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Chapter 1

Introduction

The present work investigates the “magnetic field – pressure – temperature” phase

diagram of a vanadium based correlated d-electron compound, the BaVS3.

The effect of strong electron-electron interaction, which leads to a tendency

towards the formation of various broken symmetry ground states, has been a

central problem of the solid state physics in the last half century. Our transport

and optical studies have demonstrated that electron correlations play a crucial

role in each phase of BaVS3. The correlations are not extremely strong, rather,

U/t is close to unity (where U and t are the usual parameters of the Hubbard

model).

Figure 1.1: The relative strength of electron correlation in BaVS3 is on interme-
diate scale between normal metals and large gap insulators.

At ambient pressure this material undergoes a metal to insulator transition

at TMI = 70K. Although its onset has been known for almost three decades, the

driving force of the transition and the nature of the neighbouring phases have not

been clarified yet. We have determined the “magnetic field–temperature” phase

boundary by magnetotransport experiments and shown that the transition is of

second order. We have proposed a mechanism in which the transition from the

3



CHAPTER 1. INTRODUCTION 4

high-temperature paramagnetic metal to the singlet insulator is induced by orbital

ordering and the order parameter of the phase transition is the spin gap.

The metal-insulator transition is highly sensitive to the applied hydrostatic

pressure and the insulating phase can be completely suppressed at p = 22.5 kbar

as we observed both by means of dc transport and optical conductivity experi-

ments. The pressure induced low-temperature metallic state is a non-Fermi liquid,

the electron-electron scattering is largely enhanced by quantum fluctuations. Such

a quantum critical behaviour has been known to be present both in weakly fer-

romagnetic and antiferromagnetic materials but has not been reported for singlet

insulators so far.

Finally, we have explored the complete “magnetic field–pressure–temperature”

phase boundary between the paramagnetic metal and the singlet insulator.



Chapter 2

Overview of experimental studies

and related models

2.1 Crystal structure and symmetry

At room temperature BaVS3 has a hexagonal crystal structure [1] with space

group P63/mmc and two formula units per unit cell. The valence state of the

components are Ba2+, V4+ and S2−. Such crystalline structure assumes only one

crystallographic position of vanadium atoms: each of them is surrounded by six

sulfur atoms forming VS6 octahedron elongated in the c direction. (In case of

perfect octahedra we would have a perovskit structure.) Along the c-axis linear

chains are built up of face sharing octahedra while in the perpendicular plane these

chains are organized into a triangular lattice. The crystal structure is suggestive

of a quasi-one-dimensional compound. Due to the barium spacers, in the a − b

plane the interchain vanadium-vanadium separation, linter = 6.73 Å is three times

larger than their intrachain bondlength, lintra = 2.81 Åwhich is near to the lattice

constant of the metallic vanadium. The crystal structure of the high-temperature

hexagonal phase is shown in Fig. 2.1.

At Ts = 250K BaVS3 undergoes a structural phase transition which reduces

further the crystal symmetry to orthorhombic with space group Cmc21 [2, 3] and

still two formula units per unit cell. At this transition the dynamical distortion

of the vanadium atoms freezes out and a static order of the vanadium sublattice

5



CHAPTER 2. OVERVIEW OF EXPERIMENTAL STUDIES AND RELATED MODELS6

Figure 2.1: Crystal structure of BaVS3. Sulfur octahedra are bound into face
sharing chains running along the c-axis and form triangular lattice in the a − b
plane.

appears in such a way that they remain equally spaced along the c-axis but the

chains become zigzag. Although this distortion (visualized in the last stage of

Fig. 2.3) gradually increases with decreasing temperature and seems to saturate

only below ∼ 20K the crystal symmetry remains the same all the way down in

temperature. The temperature dependence of the lattice parameters in the plane

perpendicular to the chains, a and b are studied by x-ray scattering. The size of

the orthorhombic distortion is reflected in a difference between a and b/
√
3 which

develops below Ts since in the hexagonal phase they are equal by definition (see

Fig. 2.2).

2.2 Phase transitions of the system

BaVS3 goes through successively three phase transitions below room temperature:

a structural transition occuring at Ts = 250K, a metal to insulator transition at
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Figure 2.2: Temperature dependence of the a − b plane lattice parameters from
Ref. [3]. Orthorhombic distortion appears at Ts = 250K, raises with cooling down
and shows a sharp change at TMI = 70K.

TMI = 70K and a third transition at Tx = 30K thought to be associated with

magnetic and orbital order.

We just had an insight (in section 2.1) into the crystal symmetry of the system

in the different phases. The only noticeable aspect of the Ts = 250K transition

has not been mentioned yet that beyond the structure identifying methods the

only property in which it is manifested is the resistivity. There is a slight change

in the slope of the R(T ) curve at that temperature.

Now we turn to the metal-insulator transition. In sense of transport properties

the high-temperature phase (T > TMI) of the material is metallic: both resistivity

and thermoelectric power are decreasing towards lower temperatures. However,

the resistivity is quite high (close to the Ioffe-Regel limit1) and shows an upturn

below Tmin = 140K. In contrast to the electronic transport, the Curie-Weiss type

magnetic susceptibility, χ = C/(T −Θ) rather indicates the charge carriers being

localized.2 The effective moment, peff ≈ 1.4µBohr is smaller than 1.73µBohr which

would correspond to a spin- 1
2
sitting at each vanadium site.

The sharp cusp in the magnetic susceptibility gives the clearest evidence for the

transition happening at TMI = 70K. The continuous decrease of susceptibility in

1When the mean free path is in the range of the lattice constant.
2C = N

V

p2effµ
2
Bohr

3kB
is the Curie constant, where peff = g

√

S(S + 1) and Θ is the Weiss tem-
perature which is close to zero varying in the range of 10−40K from experiment to experiment.



CHAPTER 2. OVERVIEW OF EXPERIMENTAL STUDIES AND RELATED MODELS8

the low-temperature phase suggests the freezing out of the spin degrees of freedom.

Further anomalies are observed in two other thermodynamic properties: specific

heat shows a discontinuity and thermal expansion coefficient has remarkable peak

at the same temperature. Concerning the transport properties this phenomenon

is a metal to insulator transition. The logarithmic derivative of the resistivity

shows a sharp peak while the thermoelectric power changes sign at 70K and both

of them go through a dramatic increase below it.

Inside of the insulating phase, at Tx = 30K neutron scattering and diffraction

experiments suggest the onset of a magnetic transition. The observed increase of

inelastic scattering intensity below 30K indicates the presence of a hyperfine field

while the appearance of new magnetic Bragg peaks directly reveals an antiferro-

magnetic order with a propagation vector of Q = (0.226, 0.226, 0) and with an

ordered magnetic moment ∼ 0.5µBohr. (The propagation vector is expressed in

the hexagonal index.) In 51V nuclear quadruple resonance (NQR) measurements

the inverse of the spin-spin relaxation time, 1/T2 (proportional to the integrated

susceptibility) was found to diverge at Tx. The quadruple resonance spectra was

explained in terms of huge and extraordinary asymmetric electrical field gradi-

ent (EFG) developing at the V sites below Tx. Since vanadium is embedded in

an octahedral configuration of the neighbouring sulfurs, the EFG cannot be at-

tributed to the environment but it probably comes from the non-spherical charge

distribution of the vanadium 3d wavefunctions. This is an indirect evidence of the

presence of orbital order in the ground state of BaVS3.

A detailed list of experiments detecting either of these transitions is given in

Table 2.1. In those cases when large number of the possible references is available

just the three reliable ones are quoted.

