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Abstract
The INTERSPEECH 2018 Computational Paralinguistics Chal-
lenge addresses four different problems for the first time in
a research competition under well-defined conditions: In the
Atypical Affect Sub-Challenge, four basic emotions annotated
in the speech of handicapped subjects have to be classified; in
the Self-Assessed Affect Sub-Challenge, valence scores given
by the speakers themselves are used for a three-class classifi-
cation problem; in the Crying Sub-Challenge, three types of
infant vocalisations have to be told apart; and in the Heart Beats
Sub-Challenge, three different types of heart beats have to be
determined. We describe the Sub-Challenges, their conditions,
and baseline feature extraction and classifiers, which include
data-learnt (supervised) feature representations by end-to-end
learning, the ‘usual’ ComParE and BoAW features, and deep
unsupervised representation learning using the AUDEEP toolkit
for the first time in the challenge series.
Index Terms: Computational Paralinguistics, Challenge, Atypi-
cal Affect, Self-Assessed Affect, Crying, Heart Beats

1. Introduction
In this INTERSPEECH 2018 COMPUTATIONAL PARALIN-
GUISTICS CHALLENGE (COMPARE) – the tenth since 2009 [1],
we address four new problems within the field of Computational
Paralinguistics [2] in a challenge setting: In the Atypical Affect
(A) Sub-Challenge, four basic emotions annotated in the speech
of people with disabilities have to be classified. A possible appli-
cation is a speech-driven, emotionally sensitive assistance system
to support disabled individuals. In the Self-Assessed Affect (S)
Sub-Challenge, valence scores given by speakers themselves
are used for a three-class classification task. These experiments
want to lay the ground for applications that support individuals
with affective disorders and monitor synchronisation between
therapists and clients. In the Crying (C) Sub-Challenge, three
mood-related types of infant vocalisation have to be told apart:

neutral/positive, fussing, and crying. This allows automatic
(mood) monitoring of babies not only for research purposes, but
also for clinical or home applications (‘intelligent baby-phone’).
Finally, in the Heart Beats (H) Sub-Challenge, normal, mild,
and moderate/severe types of heart beats have to be classified.
By including these acoustic – albeit non-vocal – signals, we con-
tribute to heart sound analysis [3]; applications are self-evident,
e. g., the monitoring of patients with unclear symptoms.

For all tasks, a target value/class has to be predicted for each
case. Contributors can employ their own features and machine
learning algorithms; standard feature sets and procedures are
provided that may be used. Participants have to use predefined
training/development/test splits for each Sub-Challenge. They
may report development results obtained from the training set
(preferably with the supplied evaluation setups), but have only a
limited number of five trials to upload their results on the test sets
per Sub-Challenge, whose labels are unknown to them. Each
participation must be accompanied by a paper presenting the
results, which undergoes peer-review and has to be accepted
for the conference in order to participate in the Challenge. The
organisers preserve the right to re-evaluate the findings, but will
not participate in the Challenge. As evaluation measure, we
employ Unweighted Average Recall (UAR) as used since the
first Challenge held in 2009 [1], especially because it is more
adequate for (more or less unbalanced) multi-class classifications
than Weighted Average Recall (i. e., accuracy). Ethical approval
for the studies has been obtained from the pertinent committees.
In the next section 2, we describe the challenge corpora. Section
3 details the baseline experiments and metrics as well as the
baseline results; concluding remarks are given in section 4.

2. The Four Sub-Challenges
2.1. The Atypical Affect (A) Sub-Challenge

For the EmotAsS (EMOTional Sensitivity ASsistance System
for people with disabilities) database [4], 15 mentally, neuro-
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logically, and/or physically disabled individuals were recorded
in a familiar room at their workplace while speaking about their
personal and health issues, including their form of disability: 8 f,
7 m; age 20-58 years; mean age 33 years; std. dev. 11.8 years;
12 mentally and 2 neurologically disabled, 1 with multiple dis-
abilities. Due to strict ethical restrictions, no further details on
the disabilities can be given. Audio was recorded with a Zoom
H6 and a Jabra Speak 510 microphone, both at 44.1 kHz, 24 bit
in mono. A recording setup was developed in order to avoid
undue stress. An experimental supervisor, an occupational thera-
pist, and a psychologist were sitting next to the participants all
the time to communicate and help them through the five tasks:
(i) describing images, e. g., from persons, beaches, or catastro-
phe scenes; (ii) talking on specific topics (e. g., their favourite
travel destination, or sports activity); (iii) telling a story of a
picture book; (iv) answering questions about professional life;
and (v) playing together games like “Ludo (Do not get angry)”.
A typical session did not last more than one hour and the par-
ticipants could make a break whenever needed. Overall, 10 627
segmented chunks representing 9.2 hours of speech were col-
lected. The data were annotated on average by 12 volunteering
annotators using the gamified crowdsourcing platform iHEARu-
PLAY1 [5]. The labellers had to choose between the six basic
emotions (anger, disgust, fear, happiness, sadness, and surprise)
and neutral. Since only very few chunks were annotated as
disgust, fear, and surprise, these chunks were discarded.

