where each file contained one full speech utterance.

The challenge data itself contained audio, video, and meta-data.
The meta-data was composed of speaker identity, age, and gender.
The participants were welcome to use any combination of modali-
ties. They could employ their own features and machine learning
algorithms; however, a standard feature set was provided that may
be used for both audio and video data. Baseline predictions as well
as the baseline code in the three Sub-Challenges were provided.
Participants had to adhere to the pre-defined training/test splits
and as these sets were speaker independent, test data could not
be used for training purposes. Participants were encouraged to
report development results obtained from the training set (prefer-
ably with the supplied evaluation setups), but had only a limited
number of five trials to upload their results on the test sets for
the Sub-Challenges, whose labels were unknown to them. Each
participation had to be accompanied by a paper presenting the
results, which underwent a double-blind peer-review and had to be
accepted for the conference in order to participate in the Challenge.
The organisers preserved the right to re-evaluate the findings, but
did not participate themselves in the Challenge.
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As evaluation measures, for the Food-type and Likability Sub-
Challenges, we employed Unweighted Average Recall (UAR, i. e.,
the average of the class-specific recall values), especially because it
is more adequate for (more or less unbalanced) multi-class classifi-
cations than Weighted Average Recall (i. e., accuracy) and has been
successfully applied for the Eating Condition (EC) Sub-Challenge
in the earlier organised Interspeech 2015 ComParE Challenge [26].
For the Chewing and Speaking Difficulty Sub-Challenge, we
made use of the Concordance Correlation Coefficient (CCC) [12], as
it is a compromise between the mean squared error and the (linear)
Pearson’s Correlation Coefficient and is widely used to evaluate
regression tasks [20]. In preliminary experiments on the iHEARu-
EAT dataset, we found that the results are more meaningful and
consistent between the training set and the test set using CCC over
rank correlation, even when evaluated on single speakers.

In the following we will introduce the challenge corpora, the
baseline experiments and the baseline results.

2 DATASET

For the ICMI 2018 EAT Challenge, the audio-visual iHEARu-EAT
databasewas used [7], whichwas partly featured as a Sub-Challenge
of the Interspeech 2015 ComParE Challenge [26].

For the iHEARu-EAT database, 30 speakers were recorded in
a quiet, low reverberant office room. Out of those 30 speakers, 15
speakers are female and 15 male, with a mean age of 26.1 years
(standard deviation: 2.7 years). 27 of the speakers are German na-
tive speakers; one is Chinese, one is Indian, and one has a Tunisian
origin, but they have a close-to-native competence in German. Prior
to the actual recording, speakers performed practice trials to fa-
miliarise themselves with the recording procedure. None of the
speakers reported significant speech impediments.

It was decided for food classeswith partly similar consistency (for
instance, crisps and biscuits) and partly dissimilar consistency (for
instance, nectarine vs crisps). Moreover, the food classes represent
snacks which are likely to be encountered in practical scenarios and
enable the speakers to speak while eating. In order to control for
the amount of food being consumed, and in particular to encourage
speakers to actually eat while speaking, an assistant provided the
speakers with a serving of fixed size prior to the recording of each
utterance. The assistant was sitting behind an opaque screen to
ensure that the speakers felt unobserved while they were eating and
speaking. The serving size was chosen such as to enable a significant
effect on the speaker’s speech. The speakers were advised not to
eat food during the experiment if they are allergic to or they did
not like to eat for any other reason.

Both read and spontaneous speech were recorded. For the read
speech, the German version of the standard text “The North Wind
and the Sun” (“Der Nordwind und die Sonne”) was chosen, which
is frequently used in phonetics, as it is phonetically balanced. It
contains 108 words (71 distinct) with 172 syllables [6]. The speakers
had to read the whole text with each sort of food. Spontaneous
speech was elicited by prompting speakers to briefly comment on,
e. g., their favourite travel destination, genre of music, or sports
activity. A typical session of one speaker lasted about one hour.

After the recordings, the speakers were asked to self-report on
how much they like each sort of food they were eating during the

Table 1: Statistics of the iHEARu-EAT database: Number of

instances per class in the train/test split used for the ICMI

2018 EAT Challenge.

# Train Test Σ

No Food 140 70 210
Apple 140 56 196
Nectarine 133 63 196
Banana 140 70 210
Crisp 140 70 210
Biscuit 133 70 203
Gummi bear 119 70 189

Σ 945 469 1 414

experiment. This was achieved by setting a continuous slider to
a value ranging between 0–dislike extremely and 1–like extremely.
For the ICMI 2018 EAT Challenge, the likability labels have been
mapped to two discrete values (‘Neutral’, ‘Like’) finding a suit-
able threshold by investigating the distribution and clusters of the
ratings. For the ‘NoFood’ eating condition, the label was set to
‘Neutral’1. ‘Disliking’ did not appear in the data as speakers did not
eat the corresponding food in the first place. Furthermore, speakers
were asked to specify on a 5-point Likert scale the difficulties they
encountered in eating each sort of food while speaking.