2.3 Vanadium ion in orthorhombic crystal field

Except of V4+ which has a single electron on its 3d levels the other components

have fulfilled electron shells. In the picture of perfect charge transfer, i.e. in the

lack of hybridization between bands of the different ions, this single d electron of

vanadium is responsible for electrical and magnetic properties of BaVS3. Thus,

at first we focus our attention to the crystal field splitting of 3d levels.
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Table 2.1:

Structure Magnetic prop. Transport prop. Thermal prop.
X-ray Neutron Suscep- NMR/ Neutron Resis- IR Thermo- Specific Thermal

diffr. tibility NQR scatt. tivity spect. power heat expansion

Ts [1, 3] [2] [11, 21]

TMI [3] [10, 11, 21] [8] [11, 21, 22] [37] [38, 39] [20] [11]

Tx [21] [8] [9, 15]

In isotropic space d shell is 5 fold degenerated which splits in an octahedral

environment to a low lying 3 fold degenerated t2g(xy, xz, yz) level and a eg(3z
2 −

r2, x2− y2) doublet at higher energy. (The x, y, z axes point to the corners of the

octahedron with negative sulfur ions sitting there.3 Thus t2g orbitals with smaller

overlapping are energetically favourable.) From now on, in the discussion of the

three lowest orbitals we choose another coordinate system which matches better

to the crystal structure. The new axes are parallel with the main crystallographic

directions (labelled as a, b and c in Fig. 2.1): z points along the trigonal axis

and x, y lie in the perpendicular plane. After rotating the coordinate system, the

three lowest energy wavefunctions have the following form: dz2 = (3z2− r2)/
√
12,

dx = (x2 − y2)/
√
6− xz/

√
3 and dy = xy/

√

2/3 + yz/
√
3.4 At room temperature

the site symmetry of vanadium is trigonal instead of cubic as the octahedron is

stretched along the c-axis which further splits the t2g orbitals to one dz2 and a

remaining 2 fold degenerated e(t2g), formed by dx and dy. At Ts = 250K, where

a zigzag develops along the vanadium chain, the site symmetry of vanadium is

further reduced from hexagonal to orthorhombic. The whole sequence of the level

splitting is shown in Fig. 2.3.

The order of the dz2 level and the e(t2g) doublet is arbitrary at the present

state. The shape and the orientation of the lobes of these orbitals are illustrated

in Fig. 2.4. It is obvious that dz2 orbits have large direct overlap along the chains

while e(t2g) orbits, (dx, dy) can overlap only through sulfurs with their neighbours

in the surrounding chains. If dz2 was occupied, i.e. it was the low-lying level this

3This is the usual choice of the coordinate system.
4dx and dy are the ±1 eigenstates of the orbital angular momentum Lz.
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Figure 2.3: Stages of site symmetry reduction of V 4+ and the corresponding split-
tings of 3d levels: isotropic→octahedral→ trigonal→orthorhombic.

fact should result in a very anisotropic conductivity with the c-axis as the good

conducting direction. However, this picture is not supported at all by our electrical

conduction anisotropy measurement [21] which rather suggest an isotropic electron

system by the ratio of σc/σa−b ≈ 3.4.

2.4 Band calculations

The previous crystal field approach on the basis of group theory gives information

about the level structure only at the origin of the Brillouin zone (BZ) and does

not reveal the energy dispersion of the levels. However, it can happen that orbits

with higher energy near the zone center cross the Fermi level at certain points

of the BZ, taking part in the distribution of charge carriers in this way. Band

calculation is a possible candidate to explore these details and also to verify our

apriori consideration that a simple ionic picture gives appropriate description of
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Figure 2.4: Orientation of the low-lying orbitals relative to the crystal structure.

BaVS3.

Results of linear augmented-plane-wave (LAPW) method applied for both

crystallographic phases of BaVS3 in the local density approximation by L. F.

Mattheiss in Ref. [4] is presented below. In the hexagonal phase lattice param-

eters at room temperature while in the orthorhombic phase those at T = 100K

were utilized. In this study the two outer shells of each components5 were treated

as valence electrons and the remaining ones are included in a frozen-core approx-

imation. With two formula unit per unit cell we have 10 levels belonging to

vanadiums and 38 levels in total.

The Fermi level turns out to be located at the lower edge of the t2g mani-

fold while eg subbands lying at higher energy are unoccupied. (Though S(3p) is

slightly hybridized with t2g, sulfur and barium essentially have neither valence nor

conduction bands.) The widest one of the t2g complex are dz2 conduction bands

whose ∼ 3 eV width originates both from large direct V − V overlap along the

chain and indirect overlap via S(3p) obitals. Levels of e(t2g) are about 4 times

narrower with a value of ∼ 0.7 eV.6 The band filling of the lowest e(t2g) is 0.93

(close to the fulfilled situation) which means 2 × 0.07 holes/unit cell. Together

with the compensating electrons populating the next member of e(t2g) the overall

5Ba(5p66s2), V(3d44s1), and S(3s23p4)
6They have the same symmetry properties than the low-lying dx − dy doublet of the single

vanadium, but in this case, since two vanadiums form the unit cell, we have four of them.
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carrier concentration is 0.28 charge/unit cell. LAPW predicts BaVS3 to be metal-

lic with rather low carrier density and compensated conductor with equal number

of electrons and holes.

Figure 2.5: Energy band results for hexagonal and orthorhombic BaVS3 along the
symmetry lines of the Brillouin zone from Ref. [4].

After having a look at the band structure of the orthorhombic phase in the

right panel of Fig. 2.5 we can notice that the structural transition at Ts = 250K

are accompanied with no radical changes. Each of the e(t2g) remains two fold

degenerated in an extended region of the BZ (in the ETZ plane) and the most re-

markable effect is that, the carrier concentration doubles. (We have 0.3 holes/unit

cell and 0.3 electrons/unit cell from now on.) The first statement all alone guar-

antees – concerning the author – “that hexagonal BaVS3 metallic properties will

persist in the orthorhombic phase.” Though the orthorhombic distortion is not

saturated at all at T = 100K the above argument is valid at any lower temperature

since an additional symmetry change would be required to remove the degeneracy

of e(t2g) subbands. Thus, the metal-insulator transition observed at TMI = 70K

cannot be deduced from band calculations, ergo BaVS3 at low temperatures is not

a simple band insulator but probably correlation effects drive the system towards
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the insulating phase.

Figure 2.6: Total and muffin-tin-projected density of states for hexagonal and
orthorhombic BaVS3 from Ref. [4].

The previous section was strongly based on the hypothesis that perfect charge

transfer happens in the material and the components are in the following valence

states: V4+, Ba2+ and S2−. This picture is supported by the above band struc-

ture calculation whose conclusion is that “an ionic model is a reasonable starting

point for describing the electronic properties of both hexagonal and orthorhombic

BaVS3” [4]. It has to be mentioned here that in photoemission studies of Itti et al.

[5] different valences were concerned for the components: 3.41+, 2.21+ and 1.87−
for V, Ba and S, respectively. However, the authors emphasize themselves that

it can be considered as a qualitative result rather based on the so-called bond-

valence-sum method than the XPS data. In this method the valence of an atom

can be calculated from its interatomic distances with surrounding atoms which is

a rude approximation relative to the band structure theory.
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2.5 Nature and order of the phase transitions

The Ts = 250K structural transition does not seem to have strong influence on

the electronic states as proved by either the lack of its sign in thermodynamic

properties or the band structure calculations. Thus, we will focus on the other

two transitions which surely involve different electronic degrees of freedom and

whose nature has not been clarified yet.

The most robust phase transition of the system is the metal to insulator tran-

sition. It appears in almost each quantity which has been measured so far and it

has been identified to be of various kinds and orders.

In the early work of O. Massenet at al. [6], they concluded that in the insulating

phase quasi-1D antiferromagnetic order sets in along the vanadium chains. This

suggestion was based on the AF-like cusp of the magnetic susceptibility below

70K and the impressive chain-like structure of the compound. Their two-band

model which could explain both the contradictory high-temperature phase and

the vanishing susceptibility of the insulator is as follows: the dz2 orbitals, oriented

along the chain direction, form a wide conduction band which incorporates the

narrow bands (related to the two lowest d levels) partly occupied. The former is

responsible for the metallic conductivity while the narrow bands cause the Curie

susceptibility of localized moments. The scenario for the magnetic aspect of the

70K transition is that a gradual electron transfer from the localized magnetic

states to the non-magnetic states occurs. It is driven by the modification of

the band structure due to the decrease of the c-axis parameter with lowering

the temperature. However, peff ≈ 1.4 µBohr suggests that the most part of the

electrons belongs to the narrow magnetic band, therefore the wide conduction

band is far from half-filling. Furthermore, the susceptibility starts to freeze out

just below the transition. This does not allow such a large charge redistribution

which could be the direct reason for a transition towards the insulating phase.