2.2. The Self-Assessed Affect (S) Sub-Challenge

According to Russell’s theory of a core affect [6], every emo-
tional state is a combination of valence and arousal values. These
aspects of the core affect influence attention [7], perception [8],
cognition, judgement [9], memory retrieval and behaviour [10],
i. e., the state of mind. The general principle is mood congru-
ency; positive core affect shifts attention to positive material,
negative core affect to negative material, and vice versa [11].
The aim of the Ulm State-of-Mind in Speech (USoMS) corpus
and study is to distinguish state of mind, more specifically core
affect via valence in free speech. From the 127 students recorded,
due to technical reasons or subjects’ withdrawal, 100 remained
(85 f, 15 m, age 18-36 years, mean 22.3 years, std. dev. 3.6 years).
Audio was captured in Stereo, converted to mono, at 44.1 kHz,
32 bit, and manually cleaned. The students told two negative
and two positive stories (‘narratives’), each with a duration of
some 5 min. Before recording, and after each narrative, they self-
assessed valence and arousal on a 10-point Likert scale. This
yields global scores, given for a certain period of time where
emotions surely fluctuate [12]; more fine-grained attentional
shifts towards emotions would, however, change the subject’s
perception [13]. Valence has been chosen as the most relevant
domain of interest for this task. Segments of 8 seconds each
were selected from the cleaned recordings in a semi-automatic
way. This resulted in 2 313 chunks. To create the three-class clas-
sification task, the raw values for the five self-assessed valence
scores have been mapped onto (i) (L)ow: 0-4, (ii) (M)edium:
5-7, (iii) (H)igh: 8-10.

2.3. The Crying (C) Sub-Challenge

The Cry Recognition In Early Development (CRIED)
database comprises 5 587 vocalisations of 20 healthy infants
(10 f, 10 m, no pre-terms) recorded within a study on postnatal
neuro-functional and neuro-behavioural changes and adaptations

1https://www.ihearu-play.eu

[14]. In a multi-device setup, the infants were recorded 7 times in
bi-weekly intervals, with the first assessment at 4 weeks and the
last one at 16 weeks of age (post-term). All vocalisations were
extracted from sequences of up to 5 minutes in duration in which
the infants were awake, lying in supine position in a cot. During
these sequences, the infants were not exposed to external stimuli
or manipulation. The CRIED corpus is based on audio-video
recordings with a standard HD camcorder (Panasonic HC-V707)
stored in MPEG-4 format (audio: 2 channels (LR), 44.1 kHz,
AAC (LC)). The camcorder was mounted 0.8 m above the foot
of the cot. Vocalisation segmentation was based on the con-
cept to assign a vocalisation to a distinct vocal breathing group
[15]. Vegetative sounds, such as breathing sounds, smacking
sounds, hiccups, etc., were not segmented and thus not included
in the dataset. The data has been partitioned into two splits:
one partition (train-LOSO) for training and optimisation of the
models’ hyperparameters through a leave-one-subject-out cross-
validation (LOSO) and a test partition. The vocalisations of both
partitions were categorised into the following three classes: (i)
neutral/positive mood vocalisations (2 292 cases in train-LOSO),
(ii) fussing vocalisations (368 cases in train-LOSO), and (iii)
crying vocalisations (178 cases in train-LOSO). The categorisa-
tion process was done on the basis of audio-video clips by two
experts in the field of early speech-language development.