Afterwards, the recordings were segmented into units resem-
bling speaker turns (the six pre-defined read sentences, or responses
to the spontaneous speech prompts). The speaker turns were seg-
mented manually, in order to remove parts with only ‘eating noise’,
which could make the classification task too easy. All in all, 1.4 k
turns and 2:53 hours of speech were recorded. By construction,
1/7 of the speaker turns contained spontaneous speech. Note that
there was a slight difference in the amount of utterances per class,
because some speakers chose not to eat all the types of food.

Conforming with the Interspeech 2015 ComParE Sub-Challenge,
the data were split speaker-independently into a training set (20
speakers) and test set (10 speakers), stratified by age and gender.
Classification was done per speaker turn. The resulting numbers of
instances per class and set are shown in Table 1.

3 EXPERIMENTS AND RESULTS

3.1 Crossmodal Bag-of-Words

In our first baseline script, we provided a crossmodal bag-of-words
(XBOW) [25] approach. This approach combines the well-known
bag-of-audio-words (BoAW) and bag-of-visual-words (BoVW) repre-
sentations of numeric descriptors. In those approaches, the low-
level descriptors (LLDs), i. e., frame-level features extracted from an
audio or video clip, are assigned to template audio/visual ‘words’
and a term-frequency histogram is generated. The template assign-
ment step can be seen as a vector quantisation by choosing always
the template with the lowest Euclidean distance. It was found, how-
ever, that assigning not only the closest, but theNa closest templates,
can improve the BoAW method [24]. This is sometimes referred to
as multiple assignments. Finally, term-frequency weighting of the
histogram values is usually applied, e. g., by a logarithmic weighting
or inverse-document frequency weighting [19].
1‘NoFood’ instances could not be removed as the data must be kept constant between
the three Sub-Challenges.
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The resulting – fixed-length – feature vector was then the input
of a machine learning algorithm, in our case, a support vector ma-
chine (SVM). For the generation of the codebook of templates, we
used a random sampling of the LLDs in the training set. As acoustic
LLDs, we applied the ComParE feature set that has been employed
successfully in many paralinguistic speech recognition tasks during
the last few years [27]. It contains spectral, cepstral, prosodic, and
voice quality features, in total 65 LLDs, extracted from audio frames
(20ms-60ms) with a hop size (shift) of 10ms. As visual features, we
used 68 facial landmarks. Facial landmarks describe the location
of significant points in terms of their location within the image,
usually in the two-dimensional pixel plane, even though there are
approaches to estimate also the image depth of the landmarks [3].
These points specify the corners of the eyes, the eyebrows, the
mouth, the location of the eye pupils, and the tip of the nose. The
suitability of the BoAW and the XBOW approaches has already
been shown for the tasks of emotion recognition [20, 24], medical
diagnosis [23], and sentiment analysis [4].

The whole processing chain was reproducible with a script pro-
vided in the challenge package. We utilised only published open-
source tools, more specifically, we used openSMILE [5] for acous-
tic feature extraction, OpenFace [3] for facial landmark extrac-
tion, openXBOW [25] for the generation of XBOW, and Scikit-
learn [17] for training and evaluating the classifiers.

The facial landmarks were normalised on frame-level to be al-
ways in the range between 0 and 1. In our initial experiments, we
found that using only the mouth-related facial landmarks provided
better results and we experienced the tendency of overfitting when
using all facial landmarks. The acoustic LLDs were standardised
to zero mean and unit variance (estimating the parameters from
the training partition) and split into 8 groups, according to their
feature types, and the vector quantisation was done independently
for each group. Besides the number of assignments per frame, the
codebook size, i. e., the number of templates, is an important param-
eter. Results for this optimisation process are shown in Table 2. For
each modality (audio/video), the codebook size was optimised from
200 to 2000. It is important to note that the codebook size applies
to each of the feature groups, so, for the audio domain, the actual
length of the final feature vector is 8 times larger. It was found
beforehand that, for the visual domain, 10 assignments per frame
were more suitable than only 1 assignment per frame, as used for
the audio domain. As a post-processing step, the logarithm was
taken from all term-frequencies in order to compress their range.
Due to the relatively low amount of 20 speakers (10 female, 10male)
in the training set, the complexity of the SVM (with a linear ker-
nel) was optimised using a Leave-One-Speaker-Out Cross-Validation
(LOSO-CV) on the training set, i. e., in each fold, all instances of
one speaker were kept out for evaluation. Finally, the SVM was
trained on all speakers with the complexity [1e−5, 1e−4, . . . , 1e0]
performing best in LOSO-CV.