Additionally, their Mössbauer spectroscopy measurement allows only to consider

the presence of a dynamical, short range order and the frozen 3D order, if it exists,

could step in at lower temperature. Static magnetic ordering is also excluded by

neutron diffraction data and no static local fields are observed in NMR [7], NQR
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Figure 2.7: The local environment of vanadium responsible for the crystal field
splitting and the two band model of Massenet et al.

[8] and spin-flip scattering experiments [9].7

The picture of gradual pairing of magnetic V ions, i.e. a spin-Peierls transition

(proposed by Ref. [7]) was also a candidate to be responsible for the vanishing

susceptibility. Its existence is also ruled out, since such pairing should be ac-

companied by lattice distortion which has not been detected by X-ray diffraction

studies [2, 3].

In the model of Nakamura et al. [10] the roles are distributed differently

between the orbitals. The band associated with the dz2 levels is unoccupied,

since it is situated well above the Fermi level and does not overlap with the

low lying doublet. Below Ts = 250K the doublet is split by the orthorhombic

distortion (shown in Fig. 2.2) which gradually increases down to 70K, resulting in

a charge transfer to the energetically favourable orbital. At TMI the distortion has

a discontinuous component and almost saturates below suggesting the complete

transfer of carriers to the low lying orbital. “At this stage, the lowest one of the

e(t2g) is half filled, and a Mott-Hubbard gap opens at the Fermi energy.” On the

basis of their photoemission study they also emphasize the 1D character of the

electron system8 and argue that long range magnetic order is prevented by the

7At least the ordered moment is predicted to be smaller than 0.1µBohr which could not
explain the large reduction in the susceptibility.

8“High resolution UPS spectra near the Fermi level in the metallic phase exhibit a power-low
dependence of the electron binding energy, indicating that the conduction electrons in BaVS3
form a Luttinger liquid.”
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large fluctuation effects in one dimension and can be established at Tx = 30K. The

evolution of their valence-band spectra with temperature is continuous without

abrupt change at the metal-insulator transition. This behaviour is attributed to

the opening of the band gap above the transition. This kind of precursor effect

could be also manifested in the upturn of the resistivity below ∼ 140K. If the one

band Mott-Hubbard scenario of Nakamura et al. is true the orbital degeneracy

is quenched by the metal-insulator transition. This would rule out the onset of

orbital order at lower temperatures, thus contradicts the observation of the NQR

measurement.

Graf et al. in Ref. [11] try to identify the order of the transition by combining

their results with earlier observations. At first, they explore a continuous line of

the metal-insulator phase boundary in a wide range of pressure (p = 0− 15 kbar)

by measuring the resistivity. The transition turns out to be suppressed at a rate

of ∼ 3.5K/kbar. In linear extrapolation one would expect the metallic phase to

be extended down to zero temperature under 20 kbar. Then, they investigate the

thermal expansion of the system from 4K up to 120K and find a sharp peak in the

thermal expansion coefficient and a slight volume contraction (∆V/V = 0.019%)

on warming through TMI . The existence of a continuous p − T phase boundary,

the very slight volume change near the transition and the lack of hysteresis in

measured quantities are all against a first order transition. The possibility for the

transition to be of second order is argued to be improbable since basic order pa-

rameters which could be adequate for the system, like magnetic order or further

crystal symmetry reduction, are experimentally excluded. Since the symmetry

above and below TMI is not broken, i.e. the transition is isomorphic. In their

proposal this phenomenon is nothing else but a continuous transition just be-

yond a first-order critical point at ambient pressure and further beyond at higher

pressures. In order to prove their proposal they separate a term in the thermal

expansion related to the transition which shows smooth evolution in the vicinity

of 70K without any sign of criticality.
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2.6 Strength of the electron correlation

It is a common believe that electron correlations play an important role in either

phases of BaVS3. The interaction energy between two electrons can be different

depending on their spin and orbital quantum number which allows the system to

exhibit collective behaviour either in spin or in orbital sector.

The leading term of the correlation energy is the on-site Coulomb interaction

which for the 3d shell is U ≈ 1 eV.9 Though the overall bandwidth is W ≈ 3 eV

due to the wide dz2 as shown in Fig. 2.5, the total occupation of this level is poor,

restricted in k-space to the close vicinity of the A point of the Brillouin-zone.

Along the Γ − K −M − Γ − A line its energy is much higher than that of the

e(t2g) levels and they become comparable only along the A −H − L line. Thus,

the effective bandwidth must be closer to Weff ≈ 0.7 eV characteristic to the

e(t2g). In sense of the U/Weff ratio the system is found to be on an intermediate

scale. The relative strength of the interaction, all alone, would not unambiguously

compel an insulating ground state.

9It can be slightly different for electrons occupying the same or two different orbitals.



Chapter 3

Experimental methods and setups

3.1 Sample preparation

Single crystals of BaVS3 were grown by Tellurium flux method.1 Powders of

BaVS3 and sublimated tellurium 99.99% Vetron were mixed in a molar ratio

1 : 50 and heated up to 1050◦C in an evacuated silica ampoule. Then it was

slowly cooled down to 55◦C at a rate of 1◦C/hour. The crystals, obtained from

the flux by sublimation, have typical dimensions 0.5× 0.5× 2mm3.

Both the transport and the low-temperature magnetic properties of the ma-

terial strongly depend on the stoichiometry, especially on the sulfur content [6].

The crystals used in our experiments were previously qualified by dc conductivity.

The criteria for a good sample are discussed in 4.1.1.

3.2 Electrical conductivity measurements under

pressure and in magnetic field

The application of hydrostatic pressure is a useful tool which gives us the pos-

sibility to continuously increase the bandwidths of a material by decreasing the

lattice constant. While the overlap integral depends exponentially on the distance

of the neighbouring atoms, the on-site electron-electron interaction is insensitive

1The samples were prepared by H. Berger in Prof. László Forró’s laboratory at the EPFL in
Lausanne.

18
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of it. Thus, the application of pressure usually drives the systems towards a more

delocalized state. In systems with anisotropic crystal structure the stiffness of the

lattice may be very different in the various crystallographic directions. In these

cases the application of pressure also changes the anisotropy of the overlap inte-

grals. In BaVS3 the chain direction has the highest compressibility, therefore the

pressure induced reduction of the anisotropy is expected.

The resistivity measurements have been performed using the standard four-

probe method in the temperature range of T = 1.2− 300K. (At ambient pressure

the investigations were extended up to 700K.) The contacts were made by evap-

orating thin gold pads on the crystal. Then 20µm thin gold wires were fixed on

these pads by silver paint. For illustration, a BaVS3 crystal in the typical four-

probe arrangement is shown in Fig. 3.1B. For the measurements under hydrostatic

pressure the crystals were inserted into a non-magnetic copper-berilium cell with

kerosene as pressure medium. The pressure was monitored in situ by an InSb sen-

sor. During cooling down the cell a slight pressure loss occurs due to the different

thermal expansion of the pressure medium and the body of the cell, however, its

influence on the temperature dependence of the resistivity is negligible. Above

15 kbar the pressure is stable within 0.2 kbar in the whole temperature range.

The self-clamping pressure cell and its accessories are shown in Fig. 3.1A. The

delrin capsule with CuBe plugs at both ends and filled with kerosene embeds the

sample. One of the plugs serves also as electrical leadthrough. The rings covered

with indium are against leaking. The whole arrangement is put into the hole in

the cell body and fixed on one side by the solid screw while on the other side a

piston enters the hollow screw and transmits the force to the capsule.

