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Abstract
Infant vocalisation analysis plays an important role in the study
of the development of pre-speech capability of infants, while
machine-based approaches nowadays emerge with an aim to ad-
vance such an analysis. However, conventional machine learn-
ing techniques require heavy feature-engineering and refined
architecture designing. In this paper, we present an evolving
learning framework to automate the design of neural network
structures for infant vocalisation analysis. In contrast to manu-
ally searching by trial and error, we aim to automate the search
process in a given space with less interference. This frame-
work consists of a controller and its child networks, where
the child networks are built according to the controller’s es-
timation. When applying the framework to the Interspeech
2018 Computational Paralinguistics (ComParE) Crying Sub-
challenge, we discover several deep recurrent neural network
structures, which are able to deliver competitive results to the
best ComParE baseline method.
Index Terms: infant vocalisation, evolving learning, neural net-
work architecture, speech/voice analysis

1. Introduction
Analysing the mood-related infant vocalisations with daylong
recordings is of importance in the context of pedology [1, 2,
3, 4, 5, 6]. It can benefit at least two groups: child language
development scientists and pediatricians. Several studies have
reported that the ratio of linguistic vocalisations increases along
with the months of age, whereas non-linguistic vocalisation
(e. g., laugh and crying) decrease [7, 4, 6]. Some research also
suggests that the different backgrounds on language and cul-
ture of families, as well as the frequency of interaction between
the infants and their caregivers, have an impact on the develop-
ment of the pre-speech capability of infants through analysing
the infant vocalisation [3, 8]. Besides, the vocalisation analy-
sis highly relates to the healthcare of infants. For example, the
children who suffer from autism disorder have fewer emotional
vocalisations, and even fewer linguistic vocalisations, than nor-
mal ones [5]. The children with severe hearing or voice artic-
ulatory impairment have an obvious delay of language acqui-
sition capability [9]. Apart from the groups at risk, analysing
the mood-related infant vocalisation also helps for tracking the
children’s daily state (e. g., comfortability, pain degree, environ-
ment sensitivity) variation, and assists the caregivers for their
judgement [10, 11, 12]. Despite the necessity for infant vocal-
isation analysis, the conventional analysis process is quite la-
borious and time-consuming, since human annotators or even
linguistic experts are required to manually track the informa-
tion of interests from daylong recordings [7]. For this reason,

automated analysis systems have nowadays attracted increasing
interest in this domain [13]. LENA [14, 13] is one of such a
system that is implemented with Gaussian Mixture Models and
Hidden Markov Models and enables one to automatically dis-
tinguish the linguistic and non-linguistic vocalisations. How-
ever, it is a commercial product and can only be used with its
corresponding hardware.

With the tremendous success of deep learning technolo-
gies in a variety of applications (e. g., computer vision [15, 16],
speech recognition [17, 18], and natural language process-
ing [19]), they are considered to be emerging tools as well to
deal with the present task. To achieve maximal performance, it
is of importance to choose an appropriate network architectures,
especially corresponding parameters. However, how to effi-
ciently determine the network architectures or hyper-parameters
remains an open challenge [20, 21]. The conventional approach
to address this problem involves in a brute-force search. That is,
all the possibilities in the parameter space is browsed and im-
plemented in the learning process. Then, these parameters that
leads to best performance on the development set determines the
final network architecture. Nevertheless, this approach require
high expert experiences and computational cost [20, 21, 22].

To lower the usage barrier of deep learning and reduce the
computational requirement, some efforts have been made in an
automated way to find the optimised parameters [20, 21, 22].
The major advantage of these approaches associates to the fact
that it requires no much knowledge from experts and limited
computational resources, but still is able to achieve reasonable
modelling performance. Among these efforts, Reinforcement
Learning (RL) has been introduced and shown appealing em-
pirical results most recently [20, 23]. For instance, in [20],
the authors regarded the neural network determination process
as a prediction process by using a Recurrent Neural Network
(RNN). The prediction process is awarded if it leads to a bet-
ter result, otherwise, is punished. By repeatedly doing this, it
facilitates the decision process to determine the best performed
network architecture and parameters.

One may note that, most prior studies have focused on dis-
covering Convolutional Neural Network (CNN) architectures
for image classification problems [24, 25, 26]. In the domain
of audio analysis, RNN instead has frequently shown to be effi-
cient, since it is capable of capturing long-range context infor-
mation that is of importance for audio analysis. Automatically
predicting the RNN architectures, however, seems to be missing
to date. To bridge this gap, we in the first time investigate the
feasibility of the RL-based neural network research to design
RNN, in an application of an audio-based problem, i. e., infant
vocalisation analysis.
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Figure 1: Overview of the RL-based network search framework,
which consists of a controller to predict an architecture A from
a search space and a child network with the architecture A to
be trained to achieve a reward R. The reward R is then utilised
to update the controller.