3.2 End-to-end Learning

For our second approach we utilised Deep Neural Networks (DNNs),
which have been successfully used in the affective computing do-
main [10], and more particularly for emotion recognition [29] [28].

Table 2: Results for the automatic recognition for LOSO-CV

and the Test set with openXBOW (audio/visual) and differ-

ent codebook sizes using SVM (linear kernel) as a classifier.

The complexity was optimised on LOSO-CV for each modal-

ity, task, and codebook size. Audio features have been stan-

dardised, the number of assignments is 1. For the video fea-

tures, the number of assignments is 10. A logarithmic term
frequency weighting was used for both modalities. Results

for Food Type and Likability are in terms of UAR, results

for Difficulty are in terms of CCC.

Food Type Likability Difficulty

Audio LOSO Test LOSO Test LOSO Test

200 58.6 % 65.6 % 64.8 % 51.7 % .439 .506
400 63.1 % 66.8 % 64.0 % 50.9 % .432 .482
600 61.5 % 68.3 % 64.6 % 51.5 % .455 .530
800 63.1 % 66.7 % 64.5 % 50.6 % .446 .500
1000 63.7 % 67.1 % 64.7 % 49.8 % .440 .503
1200 64.3 % 67.2 % 66.5 % 54.2 % .451 .515
1400 63.5 % 68.2 % 65.7 % 52.2 % .470 .506

1600 63.5 % 67.1 % 65.7 % 53.5 % .466 .505
1800 63.8 % 66.7 % 65.4 % 53.0 % .466 .510
2000 63.1 % 68.1 % 65.3 % 53.4 % .469 .505

Video LOSO Test LOSO Test LOSO Test

200 26.4 % 25.5 % 55.6 % 56.1 % .246 .252

400 27.1 % 27.7 % 54.6 % 59.9 % .198 .250
600 27.4 % 27.3 % 55.4 % 53.8 % .199 .250
800 26.8 % 27.2 % 54.4 % 59.1 % .232 .272
1000 28.0 % 27.0 % 53.9 % 62.2 % .244 .229
1200 27.4 % 25.9 % 55.9 % 58.3 % .238 .246
1400 27.7 % 26.7 % 54.4 % 55.3 % .230 .235
1600 27.8 % 27.9 % 54.2 % 56.0 % .173 .236
1800 26.7 % 28.0 % 54.4 % 57.9 % .181 .263
2000 26.0 % 27.2 % 53.8 % 57.3 % .176 .268

Most popular architectures are the Convolutional Neural Net-
works (CNNs) [13], which are used to extract features, and the
Long Short-Term Memory (LSTM) [9] models, which are a type
of Recurrent Neural Networks (RNN) and can capture the dynam-
ics in sequential data. For our purposes we applied DNNs in an
end-to-end manner, i. e., using raw input information. In many ap-
plications such as emotion recognition it is important to consider
inputs from different modalities (e. g., audio, visual, or physiology)
as each modality provides complementary information to the task.
For our purposes, we experimented with both unimodal and mul-
timodal input. To this end, we utilised the End2You toolkit [30]
which provides capabilities for multimodal profiling by end-to-end
deep learning. More particularly, the modalities we used are audio,
video, and audiovisual. In order to try to enhance the performance
of the models, we incorporated landmarks to our models. A short
description of each of the models is now provided:

Preprocessing. Before feeding the data to the models, they were
preprocessed so as to speed up their training. For the visual frames
we changed the range of the pixels from [0, 255] to [0, 1] by dividing
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their intensity values by 255. For the audio part, we first downsam-
pled the signal from the original sampling rate of 44.1 kHz to 16 kHz
and we formed audio frames of length 33ms (a 528-dimensional
vector) to match the visual frame rate.

Audio Model. Our audio model was comprised by two layers. The
first layer extracts features from the raw signal using CNNs with 40
filters of size 20 and a max-pooling layer of size 2. The second layer
extracts higher abstraction features with a CNN with 40 filters of
size 40 and a max-pooling layer of size 10. A 2-layer LSTM of 256
units was used on top to capture the contextual information.