The magnetoresistance (MR) has been investigated in two ways: by magnetic

field sweeps up to 12T at various temperatures and by measuring the temperature

dependence of the resistivity in constant fields, usually in H = 120 kG. During

the field sweeps a Cs-403 capacitive thermometer was used to stabilize the tem-

perature, eliminating any temperature drift arising from the magnetoresistance

characteristic of resistive thermometers. During the constant field measurements

the temperature was monitored by a CGR-500 thermometer having relative tem-

perature error due to the magnetic field, ∆T/T ≤ 2% in H = 120 kG from

T = 30K up to 90K. Even this small deviation was corrected by calibrating the
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Figure 3.1: The self clamping pressure cell and its accessories.

magnetoresistance of the CGR-500 at every 5K in the interesting temperature

interval maximum using the capacitive sensor. Thus the overall uncertainty of

the temperature is smaller than ±0.05K in the whole region.

At ambient pressure the conduction anisotropy of the system has also been

measured using Montgomery method [12].

Though the conductivity has mainly been investigated using dc technique,

under high pressures and at low temperatures the phase diagram has been explored

by low-frequency lock-in detection. Its application was necessary because of the



CHAPTER 3. EXPERIMENTAL METHODS AND SETUPS 21

very small resistance of the samples (in the range of 100MΩ) and the high ratio of

the contact and sample resistance (often as large as∼ 105−106). Since the pressure
medium applied in the experiments is not a good heat-conductor, lock-in detection

was also required for low-power measurements keeping the heat dissipated on the

contact resistances below few µW.

3.3 Thermoelectric power measurements under

hydrostatic pressure

Transport coefficients can be divided into two classes, those being associated with

“primary flows” under the action of “primary forces” and those relating “primary

flows” with “coupling forces”. The formers are the diagonal, while the latters are

off-diagonal elements in the formulation of the Onsager transport equations. In

contrast to the electrical conductivity which relates the electric current density to

potential gradient, the thermoelectric power (TEP) is an off-diagonal coefficient,

which couples the electric current to the temperature gradient. The Onsager

relations for particle and heat current density, J and JQ, in presence of chemical

potential and temperature gradient are:

J = − σ
e2
∇µ+

Sσ

| e |∇T , (3.1)

JQ =
STσ

| e | ∇µ− (κ+ TS2σ)∇T , (3.2)

where σ, κ, S are the electrical, the heat conductivity and the TEP, respectively.

If no electric current flows than the Seebeck coefficient is defined by the two forces:

S | e | ∇T = ∇µ . (3.3)

Instead of the gradient of the temperature and the chemical potential their

changes on a finite length scale are measured, i.e. they are integrated between

two points. Usually the thermal isolation of the sample from its environment

is not perfect. How does it influence the measured value of the thermoelectric
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power? Since the result of integration of Eq. 3.3 does not depend on the path –

the integrands are rotationless vector fields – one can always choose a path inside

of the sample. Thus the integrated quantity is solely characteristic of the sample

and it is not influenced by the surrounding material:

∆µ =

∫ x2

x1

S(T (x))∇T (x)dx =

∫ T+∆T

T

S(T ′)dT ′ = S∆T +
∂S

∂T

(∆T )2

2
+ · · · (3.4)

It has a great importance in our TEP measurements where the sample is embedded

in a pressure medium. In first order the thermoelectric power can be written as

the following:

S =
1

| e |
∆µ

∆T
. (3.5)

According to Eq. 3.5 the voltage and the temperature difference should be

detected between the same two points of the sample. Since the typical dimensions

of the BaV S3 single crystals are 0.5 × 0.5 × 2mm3 it is not evident to measure

the temperature and the voltage at the same place (within a distance which is

negligible compared to the length of the crystal). Due to this possible error of the

contact positions there is some uncertainty in the absolute value of the TEP. In

order to eliminate this kind of systematic error we measured the TEP of a few large

crystals (with typical length of ∼ 4mm) in vacuum. This room temperature value

(S = −25±2µV/K) served as a standard for the later measurements performed in

the pressure cell. Apart from the deviation in the absolute values, the temperature

dependence of the thermoelectric power measured on small crystals at ambient

pressure inside of the pressure cell (filled with liquid) is in good agreement with

those measured on large crystals in vacuum.

The arrangement used in the TEP experiments is shown in Fig. 3.2. The sam-

ple lies on a ceramic pad with heaters at both ends. E-type (chromel−constantan)
differential thermocouple with the two junctions fixed on the ceramic close to the

ends of the sample was used to monitor the temperature difference. This ensures

a good thermal contact to the ends of the crystal but the junctions remained elec-

trically isolated from the crystal. The voltage drop due to the thermal gradient
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Figure 3.2: Line drawing of the arrangement used in TEP measurements.

is measured on the outer contacts, while the inner contacts are only used for the

simultaneous four-probe detection of the resistivity.

All wires are connected to the copper wires of the sample holder. In order to

eliminate the additional voltage drop introduced by these second junctions they

are thermalized to a common temperature. In this arrangement the measured

quantity is not the absolute thermoelectric power of the crystal but that relative

to the gold. However, the absolute TEP of the gold is at least one order of

magnitude lower than that of BaVS3 so we do not take it into correction in our

results. At room temperature SAu ≈ 2µV/K while SBaV S3
≈ −25µV/K. For

a detailed temperature dependence of the thermoelectric power of gold, see Ref.

[13].

The heating power is equidistantly stepped up to a maximum value and then

decreased to zero while the temperature difference and the corresponding voltage

drop are measured simultaneously. The slope of the line fitted to the data is the

Seebeck coefficient (see Fig. 3.3).

It is evident that higher heating power results in larger signal. Do we have any

limitations for the temperature difference along the sample? Eq. 3.4 shows that

the sample is not overheated (i.e. the measured difference in the chemical potential

is proportional to the temperature change) as far as ∂S/∂T∆T ¿ S. If the TEP

is strongly temperature dependent, the proportionality of the voltage drop with

temperature difference has to be checked. In case of nonlinearity the heating power

has to be decreased until the effect of the higher order terms becomes negligible.

According to Eq. 3.4 the linear term vanishes when the thermoelectric power zero
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Figure 3.3: Representative cycle of TEP measurement on BaVS3.

and higher order terms appear. The graph in Fig. 3.4 shows remarkable deviation

from the linearity due to the sign change in the Seebeck coefficient at the MI

transition of BaVS3.
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Figure 3.4: The effect of overheating appearing in ∆µ vs. ∆T curve.

If the junctions of the thermocouple are not heat-linked well to the end of the

sample it gives rise to a difference between the slopes measured with opposite

temperature gradients.

The TEP of an insulator is usually hard to measure when its resistance is higher

than 10MΩ. As the conductivity of the sample decreases the heat conductance of

the contacts becomes worse and the time needed for the thermalization (between

the sample and the thermocouple) can be as large as a few seconds. The resulting
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Figure 3.5: Hysteresis in ∆µ vs. ∆T curve due to the slowing down of the relax-
ation inside of the insulating phase.
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Figure 3.6: Break in the slope of ∆µ vs. ∆T graph related to the application of
heaters on different side of the sample.

hysteresis is clearly shown in Fig. 3.5.

In case of TEP measurements under pressure the differential thermocouple

is also inside of the cell. The pressure dependence of its thermoelectric power

may cause a systematic error in the measured temperature difference. However,

the commonly used thermocouples are composed of metals with wide conduction

bands, thus they are insensitive to the pressure. A detailed overview of the topic

is given in [14]. For example, the sensitivity of our E-type thermocouple at room

temperature is ∂S/∂p ≈ 0.03µ VK−1kbar−1 while its absolute value at ambient

pressure is S = 60µV/K. In the range of the highest pressure applied in our
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experiments (p = 22 kbar) this corresponds to a systematic error . 1%.

3.4 Optical conductivity measurements in the

infrared region

Infrared (IR) spectroscopy is a useful tool to study the excitations accompanied

with electrical polarization in the range of 1meV−10 eV. Since the wavelength of

the light in the above frequency range λ = 10−5 − 10−1 cm is much larger than

the lattice constant, the electromagnetic field can be considered homogeneous on

the scale of the atomic distances. Due to the small wave number of the light no

momentum transfer occurs during the scattering. Only “vertical processes” are

allowed and the dispersion relation of the excitations cannot be directly revealed

by this method. The typical excitations studied by optical spectroscopy include

IR active phonon scattering, two-phonon processes of acoustic branches, as well as

several kinds of electronic excitations, like polarization of atomic electron shells,

single electron excitation through a charge gap, or conduction of propagating

carriers.