2. Evolving Learning
In the following section, we will first describe how to train a
RNN as a controller to predict the structure of another RNN.
We will then describe how the controller is learnt with a policy
gradient method.

2.1. Generating Architectures with Reinforcement Learn-
ing
The framework of evolving learning for designing architectures
is depicted in Figure 1, which learns from experiences auto-
matically rather than tuning a learner manually by a human ex-
pert. In general, it consists of two components which interact
with each other in a loop. Formally, one neural network (NN),
the controller, samples a network architecture Ai from a search
space {Ai} with i = 1, ..., I , where I is the total number of
possible network architectures in the search space. Then, the
other NN, the child network specified by Ai, is constructed and
evaluated for a given task. Once the child network with Ai is
evaluated, a scalar reward R(Ai) will be provided to the con-
troller as feedback. Hence, in every interaction loop, the con-
troller obtains additional information which can be exploited to
update its knowledge. Moreover, the ultimate goal of the con-
troller is to estimate a structure Â from {Ai} to maximise the
expected reward. In this respect, instead of searching randomly
or via a lattice in {Ai}, the proposed framework can learn to
find an architecture with a high reward within limited interac-
tions, rather than spending a significant amount of time effort
and computational resources.

More specifically, in this paper, we aim to find a proper
RNN architecture for the task of infant vocalisation classifica-
tion. Considering that a RNN structure can be represented as a
variable-length string, we implement one RNN as the controller
to generate such a string, which can be unfolded as illustrated
in Figure 2. Inspired by the convolutional network search space
of [20] in which one convolutional layer can be represented
by five hyper-parameters, we design a simple search space for
a RNN with two of the most important hyper-parameters to
construct each recurrent layer. Particularly, for each layer in-
dexed by i, the hyper-parameters need to be estimated from a
search space containing multiple promising candidates by the
controller, i. e., the number of hidden nodes hi and the activa-
tion function φi. The RNN-based controller, therefore, predicts
one parameter (hi or φi) and feeds it into the next time step
as input to predict the next parameter (φi or hi+1). This pro-
cess is repeated multiple times until the number of layers ex-
ceeds a predefined value I . As a consequence, the predicted
string {h1, φ1, ..., hI , φI} is used to construct a child network,
and the child network is trained thereafter on our specific task,
i. e., infant vocalisation classification. After training, the valida-
tion accuracy of the child networkR is recorded and afterwards
passed to the controller to update the search algorithm. Hence,

given θ ∈ RN as parameters of the controller, we attempt to
update θ in order to maximise the expected reward R.

2.2. Training Controller with Policy Gradient

When applying a controller to design an architecture, each child
network architecture τ has a probability to be sampled p(τ |θ)
which is depended on the controller parameter θ. In other
words, to find the optimal architecture, θ should be updated to
maximise the reward J(θ):

J(θ) =
∑

τ

R(τ)p(τ |θ), (1)

where R(τ) denotes the accuracy achieved by a designed child
network structure τ . In this case, the policy gradient can be
approximated using the REINFORCE rule [27] as an estimator
of the gradient to update θ, which can be formulated as:

∇θJ(θ) =
∑

τ

R(τ)p(τ |θ)∇logp(τ |θ). (2)

When sampling τ from p(τ |θ)N times, i. e., the controller gen-
erates N child networks {τ1, ...τN}, an estimate of Eq. (1) can
be

J(θ) ≈ 1

N

∑

n

R(τn), (3)

where R(τn) is the validation accuracy achieved by the n-th
sampled architecture. Thus, we reformulate Eq. (2) as:

∇θJ(θ) = 1

N

N∑

n=1

R(τn)∇logp(τ |θ). (4)

Then, p(τ |θ) can be further decomposed into

p(τ |θ) = p(a0)
T∏

t=1

p(at+1|at, θ), (5)

where at denotes the predicted component at the time step t and
T is the total number of steps needed to design a child network
structure. As a result, Eq. (4) can be estimated without knowl-
edge of p(τ |θ) as follows:

∇θJ(θ) = 1

N

N∑

n=1

T∑

t=1

R(τn)∇logp(at|at−1, θ). (6)

As this computation relies on the empirical return of the sam-
pled child networks, the resulting gradients have a high vari-
ance. In this respect, a baseline b is further subtracted from R
in order to reduce the variance of the gradient estimator, yield-
ing an extension as follows:

∇θJ(θ) = 1

N

N∑

n=1

T∑

t=1

(R(τn)− b)∇logp(at|at−1, θ). (7)

In this work, the baseline b is a moving average of the previ-
ous architecture accuracies, to maintain the unbiasedness of the
gradient estimate.