2.4. The Heart Beats (H) Sub-Challenge

The Heart Sounds Shenzhen (HSS) corpus, provided by the
Shenzhen University General Hospital, comprises heart sounds
gathered from 170 subjects (55 f, 115 m; ages from 21 to 88
years (mean age 65.4 years, std. dev. 13.2 years) with varied
health conditions (including coronary heart disease, heart failure,
arrhythmia, hypertension, hyperthyroid, valvular heart disease,
congenital heart disease, etc.). Audio was recorded in .wav for-
mat, using an Electronic Stethoscope (Eko CORE, USA) set up
via Bluetooth 4.0, with a 4 kHz sampling rate and a 20 Hz–2 kHz
frequency response, in four locations on the body, i e., ausculta-
tory mitral, aortic valve auscultation, pulmonary valve ausculta-
tion, and auscultatory areas of the tricuspid valve. In each area,
a duration of 30 seconds on average within [29.808 s; 30.152 s]
in a sitting or supine position of the subjects was recorded, re-
sulting in 845 recordings representing 422.82 min from the 170
participants.

Three classes have to be recognised: (i) normal, (ii) mild,
and (iii) moderate/severe (heart disease), as diagnosed by physi-
cians specialised in heart disease. Annotations were confirmed
by echocardiography (i. e., cardiac ultrasound). The record-
ings were split into subject-independent train/development/test
sets. We aimed at an approximately equal distribution of gender,
class, and age according to three age groups: (i) 21-36 years, (ii)
37-62 years, and (iii) 63-88 years, ending up with 502/180/163
instances for the train/development/test sets collected from
100/35/35 subjects.

3. Experiments and Results
For all Sub-Challenges, except for HSS (unchanged with original
sampling rate of 4 kHz), the segmented and categorised audio
was converted to single-channel 16 kHz, 16 bits PCM format.

3.1. End-to-end Learning

For the second time in the COMPARE challenge, we provide
results using end-to-end learning (e2e) models. An attractive
characteristic of these models is that the optimal features for a
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Table 1: Databases: Number of instances per class in the
train/devel/test splits (or LOSO for CRIED); Test split distri-
butions are blinded during the ongoing challenge.

# Train Devel Test Σ
Emotion-sensitive Assistance Systems (EmotAsS)
Angry 125 50 272 447
Happy 743 965 650 2 358
Neutral 2 287 2 842 2 024 7 153
Sad 187 329 153 669
Σ 3 342 4 186 3 099 10 627
Ulm State-of-Mind in Speech (USoMS)
Low (l) 95 79 75 249
Medium (m) 388 310 353 1 051
High (h) 363 353 297 1 013
Σ 846 742 725 2 313
Cry Recognition In Early Development (CRIED)
Neutral/positive (0) 2 292 2 172 4 464
Fussing (1) 368 441 809
Crying (2) 178 136 314
Σ 2 838 2 749 5 587
Heart Sounds Shenzhen (HSS)
Normal (0) 84 32 28 144
Mild (1) 276 98 91 465
Moderate/Severe (2) 142 50 44 236
Σ 502 180 163 845

given task can be learnt purely from the data at hand, i. e., we
aim to learn simultaneously the optimal features and the clas-
sifier in a single optimisation problem. Similar to [16], we use
a convolutional network to extract features from the raw time
representation and then a subsequent recurrent network with
Gated Recurrent Units (GRUs) which performs the final classi-
fication. For training the network, we split the raw waveform
into chunks of 40 ms each. These are fed into a convolutional
network comprised by a series of alternating convolution and
pooling operations which try to find a robust representation of
the original signal (cf. participant scripts). The extracted features
are then fed to M GRU modules (cf. Table 2) which compress
the temporal signal to a single final hidden state of the recurrent
network which is then used to perform the final classification.
For our purposes the END2YOU toolkit was utilised [17]2.

3.2. COMPARE Acoustic Feature Set

The official baseline feature set is the same as has been used
in the five previous editions of the INTERSPEECH COMPARE
challenges. This feature set contains 6 373 static features result-
ing from the computation of various functionals over low-level
descriptor (LLD) contours [18]. The configuration file is the
ComParE_2016.conf, which is included in the 2.3 public release
of OPENSMILE [19, 20]. A full description of the feature set
can be found in [21].