In order to determine the complex electronic susceptibility of a system, two

real quantities of the light scattering have to be simultaneously detected. The

common choice is the measurement of the absolute value of the reflectance and

the transmittance (instead of detecting either of them together with its phase).

If only one of them can be measured, the complex susceptibility is obtained by

Kramers-Kronig transformation. In our case, in the metallic phase of BaVS3 the

penetration depth (δ ∼ 1µm) is much smaller than the sample width (w ∼ 1mm),

thus only the reflectance can be detected.

3.4.1 Along the optical path: light source, sample, spec-

trometer and detector

Our IR measurements have been performed at the National Synchrotron Light

Source (NSLS) of the Brookhaven National Laboratory. The basic features of the

synchrotron light are the high brightness and the large bandwidth (from far IR up
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to UV). Its brightness is 10 times larger than the brigthness of other commonly

used internal sources in the 1−400 cm−1 range (1cm−1 ≈ 1.4K). This is the energy

scale which is characteristic of the low energy excitations in correlated systems

where collective phenomena appear.

The intensity of the light reflected back from the sample has to be measured

relative to a reference signal for several reasons. The white light coming from the

synchrotron has no uniform power spectra and its frequency distribution has to be

eliminated from the results. Further reasons are the time dependent power of the

synchrotron light, the dispersion of the optical elements (filters, beamsplitters)

and the frequency dependent sensitivity of the detectors. The reference signal

is usually obtained by replacing the sample with a perfectly reflecting metallic

mirror. However, in the low-frequency range (1 − 100 cm−1), which we focus on,

where the typical sample size (1mm) becomes comparable to the wavelength the

intensity of the collimated part of the light scattered back from the crystal is more

and more damped. This diffraction also influences the frequency dependence of

the reflectivity. Therefore using a simple metallic mirror is not sufficient to get

the proper reference signal and one has to in-situ evaporate gold directly on the

sample and measure its reflectance, too. This supplies the reference signal which

can be used to normalize the measured intensities.

If he surface of the sample is not absolutely flat, i.e. its roughness is around a

few µm, than the components of the light having the same or smaller wavelength

are reflected diffusively. This error is eliminated by the above choice of the refer-

ence signal, moreover it appears at frequencies higher than 104 cm−1 which range

is out of our interest.

The sketch of the main chamber of the spectrometer (Bruker IFS113v) is shown

in Fig. 3.7. The drawing is oversimplified and focuses on the arrangement of

mirrors.

The incoming light arrives to a parabolic mirror (PM#1) whose focus is set

to the center of the first diaphragm (D#1). Since the beam is not perfectly

collimated a finite size spot appears there. The more closed the blende is the

bigger part of the divergent light is cut off, i.e. the beam is more collimated

and the images of this focus become better defined. On the other hand, D#1 is

situated in a distance of R from the first spherical mirror (where R is the radius
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Figure 3.7: Simplified picture of the main chamber of the spectrometer, where M,
PM and SM mean flat, parabolic and spherical mirror, D is diaphragm andW is
vacuum proof transparent window, S and RM label the sample and the reference
mirror, respectively.

of the mirror) but weakly rotated out from its origin. Thus, the image of the

focus appears in the same distance but tilted out by double angle. This is the

place of the sample. If the arrangement of the mirrors is symmetric to the line

connecting C#1 with C#2 and the surface of sample perpendicular to it, the light

directly goes into the detector. The symmetric path is not a necessary restriction,

because the flat mirrors are movable and rotatable and give some freedom to

choose between various equivalent paths. The purpose of the first diaphragm is
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to reduce the spotsize at the focus below the sample size while the second blende

only lets that part of the light pass through which is reflected back from the

crystal and eliminates those coming from out of focus reflections (for example:

from W#2). The application of the two diaphragms is even more important in

the case of high-pressure experiments. The reference signal is recorded under the

same circumstances by 90◦ rotation of the sample holder when the reference mirror

(RM) is moved to the sample position.

In our measurements the 20 − 4000 cm−1 range has been investigated. This

interval cannot be covered with a single detector. A composite bolometer is used

for long wavelengths (20 − 700 cm−1), while in the middle infrared, MIR (400 −
4000 cm−1), a photoconductor detector is applied. The large overlap between the

two sensors is necessary because their sensitivity drop down close to the edges of

the range of applicability. Fig. 3.11 shows typical spectra detected in both ranges.

The frequency of the light in the IR region (> terahertz) is usually too high

to permit the signal to be detected in the time domain. In order to determine the

reflectance as a function of frequency we used a Fourier transform spectrometer

based on a Michelson interferometer (see Fig. 3.8). Next we discuss the principles

of its operation.

The measured quantity is the time autocorrelation function of the light:

G(τ) = 〈E?(t)E(t+ τ)〉 ≡ lim
T→∞

1

2T

∫ T

−T

E?(t)E(t+ τ)dt , (3.6)

where G(τ = 0) is the time averaged intensity. In this method a beamsplitter

divides the beam into two parts which go along two arms with different length.

Both arms have a mirror at the end. By moving one of these mirrors the optical

path difference, 2∆x can be changed. Since the time delay is related to the path

difference (τ = 2∆x/c), by measuring the intensity as a function of path difference

the autocorrelation function is determined. It can be easily shown that the power

spectrum is its Fourier transform, i.e.:

S(ω) ≡| E(ω) |2=
∫

G(τ)e−iντdτ . (3.7)

Before characterizing the resolution and bandwidth of the spectrometer two
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Figure 3.8: Line diagram of the Michelson interferometer.

quantities have to be introduced: the autocorrelation time (∆τ) and the band-

width (∆ω) of the light. In both definitions the autocorrelation function of the

corresponding Fourier space is used, i.e.:

(∆τ)2 =

∫

τ 2 | G(τ) |2 dτ
∫

| G(τ) |2 dτ , (3.8)

(∆ω)2 =

∫

(ω − ω0)2 | S(ω) |2 dω
∫

| S(ω) |2 dω , (3.9)

where ω0 is the frequency of the maximum in the power spectrum. Since G(τ)

is the Fourier transform of S(ω) it is easy to show that the following reciprocal

relation holds between bandwidth and correlation time:

∆ω∆τ =
√
2/2 . (3.10)

As a consequence, the lowest detectable frequency and the elementary unit of

the frequency scale (δν) are cut off due to the maximum displacement of the

moving mirror, since the time delay between the two interfering beams is limited

to ∆τmax = 2∆x/c. Thus δν = (2
√
2∆x)−1 (in cm−1 units). Similarly, the

bandwidth is reduced by the finite stepsize of the moving mirror, δ to ∆ν =
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(2
√
2δ)−1.

Briefly summarizing, the frequency distribution of the intensity can be mapped

by the spectrometer to a measurable quantity: the path dependent intensity

(equivalent to the autocorrelation function of the light) whose Fourier transfor-

mation provides the frequency distribution of the intensity. The imperfectness of

this mapping (it is discrete and limited to finite scale) introduces cut off both at

high and low frequencies.

3.5 Optical conductivity measurements under hy-

drostatic pressure

Optical spectroscopy under hydrostatic pressure in the far infrared (FIR) range is

not a commonly used technique. In order to measure the optical conductivity of

a material placed into a pressure cell, the basic requirements are that the inserted

window has to be sufficiently large, transparent and should not be damaged by

high pressures.

Sufficient size means that the radius of the window is larger than both the

spotsize of the incoming light and the maximal wavelength of the radiation. Oth-

erwise the diffraction become strong as the wavelength approaches the window

size. The hardness and the almost perfect transparency in the whole spectrum

makes diamond to be the best candidate for such an optical window. It has only

one multi-phonon absorption in MIR between 1500 and 2700 cm−1. This trans-

parency is only valid for natural diamond because artificially grown diamonds

contain nitrogen and are more absorbing. Zafir could also be an alternative by its

hardness but it has absorptions in FIR, too.