3. Experiments and Results
3.1. Database and Features

The INTERSPEECH 2018 ComParE Crying sub-challenge is
based on the Cry Recognition In Early Development (CRIED),
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Figure 2: The RNN controller to generate a RNN child network which allows us to search among all possible structures in a predefined
search space. Red blocks symbolise a RNN-based controller unfolded over several time steps, while green blocks indicate the predicted
hype-parameters to build a child network. At each step, the controller predicts a single hype-parameter which is then fed back as input
to the next time step in an autoregressive fashion.

Table 1: Data distribution over different partitions and cate-
gories of the CRIED database.

# train test
∑

Neutral/positive 2 292 2 172 4 464
Fussing 368 441 809
Crying 178 136 314
∑

2 838 2 749 5 587

which comprises of 5 587 vocalisations from 20 healthy infants
(10 females and 10 males). For the challenge, the data has
been split into two partitions: one for training and the other for
test. Additionally, the vocalisations of both partitions were cat-
egorised into three classes, i. e., neutral/positive mood, fussing,
and crying, as shown in Table 1. For a detailed description of the
CRIED corpus, the reader is referred to [28]. Note that, in this
work, the training partition was further split into three disjoint
folds for optimising the controller hyper-parameters, instead of
the ten folds as in [28]. This is mainly owing to the fact that, for
each controller setting, the evolving searching has to be carried
out by exploring more than hundreds of various structures of
the child network while each child network has to be trained and
evaluated for each fold separately, which is time-consuming. To
this end, three-fold cross-validation has been conducted on the
training partition in this paper. Furthermore, as illustrated in Ta-
ble 1, the data is unevenly distributed, with substantially more
neutral/positive mood vocalisations. Therefore, we performed
upsampling of the (training) data, by replicating vocalisations
from the fussing and crying classes proportional to their relative
frequency. This results in all three classes having approximately
the same number of instances.

To extract acoustic features from the given vocalisations,
we employed the INTERSPEECH Computational Paralinguis-
tic Challenges (ComParE16) Low-Level Descriptors (LLDs)
provided by the challenge. The feature set consists of 65 frame-
wise descriptors and their first derivations (delta), resulting in
120 frame-level features in total. The (base) LLDs can be
grouped into three parts (or types): energy-related (4), spectral-
related (55), and frequency-related (6) ones. In particular, the
feature set contains not only commonly used features such as
MFCCs and F0, but also other features of similar and other
types, including the spectral flux/variance/skewness and the jit-
ter/shimmer/probability of voicing. More detailed information
about the ComParE16 LLDs can be found in [29]. Before util-
ising these LLDs to validate the performance of a child network

structure, an online standardisation was conducted on all LLDs.
In detail, for each fold, the global means and variances of these
LLDs were calculated on all training data except the selected
fold, which were then applied over the selected fold for stan-
dardisation accordingly.

3.2. Experimental Setups

In this work, for the implementation of the controller, we kept
using the NASCell from TensorFlow [20] for the sake of ex-
periment reproducibility. This NASCell consists of a two-layer
Long Short-Term Memory (LSTM)-RNN with 32 hidden units
on each layer. The controller was trained with the Adam opti-
miser with a learning rate of 10−4.

As for the child network, we selected the Gated Recurrent
Unit (GRU) as the recurrent hidden unit instead of LSTM. As
proposed in [30], GRU can capture the long-term dependencies
in sequence-based tasks and can well address the vanishing gra-
dient problem. In addition, when comparing with a LSTM unit,
GRU has less parameters to train, which results in a faster train-
ing process and less-data demand for generalisation. Besides,
many previous studies have shown that the GRU performs com-
petitive to the LSTM unit in most tasks [30, 31].

To search a GRU-RNN architecture for the task at hand,
namely the infant vocalisation classification, our evolving space
involved various structures which can reach up to 5 layers, as il-
lustrated in Table 2. For each recurrent layer, the controller se-
lects the number of nodes in the range of [0, 200] at the step size
of 40 and an activation function in [tanh,RELU, sigmoid].
To this end, the evolving space has approximately 65 × 35 =
1889 568 architectures, which is much larger than 200, the
number of architectures that the controller was required to eval-
uate during the experiments. When training these 200 child net-
works constructed by the algorithms, we employed the Adam
optimisation algorithm with an optimised learning rate of 10−4.
The batch size was set to 128 to facilitate the training process.
After feeding the sequential LLDs into the GRU-RNNs while
only one prediction for each vocalisation was obtained by ex-
tracting the output after feeding the last frame. This is due to
the property of GRU units, as the complete acoustic information
over time of the vocalisation was maintained in these units.