3.3. Bag-of-Audio-Words

In addition to the default ComParE feature set, where functionals
(statistics) are applied to the acoustic LLDs, we provide Bag-
of-Audio-Words (BoAW) features. BoAW has already been
applied successfully for, e. g., acoustic event detection [22],
speech-based emotion recognition [23], and classification of

2A detailed implementation of these models can be found at
https://github.com/end2you/end2you

snore sounds [24]. Audio chunks are represented as histograms
of acoustic LLDs, after quantisation based on a codebook. One
codebook is learnt for the 65 LLDs from the COMPARE feature
set and one for the 65 deltas of these LLDs. In Table 2, results
are given for different codebook sizes. Codebook generation is
done by random sampling from the LLDs in the training data.
When fusing training and development data for the final model,
the codebook is learnt again from the fused data. The LLDs have
been extracted with the OPENSMILE toolkit, BoAW have been
computed using OPENXBOW [25].

3.4. AUDEEP

Another feature set is obtained through unsupervised representa-
tion learning with recurrent sequence to sequence autoencoders,
using the AUDEEP toolkit3 [26]. Representation learning com-
monly requires less human intervention than manually engineer-
ing a feature set such as the COMPARE acoustic feature set.
The recurrent sequence to sequence autoencoders which are em-
ployed by AUDEEP, in particular, explicitly model the inherently
sequential nature of audio with RNNs within the encoder and
decoder networks [27, 26]. In the AUDEEP approach, Mel-scale
spectrograms are first extracted from the raw waveforms in a
data set. In order to eliminate some background noise, power
levels are clipped below four given thresholds in these spectro-
grams, which results in four separate sets of spectrograms per
data set. Subsequently, a distinct recurrent sequence to sequence
autoencoder is trained on each of these sets of spectrograms in
an unsupervised way, i. e., without any label information. The
learnt representations of a spectrogram are then extracted as fea-
ture vectors for the corresponding instance. Finally, these feature
vectors are concatenated to obtain the final feature vector. For
the results shown in Table 2, the autoencoders’ hyperparameters
were not optimised.

3.5. Challenge Baselines

The primary evaluation measure for the Sub-Challenges (all be-
ing classification tasks) is Unweighted Average Recall (UAR).
The motivation to consider unweighted rather than weighted
average recall (‘conventional’ accuracy) is that it is also mean-
ingful for highly unbalanced distributions of instances among
classes (as is the case for all four Sub-Challenges of this year).

For the sake of transparency and reproducibility of the base-
line computation and in line with the previous years, we use an
open-source implementation of Support Vector Machines (SVM)
with linear kernels and Sequential Minimal Optimisation (SMO)
[28] as training algorithm from WEKA 3 (revision 3.8.2) [29]
for the classification based on functionals, BoAW, and AUDEEP
features. Features were scaled to zero mean and unit standard
deviation (option -N 1 for Weka’s SMO), using the parameters
from the respective training set (when multiple folds where used
for development, the parameters were calculated on the training
set of each fold). For all tasks, the complexity parameter C was
optimised during the development phase.

Each Sub-Challenge package includes scripts that allow
participants to reproduce the baselines and perform the testing
in a reproducible and automatic way (including pre-processing,
model training, model evaluation, and scoring by the competition
and further measures).

This year, we provide the four above outlined approaches to
computational paralinguistics: besides the usual COMPARE fea-
tures plus SVM, we employ for the second time e2e and BoAW

3https://github.com/auDeep/auDeep
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Table 2: Results for the four Sub-Challenges. The official base-
lines for test are highlighted (bold and greyscale). Dev: Devel-
opment. LOSO: Leave-one-subject-out; for e2e, 3 subjects were
held out as a validation partition instead of using the LOSO split
used with the other approaches. M : Number of LSTM layers
in end-to-end (e2e) learning. C: Complexity parameter of the
SVM. N : Codebook size of Bag-of-Audio-Words (BoAW) split-
ting the input into two codebooks (ComParE-LLDs/ComParE-
LLD-Deltas), with 10 assignments per frame, optimised complex-
ity parameter of SVM. X: Power levels which are clipped below
four given thresholds. UAR: Unweighted Average Recall.