A widely used equipment for high pressure optical studies is the diamond anvil

cell. It can be applied up to extremely high pressures, typically several hundreds

of kbar. In this device two conical shaped diamonds are pressed against each other

with the pressure medium in between – forming an anvil-like shaped object as it

is visualized in Fig. 3.9. However, the free surface of the diamonds (the window

size) is small, it corresponds only to 100− 150µm in diameter, which introduces

a low-frequency cutoff about 100 cm−1.
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Figure 3.9: The sketch of the so-called diamond anvil cell.

Figure 3.10: Our self designed optical pressure cell. The window size is determined
by the diameter of the conical shape boring at the top of the side screw where the
diamond sits.

We designed an optical pressure cell in which a large cylindrical shaped di-

amond (diameter: 3mm, length: 2mm) is embedded in a stainless steel body.

There is a conical shaped hole through the screw, which fixes the diamond in the

cell. The opening angle of the whole is 28◦ and its diameter is 1.5mm at the

narrow end where the diamond is placed (see Fig. 3.10). The highest pressure

acts on this part of the cell. Notice, that it is only 4/3 times larger than the

hydrostatic pressure inside of the cell. This means that the range of applicability
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of such a device is close to that of the self-clamping type pressure cells (presented

in 3.2) made of the same material. We tested our design to operate safely up to

30 kbar without any deformation. In most of the correlated systems the interest-

ing phenomena appear in this range. Compared to the diamond anvil cells we win

a factor of 10 in the window size, i.e. in the low-frequency cutoff.

The sample lies on the inner face of the diamond, so it is not straightforward to

find a good reference. As the window size of the cell is too small one cannot place

a mirror next to the crystal. Instead, we use the light reflected back from the front

surface of the diamond as a reference signal. In order to separate the reflection

from the front and back surface (the latter is the diamond-sample boundary) the

diamond is slightly wedged with an angle of 2◦ between the two faces. This small

angle results in a ∼ 10◦ angular deviation between the reflection from the back

and the front surface due to the large refractive index of the diamond. It means

that only one of the reflections can hits the spherical mirror SM#2. We can

switch between the images of the front and back face by a ∼ 7◦ rotation of the

pressure cell. It is clear that the opening angle of the cone plays crucial role in the

experiment. The total angle covered by the incident and reflected light is α = 15◦,

as shown in Fig. 3.7. Together with the 7◦ rotation of the cell we end up with an

opening angle of the cone at least 22◦.

Fig. 3.11 shows the typical reflected intensity from the back and front surface

of the window. The frequency dependence of the higher intensity, reflected from

the front surface, is due to the dispersion of the optical elements including the

synchrotron source. The dispersion of the beam reflected from the back surface is

modified in the range of 1500− 2700 cm−1 by the multi-phonon absorption of the

diamond. Since the refractive index of the diamond is almost real and frequency

independent (nd ≈ 2.43−1.5/ω(cm−1)) the intensity reflected from the front face:

Rf (ω) = S(ω)

∣

∣

∣

∣

nd(ω)− 1

nd(ω) + 1

∣

∣

∣

∣

2

≈ 0.17S(ω) , (3.11)

while the reflected fraction from the diamond-sample boundary:

Rb(ω) = S(ω)(1−Rf (ω))2
∣

∣

∣

∣

ns(ω)− nd

ns(ω) + nd

∣

∣

∣

∣

2

≈ 0.68

∣

∣

∣

∣

ns(ω)− 2.43

ns(ω) + 2.43

∣

∣

∣

∣

2

S(ω) , (3.12)
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Figure 3.11: The reflection from the front and back surface of a diamond is in-
dicated by red and blue graph, respectively. The intensity vanishes for the light
going through the diamond as it is seen in the grey patterned region.

where ns is the refractive index of the sample and S(ω) is the power spectra of

the incident beam. Since the diamond is wedged the multiply reflections between

the two faces are scattered out of the optical path: the light doubly reflected by

the diamond-sample boundary is deviated with about 10◦ relative to the singly

scattered one.

The result of the measurement is the ratio of the two quantities (Rb/Rf )

which is proportional to the reflectivity of the sample relative to the diamond,

Rs/d(ω) =
∣

∣

∣

ns(ω)−2.43
ns(ω)+2.43

∣

∣

∣

2

. Instead of this we are interested in the absolute reflectivity,

Rs(ω) =
∣

∣

∣

ns(ω)−1
ns(ω)+1

∣

∣

∣

2

. In order to directly calculate Rs one has to know the complex

ns. Although only the real quantity, Rs/d is measured one can determine Rs in a

iterative way starting with a reasonable initial form of the real (or the imaginary)

part of ns(ω). The steps of the iteration are:

1. calculate the imaginary (or the real) part of ns(ω) by Kramers-Kronig trans-

formation,

2. evaluate Rs/d(ω) and compare it to the measured value,

3. change the real (or the imaginary) part of ns(ω) to minimize the difference.
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The iteration has to be continued till Rs/d(ω) is approached in a suitable man-

ner. From the resulting ns(ω) both reflectivity and conductivity can be directly

calculated.

For the proper measurement both the sample and the reference mirror have

to be in the focus when the signal is recorded. However, in the present case this

criterion is cannot be held since the front and the back surface are separated by

the 2mm long diamond. The enhancement of the spotsize due to the out-of -focus

position is shown in Fig. 3.12:

Figure 3.12: The enlargement of the spotsize on the two reflecting surfaces due to
the out-of-focus position. Left panel / right panel: the focus is between / behind
the two boundaries.

The angles and distances in the drawing describe the situation in vacuum but

it applies for the diamond, as well. Though the large value of diamond refractive

index results in a considerable decrease of the solid angle of the incident beam, it

also increases the optical path and these two effects exactly compensate each other.

The enhanced spotsize on the front and back surface is df = F + (l + w) · tanα
and db = F + w · tanα, respectively. The best alignment is when the focus is

situated on the back face, in our case it corresponds to D = df − F ≈ 0.5mm

increase of the front reflection diameter. Thus, the spotsize has to be decreased

below 1mm by the adjustment of the first blende. In spite of the reduced beam

diameter some misalignments could still lead to some reflection from the wall of

the cone. This divergent contribution is cut off by the second blende having the

same aperture size as the first one.

The experimental method presented above for the FIR reflectivity measure-

ments under pressure with the application of diamond reference is somewhat ide-
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alistic. Further complications due to the liquid pressure medium (forming a thin

layer between the diamond and the sample) and small change in the sample po-

sition (caused by thermal expansion) will be discussed in Chapter 8.

The measurement of the reflectivity of a crystal both relative to the vacuum

and a well-known material could be a way to avoid of the Kramers-Kronig trans-

formation. Thus, the use of a diamond reference can have a further application

beyond the high pressure experiments. For the details of the method see Chapter

7.



Chapter 4

Experimental results and analysis

The experimental investigation of BaVS3 has been performed in a strong research

collaboration between my home laboratory under the supervision of Prof. György

Mihály and Prof. László Forró’s group at the EPFL. The transport measurements

(resistivity and thermoelectric power) have been done in these two laboratories.

The optical conductivity results have been obtained in cooperation with Prof.

László Mihály in Brookhaven.

4.1 Electrical conductivity and its anisotropy

4.1.1 Ambient pressure data

The transport properties can be used to qualify BaVS3 crystals. The characteristic

properties of a stoichiometric BaVS3 are observable in the resistivity curve of

Fig. 4.1.1 At room temperature it has a very high but metallic like resistivity

which is about 35 times larger than that of the vanadium metal. It decreases

almost 20% down to 140K where it reaches a minimum and has an upturn (dρ/dT

becomes negative) inside of the metallic phase. It increases up to the double of

its room temperature value before going through a metal to insulator transition

at TMI = 70K. The transition temperature is defined by the position of the sharp

peak in the logarithmic derivative of the resistivity as shown for various pressure

1As a convention, a label at the top right corner of the graphs will identify the samples on
which the measurements were performed.
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in Fig. 4.3. The weak change of the slope at Ts = 250K indicates the onset of

the structural transition. The metal-insulator transition is accompanied with a

dramatic enhancement of the resistivity which changes nine order of magnitude

between 70K and 20K.