Moreover, to evaluate the performance of the child net-
works, the Unweighted Average Recall (UAR) was employed as
suggested by the ComParE challenge [28]. The UAR is calcu-
lated by the sum of recalls per class divided by the class number,
and thus can well-reflect a meaningful overall accuracy despite
class imbalances.
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Table 2: Defined evolving space of the network hyper-
parameters via reinforcement learning.

types hyper-parameters

# layers 1, 2, 3, 4, 5
# nodes per layer 0, 40, 80, 120, 160, 200
activation functions 1: tanh; 2: ReLU; 3: sigmoid

1 10 20 30 40 50

i: the i-th best architecture
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Figure 3: The obtained UARs by using the i-th best architecture
found by the strategies of evolving learning or random selection
in 200 successive run times.

3.3. Results and Discussions

After the controller sampled 200 architectures, we utilised 3-
fold cross-validation on the provided training set to evaluate the
performance in terms of UAR. As a consequence, we found the
architecture that achieved the best UAR of 79.6 % on the train-
ing data. This best architecture can be interpreted as a string
“200, sigmoid, 120, sigmoid, 200, sigmoid, 200, tanh, 80, sig-
moid”, where the first element (200) denotes 200 GRU units in
the first layer, the second element (sigmoid) denotes that the ac-
tivation function is sigmoid for this layer, and so forth. In this
case, the evolved network has five hidden layers while three
of them contain 200 nodes. In other words, the evolving algo-
rithms explored the search space and obtained the best model
when reaching the upper-bound of our space settings. This in-
dicates that a deeper and wider architecture may be beneficial
for this task. Thus, we expect a more dedicated evolving space
can help the model perform better.

In spite of this, we noticed that the second best UAR of
79.0 % was delivered by a three-layer RNN “200, sigmoid, 200,
sigmoid, 160, sigmoid”. This performance is still competitive
to the best UAR of 76.9 % of the challenge baselines [28] on
the same data partition, and only slightly worse than the best
structure. In practice, such a simpler structure can be applied
when making a trade-off between the performance and the cost,
considering that less weights need to be trained and less data
are required for generalisation.

Furthermore, to demonstrate the effectiveness of the evolv-
ing learning algorithm, instead of being guided by the controller
RNN, we randomly selected 200 architectures from the same
space, then trained these architectures and evaluated the per-
formances of them under the same procedures. Note that, as
each participant has only up to five trials to upload the results
on the test set, hence, these performances were evaluated based
on the training data via a three-fold cross validation. The per-
formances of the top 50 networks are reported in Figure 3 for

Table 3: Performance comparison in term of UAR on the test
set between the proposed evolved GRU-RNNs and other state-
of-the-art approaches.

approaches UAR [%]

Seq2Seq [33] 62.1
End-to-End [34] 63.5
BoAW [35] 67.7
ComParE16 [28] 71.9

evolved GRU-RNN 70.1

evolving learning and random search, respectively. The plot
shows that not only the best model by evolving learning is bet-
ter than the best model by random selection, but also on average
evolving learning is considerably better.

For the sub-challenge, we uploaded one trial on the test set
by utilising the best GRU-RNN model designed via evolving
learning. The performances of our approach together with other
baseline methods are shown in Table 3. As can be seen in the ta-
ble, the best model from evolving learning can perform as well
as other state-of-the-art approaches on this task. Specifically,
the proposed model outperforms the two neural network-based
approaches (Seq2Seq and End-to-End) by a large margin, and
surpasses the BoAW plus SVM approach, where exactly the
same LLDs are exploited. Nevertheless, our model is yet to
exceed the SVM trained on the ComParE16 functional feature
set, which contains 6 373 static features. This indicates that,
the classic ComParE16 set plus SVM is quite compelling for
tasks with sparse data, such as the given task; deep learning
approaches, per contra, demand big data for good generalisa-
tion [32].

4. Conclusions
In this work, we have utilised evolving learning techniques to
search recurrent neural network (RNN) architectures that reach
good performance for infant vocalisation analysis. In the pro-
posed framework, a controller RNN and a child network are
learnt in an interactive loop to attain a best architecture. This
learning process is carried out without any human coordination.
We then empirically validated the automated designed archi-
tectures on the Crying Sub-challenge of INTERSPEECH 2018
ComParE. Our tentative experiments have demonstrated that the
search algorithm outperforms random search and promising ar-
chitectures for this task have been attained.

Encouraged by the achieved results, we will further evalu-
ate our framework for other paralinguistic applications, such as
speaker healthiness recognition. In the future, we plan to adjust
the reward function by adding a penalty based on the complex-
ity of different architectures. A first step into Automatic Ma-
chine Learning (AutoML) for Speech Analysis and Computa-
tional Paralinguistics has been taken – many more are to follow,
but seem clearly worth it.
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