UAR [%] Atypical Self-Ass. Crying Heart
Dev/Test Dev/Test Loso/Test Dev/Test

M END2YOU: CNN + LSTM
2 41.8/28.0 49.7/45.8 −/63.5 41.2/37.7
3 40.1/27.9 48.2/46.6 −/61.3 37.5/37.7
C OPENSMILE: COMPARE functionals + SVM
10−6 34.2/41.3 54.2/60.0 72.8/67.3 41.1/44.8
10−5 37.8/43.1 54.2/61.2 75.6/71.9 44.5/45.6
10−4 28.2/38.4 56.5/65.2 67.5/57.5 50.3/46.4
10−3 29.9/35.4 53.9/64.7 67.9/66.1 44.5/40.4
10−2 29.9/33.1 53.9/64.9 74.5/67.6 43.2/41.7
N OPENXBOW: COMPARE BoAW + SVM
250 38.7/36.4 56.5/61.7 75.6/73.2 43.1/43.4
500 40.5/36.5 55.8/59.1 75.9/71.8 42.3/47.2
1000 39.8/38.1 52.5/63.2 76.9/67.7 43.7/41.0
2000 38.1/41.3 51.1/62.2 75.5/69.8 42.6/52.3
4000 37.9/39.2 56.7/60.9 75.4/68.8 39.9/43.3
X AUDEEP: RNN + SVM
−30 dB 32.5/35.4 39.1/46.6 64.4/58.5 34.1/40.3
−45 dB 33.3/33.3 43.5/53.7 74.4/62.1 40.3/40.0
−60 dB 38.1/33.6 48.8/57.0 69.0/68.0 38.3/46.3
−75 dB 39.1/34.9 44.8/54.4 73.2/71.1 34.1/42.1
fused 40.4/35.6 49.9/57.3 70.5/68.6 38.6/47.9
n-best Fusion (Majority Vote)
2-best −/42.9 −/65.4 −/70.4 −/56.2
3-best −/42.0 −/66.0 −/74.6 −/51.1
4-best −/41.0 −/62.2 −/71.3 −/53.0
n-best Fusion (Confidence-based)
2-best −/43.4 −/64.6 −/73.1 −/49.3
3-best −/42.0 −/64.7 −/73.9 −/53.6
4-best −/42.0 −/64.7 −/73.9 −/53.6

plus SVM; additionally, we present novel sequence-to-sequence
autoencoder (AUDEEP) learnt acoustic features, classified with
an SVM. The same way as last year, we choose the highest results
on test for defining the baselines, irrespective of the correspond-
ing results on Dev/LOSO, in order to prevent participants from
surpassing the official baseline by simply repeating or slightly
modifying other constellations that can be found in Table 2. A
fusion of the n-best models has been made in the following two
ways: 1) Majority Vote: The label predicted most often by the
n approaches performing best in the respective Sub-Challenge
and split is considered. In case of a same number of votes for
more than one class, the majority prediction for the whole split is
taken into account. 2) Confidence-based: From the n approaches
performing best in the respective Sub-Challenge and split, the
confidence scores are added together for each class and the class
with maximum confidence sum is considered for each instance.
As the confidence scores obtained by the e2e approach are not
comparable to those of the SVM, the confidence score of e2e
predictions is assumed to be 1.0.
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Figure 1: Confusion matrices of the development set. For each
Sub-Challenge, the individual approach/hyperparameters per-
forming best on the test set has been chosen.

As can be seen in Table 2, for the Atypical Affect Sub-
Challenge, the baseline is UAR = 43.4 %; for the Self-Assessed
Affect Sub-Challenge, it is UAR = 66.0 %, for the Crying Sub-
Challenge, it is UAR = 74.6 %, and for the Heart Beats Sub-
Challenge, it is UAR = 56.2 %. All baselines have been reached
with a fusion of the predictions of 2 or 3 models, respectively.

Figure 1 displays a ‘good’ confusion for Crying (high fre-
quencies in diagonal cells) and the difficulty of the other tasks
(low frequencies in some of the diagonal cells, high frequencies
in some of the off-diagonal cells).

4. Concluding Remarks
This year’s challenge is new in several respects – four new tasks
(Atypical and Self-Assessed Affect, Crying, and Heart Beats, all
of them highly relevant for applications) and a new procedure:
sequence-to-sequence autoencoder-based audio features by the
AUDEEP toolkit using deep learning for audio classification. We
further featured the END2YOU toolkit providing for the second
time end-to-end learning baselines and the popular OPENXBOW
toolkit. For all computation steps, scripts are provided that can,
but need not be used by the participants. We expect participants
to obtain considerably better performance measures by employ-
ing novel (combinations of) procedures and features including
such tailored to the particular tasks.
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