Besides the chain (c-axis) direction, we have also measured the conductivity

in the perpendicular plane (a − b plane) by Montgomery method. The c − a

anisotropy is σc/σa ≈ 3.4 in the metallic phase and only slightly increases in the

insulating state as indicated in the lower panel of Fig. 4.1. Inside of the a − b

plane the conduction is isotropic.

Figure 4.1: Upper panel: the logarithmic plot of the c-axis resistivity of BaVS3.
The linear plot of the inset focuses on the metallic phase. Lower panel: the tem-
perature dependence of the c− a conduction anisotropy.

Over the range previously investigated by numerous groups we have extended

the resistivity measurements up to 700K. The high-temperature part is nearly

linear but the resulting zero temperature intersection is very high with the value

of RT=0K ≈ 0.4mΩcm.
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Figure 4.2: The resistivity of BaVS3 in a range extended far above room temper-
ature.

4.1.2 High-pressure data

The metal-insulator transition is very sensitive to the applied pressure. The higher

is the pressure the metallic phase is more and more extended and the insulator

is suppressed. The resistivity minimum is also shifted towards low temperatures

and the anomalous metallic range (where dρ/dT < 0) becomes narrower. Above

a critical pressure, pcr ≈ 21 kbar the metal is stabilized over the whole tempera-

ture range. All these features can be followed in Fig. 4.3. Concerning the room

temperature behaviour the resistivity shows gradual decrease with a diminishing

rate towards higher pressures and with a total change of ∼ 25% at p = 22 kbar

but without any signs of pressure induced transition (see Fig. 4.4). The c − a

anisotropy, measured in a smaller range of pressure, decreases 30% under 10 kbar.

The evolution of the metal-insulator phase boundary can be quantitatively

derived from the resistivity curves. The transition temperature is identified with

the sharp peak in the logarithmic derivative as it is presented in Fig. 4.5.

The Arrhenius plot in Fig. 4.6 gives further insight into the nature of the in-

sulating state. The resistivity is activated-like and roughly follows the form of

ρ(T ) = ρ0 exp(
∆ch

2kBT
).2 Under hydrostatic pressure the charge gap is suppressed.

The ratio, ∆ch/kBTMI ≈ 10 is unusually large and pressure independent. Al-

though BaV S3#2 was studied in finer steps of the pressure, BaV S3#1 was found

to be cleaner in the sense that its resistivity did not show any kind of saturation at

2In our notation ∆ch is the full energy separating the conduction and the valence band.
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Figure 4.3: The resistivity in the metallic phase of BaVS3 under various pressures.

Figure 4.4: The pressure dependence of the relative change of the resistivity at
room temperature strictly reproducible from sample to sample. The inset shows
the pressure dependence of the anisotropy in a smaller range of pressure.

low temperatures related to impurity conduction. We used this sample to derive

the value of the charge gap.
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Figure 4.5: Logarithmic derivative of the resistivity under different hydrostatic
pressures.

Figure 4.6: The resistivity in the insulating phase of BaVS3 under different pres-
sures.

4.2 Thermoelectric power

4.2.1 Ambient pressure data

In most cases, during the investigation of thermoelectric power the resistivity

of the samples were simultaneously measured. Thus, the results have been ob-

tained on qualified crystals. The overall behaviour of the TEP (shown in Fig.

4.7) between T = 70K and 670K is characteristic of a metal with dominantly
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electron-like charge carriers. However, its absolute value (S ≈ 25µV/K at room

temperature) is remarkably higher than that of ordinary metals (SAu ≈ 2µV/K,

SAg ≈ 1.5µV/K and SCu ≈ 1.8µV/K). Some anomaly is observable in the TEP

around 150K where the minimum appears in the resistivity. At the metal to

insulator transition the Seebeck coefficient radically drops to zero and changes

sign.

Figure 4.7: The thermoelectric power of BaVS3 in an wide range of temperature.

4.2.2 High-pressure data

In agreement with the pressure induced enhancement of the conductivity the de-

crease of the TEP with increasing pressure also suggests the strengthening of the

metallic character. This tendency can be followed in Fig. 4.8 where a represen-

tative set of the data are shown. The transition temperature, in this case simply

identified with the temperature where the curves change sign, is gradually shifted

to lower temperatures as the pressure is increased and finally suppressed above

pc ≈ 21 kbar.

An uncertainty in the absolute value of resistivity has no effect on the gap

value derived from the Arrhenius plot. In contrast, the Seebeck coefficient of an

intrinsic semiconductor is proportional to the gap:

S(T ) =
kB
e
· µe − µh

µe + µh

∆ch

2kBT
=
kB
e
· ∆TEP

2kBT
, (4.1)
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Figure 4.8: Representative set of the thermoelectric power in the metallic phase of
BaVS3 under various pressures.

where µ is the mobility. Thus a systematic error of the absolute value is trans-

mitted from one to the other. The relative change of the TEP as a function of

pressure (Fig. 4.9) is identical for all the samples, thus in order to reduce the

systematic error in the absolute values we normalized the TEP of the samples

at room temperature to the value obtained from the measurements performed in

vacuum (see 3.3).

Figure 4.9: The pressure dependence of the relative change of the thermoelectric
power at room temperature for four different samples.

According to Eq. 4.1 the TEP of a semiconductor is expected to be inversely

proportional to the temperature. In our case it is valid only in a limited range
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of temperature at every pressure as it is visible in Fig. 4.10. (These intervals

are: 65 − 44K, 62 − 44K, 48 − 37K, 42 − 28K, 27 − 20K and 17 − 13K for

1 bar, 2 kbar, 7.5 kbar, 10 kbar, 15 kbar and 18 kbar, respectively. Their width

are all around TMI/4.) These regions are satisfactorily wide to determine the

gap value by linear fits. In contrast to the resistivity, which only sensitive to

the numbers of thermally excited carriers, the Seebeck coefficient has opposite

sign for electrons and holes. Therefore the gap detected by the two methods may

differ and that one obtained from thermoelectric power can be necessarily smaller:

∆TEP = µe−µh

µe+µh
∆ch. However, we found that ∆TEP ≈ 2∆ch which cannot be

explained in the simple approach of semiconductors. In the following we consider

only the pressure dependence of ∆TEP and normalize its absolute value to the

gap derived from resistivity measurements. (We will see in 5.2 that the gap values

obtained from resistivity and optical conductivity are in agreement with each

other.)

Figure 4.10: The thermoelectric power in the insulating phase of BaVS3 under dif-
ferent pressures. Notice that the p = 18 kbar graph is shifted to higher temperature
by 0.02K−1.
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4.3 Optical conductivity in the infrared region

4.3.1 Ambient pressure data

The frequency dependent reflectivity data are shown in the left part Fig. 4.11.

(As it was discussed in details in 3.4.1 in optical reflectivity studies where the

wavelength of the light is comparable to the sample size, in the final step of the

measurement the crystal has to be in-situ evaporated with gold in order to obtain

a good reference. In our experiments this method was necessary below 100 cm−1.)

The curves measured at T = 300K and 70K reflects metallic behaviour at high

temperatures: the reflectivity tends R → 1 approaching zero frequency. At low

frequencies these curves were extrapolated by the Hagen-Rubens law characteristic

of metals:

R ≈ 1− 2

√

2ε0ω(s−1)

σ0
= 1− 2

√

4πω(cm−1)

Z0σ0
, (4.2)

where Z0 = 377Ω is the so called surface impedance and σ0 = σ(ω → 0). The

fits fairly follow the overall shape of the curves apart from some local features like

the small phonon peak at 100 cm−1 and the minimum around 30 cm−1. (Notice,

that the frequency scale is logarithmic which enlarges the low-frequency part. The

reflectivity has to approach 1 infinitely far for the same reason.) The dc conduc-

tivity values obtained from the fits are σ0 = 710Ω−1cm−1 and σ0 = 370Ω−1cm−1

for T = 300K and 70K, respectively. It is to be noted that the polarization of

the synchrotron light was arbitrary relative to the crystallographic directions, and

since there is a conduction anisotropy of (σc/σa ≈ 3.4), the above absolute values

are uncertain within a factor of 3. These have to be compared to the results of the

dc transport experiments measured along the chain direction: σdc = 1400Ω−1cm−1

at room temperature and σdc = 700Ω−1cm−1 just above the transition.