Visual Model. For the extraction of features from the visual
domain we utilised residual networks and more particularly the
ResNet-50 [8], which has been used extensively in the computer
vision domain. A 2-layer LSTM of 256 units was used on top of the
model to capture the contextual information in the data.

Audiovisual Model. Our audiovisual model was comprised by
both the audio and visual models that were used to extract features
from the audio and visual information, respectively. The extracted
features were then concatenated to form a multimodal feature vec-
tor, which was subsequently passed to a 2-layer LSTM of 256 units.

Incorporating Landmarks. As it is possible to incorporate land-
marks to the aforementioned models, this was accomplished by con-
catenating the landmarks to the extracted features of each model,
before passing them to the LSTM module.

Before training our models we extracted a quarter of examples
from the training set to create a validation set. The instances of
each set were selected so that a speaker belongs to one of them but
not both. Our models were trained using the Adam optimiser [11]
and a fixed learning rate of 10−3 throughout all experiments. The
loss function used is the softmax cross entropy loss. Due to memory
limitations the batch size varied in our experiments from 1 to 5.

3.3 Challenge Baselines

The obtained baseline results are shown in Table 3. For each task, the
modality (audio/video) or the crossmodal system performing best
on the test set has been selected as the official baseline (in bold). The
BoAW approach outperformed the end-to-end audio-only approach
in all three tasks. For the Food Type and the Difficulty tasks, this
was also the method performing best on the test set. For Likability,
the BoVW provided a larger UAR on the test set. The results show
that an early fusion of the audio and the visual domain (XBOW)
did not increase the performance. However, the hyperparameters
of the BoAW and BoVW have been tuned independently, so far.
Moreover, exploiting both domains could have lead to better results
using a late fusion of the unimodal systems.

Furthermore, Table 3 outlines the best results obtained using
end-to-end deep learning models. Note that the validation set con-
tained 5 out of the total 20 speakers and it could be automatically
extracted from the training set using the provided baseline scripts.
The audio model provided better results than the visual one in all
of the Sub-Challenges. This was expected as the ResNet-50 we used
requires a large amount of data to be trained efficiently, which
was not the case in our dataset. However, the visual model did
provide performance gains when it was combined with the audio
one. Incorporating landmarks in our models slightly benefited their
performance, except for the Difficulty task. Table 3 depicts only
the best results.

Table 3: Baseline results for all tasks and modalities. The of-

ficial baselines are highlighted. Results for Food Type (7-

classes) and Likability (2-classes) are in terms of UAR, re-

sults for Difficulty (regression) are in terms of CCC.

Modality openXBOW End2You

LOSO Test Dev Test

Task 1 – Food Type

Audio-only 64.3 % 67.2 % 35.2% 32.8%
Video-only 28.0 % 27.0 % 27.1% 24.5%
Audio+Video 63.9 % 67.0 % 34.8% 33.6%

Task 2 – Likability

Audio-only 66.5 % 54.2 % 55.1% 53.7%
Video-only 55.9 % 58.3 % 52.9% 50.9%
Audio+Video 65.5 % 51.8 % 55.1% 54.2%

Task 3 – Difficulty

Audio-only .470 .506 .342 .323
Video-only .246 .252 .264 .220
Audio+Video .481 .501 .345 .311

Results obtained using end-to-end deep learning did not outper-
form the results from the crossmodal bag-of-words method. The
main reason for this was the limited number of training samples
that did not allow to train efficiently the feature extractors (audio
and visual). In addition, the length of the videos was high (200
to 400 frames) which provided extra difficulties to train the RNN,
which had to be fully unrolled before making the prediction.

4 CONCLUDING REMARKS

This first, open, audio-visual challenge under strictly comparable
conditions, namely the ICMI 2018 Eating Analysis and Track-
ing (EAT) Challenge, brought three new fields of research: (i)
Food-type Sub-Challenge – Perform seven-class food classifica-
tion per utterance; (ii) Likability Sub-Challenge – Recognise
the speaker’s likability of each food type; and (iii) Chewing and
Speaking Difficulty Sub-Challenge – Recognise the level of
difficulty to speak while eating. Herein, we featured state-of-the-art
end-to-end learning baselines and the popular openXBOW toolkit.

Yet, feature sets and learning procedures were standard but not
optimised and kept generic across the tasks, despite their obvi-
ous differences. For all computation steps, baseline and evaluation
scripts were provided that could, but did not needed to be used by
the participants. We expected participants to obtain considerably
better performance measures by employing novel (combinations
of) procedures and features including such tailored to the particular
Sub-Challenges.
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