In the insulating phase the low-frequency reflectivity is constant and due to

the vanishing electronic background the phonons sharpen out. The dominant

one appears at 100 cm−1 but a series of smaller ones can be also recognized be-

low 400 cm−1, especially in the lowest temperature curve as indicated by arrows.

Towards higher frequencies the difference between the metal and the insulator
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disappears and above 700 cm−1 all the graphs essentially go together. After the

adequate low-frequency extrapolation of the reflectivity curves (Hagen-Rubens

law for the metal and R(ω → 0) = constant for the insulator), the frequency de-

pendent conductivities were calculated by Kramers-Kronig transformation. The

results are presented in the right plot of Fig. 4.11. The most remarkable obser-

vation is the complete suppression of the low-frequency spectral weight, i.e. the

presence of a gap in case of the T = 60K and 10K curves. This is a direct evidence

for the metal-insulator transition. Following a gradual increase the conductivity

reaches a maximum at a frequency ∼ 530 cm−1 which assigns the value of the gap

found to be ∆ch = 530cm−1 = 750K for both temperatures. (A maximum around

350 cm−1 may be disturbing but it is related to a sharp phonon peak.)

Figure 4.11: Left panel: Infrared reflectivity of BaVS3 at four different tempera-
tures. The grey lines are the Hugen-Rubens extrapolations of the metallic curves
and the arrows indicate the phonons. Right panel: Infrared conductivity of BaVS3
at the same temperatures.

4.3.2 High-pressure data

We have investigated the IR optical conductivity of BaVS3 up to p = 26 kbar.

A typical set of reflectivity data measured above and below the phase transition

is shown in Fig. 4.12. There is a large frequency dependent background super-

imposed on the data, which indicates that in spite of the application of wedged

diamond window some kind of interferences still remains. The source of the inter-
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ference and the procedure of its elimination from the data are discussed in details

in Chapter 8. Despite the large baseline the opening of the gap below about

300 cm−1 spectrum.

Figure 4.12: FIR optical reflectivity of a BaVS3 sample embedded in the pressure
cell. The two stacks of red and blue curves are measured at various temperatures
in the metallic and insulating phase, respectively. Each curve is affected by an
interference related oscillation.

Fortunately, after the elimination of the interference, the basic information

of the reflectivity curves are preserved at each pressure. Fig. 4.13 shows the

collection of the reflectivity results together with the conductivity curves obtained

by Kramers-Kronig transformation.

The conductivity curves reflect that the region where no spectral weight is

present, is shifted to lower frequencies as the pressure is increased. However, even

after the baseline subtraction some oscillation is still superposed on the reflectivity

curves. We smoothed out the oscillation in the reflectivity by interpolation. Fig.

4.14 shows the smoothed reflectivity together with its Kramers-Kronig transform

for the data set shown in Fig. 4.12. This procedure supplies reasonable results and

allows the determination of the pressure dependence of the gap. The frequencies

at which the gap opens are labelled with circles on each curve of Fig. 4.15.

The raw data presented in Fig. 4.12 shows that there is no measurable differ-

ence between the reflectivity curves recorded in the insulating phase at different

temperatures. This is in good agreement with the ambient pressure results where
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Figure 4.13: Left panel: Reflectivity in the insulator phase of BaVS3 at five dif-
ferent pressures. The grey lines indicate the ambient pressure data at T = 300K
and 60K previously shown in Fig. 4.11. Right panel: Conductivity of BaVS3 at
the same pressures.

Figure 4.14: The raw and smoothed curves of reflectivity together with their
Kramers-Kronig transformed parts in the insulator phase.

the reflectivity was found to be roughly the same at T = 60K and 10K resulting

in the same gap value. It is also supported by the detailed analysis for the in-

cell ambient pressure data where the reflectivity is measured in fine steps of the

temperature (see Fig. 4.16).

As it is seen in the figure the opening of the gap is accompanied by the sharp-

ening of the dominant phonon in the insulating phase.
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Figure 4.15: Left panel: The smoothed reflectivity in the insulator phase of BaVS3
at five different pressures. The grey lines indicate the ambient pressure data at
T = 300K and 60K. Right panel: Conductivity of BaVS3 at the same pressures.

Figure 4.16: The conductivity of the insulating phase with the smooth curve ob-
tained for the T = 64K data at several temperatures.

Summarizing the results, we observed a sudden jump in the low-frequency part

of the spectra at the transition temperature at all pressures investigated. At the

highest pressure of our investigation, p = 26 kbar, neither the opening of the gap

nor the sharpening of the phonon peak could not be observed indicating that the

material remains metallic as expected from the transport studies.
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4.4 Magnetotransport experiments under pres-

sure

4.4.1 Shifting of the transition by magnetic field

We have already realized that the metal-insulator transition is quite sensitive to

the applied hydrostatic pressure. Since the transition has magnetic character (as

mentioned in Chapter 2) the question emerges whether the transition temperature

can be equally suppressed by the magnetic field. It turns out that even a magnetic

field as high as 12T acts on a much smaller energy scale. The transition is

suppressed only with ∆TMI ≈ 0.35K in 12T. We can also combine the application

of pressure and magnetic field. The effect is somewhat stronger under pressure:

∆TMI ≈ 0.53, 0.7, 0.83 and 0.9K at p = 1.4, 7.5, 12 and 15 kbar, respectively (see

Fig. 4.17). The temperature of the zero field transitions in the same order are

TMI = 70, 66, 49, 39 and 32K.

Figure 4.17: Left side: The normalized logarithmic plot of the resistivity. The
red curves, measured in 12T, are shifted due to the magnetic field with ∆TMI =
0.35, 0.7, 0.9K relative to the zero field ones for p = 1bar, 7.5kbar, 15 kbar, respec-
tively. Right side: The logarithmic derivative of the same resistivity curves with
sharp peak at the phase transition.

One can make another observation: the shape of the resistivity in a wide range

of the transition is the same either with or without applied magnetic field, i.e. the

12T curves are the shifted counterparts of the zero field ones. The other way of the
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investigation is the measurement the field dependence of the resistivity at various

temperatures. The magnetoresistance is very weak, under the limit of detection

at high temperatures (above 140K) and becomes larger when the transition is

approached, as it is evidenced by Fig. 4.18.

Figure 4.18: Field dependence of the resistivity at various temperatures under the
lowest and the highest pressure of the above set.

Furthermore, it follows a purely quadratic behaviour, namely ∆ρ/ρ = −α(T )H 2.

In the 12 T measurements we have found that the magnetic field does not

play any other role than the suppression of the transition, which results in a shift

of the whole resistivity curve in the vicinity of the transition. It is a plausible

assumption that any smaller field acts on the resistivity in the same way. If the

resistivity depends on the magnetic field only through the transition temperature

the following relation holds:

ρ(T,H, p) = ρ([T − TMI(H, p)], p) (4.3)

for fields up to Hmax = 120 kG. The relation ρ(T,H) = ρ[T − TMI(H)] means

that changing the magnetic field at T = T0 from zero to H0 is equivalent to the

motion on ρ(T,H = 0) curve from T0 to T0 −∆TMI(H0). We notice it here that

the changes in the transition temperature derived from the logarithmic derivatives

are the same which are needed to move the resistivity curves to fit on each other.

After considering the power series expansion of ρ(T,H, p) at a given pressure:
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∆ρ(T,H)

ρ(T )
=

1

ρ(T )

∞
∑

1

(−1)n
n!

∂nρ(T )

∂T n
∆T n

MI(H) , (4.4)

a more accurate analysis can be performed. This is shown in Fig. 4.19 where

∆ρ(T,Hmax)/ρ(T ) and Eq. 4.4 till second order are simultaneously plotted. For

each pressure the former is simply obtained from the temperature dependence

measured in Hmax and in zero field while the latter is calculated using the zero

field temperature dependence and the value of ∆TMI(Hmax) determined by the

logarithmic derivatives. Their correspondence is obvious.

Figure 4.19: Analysis of the temperature dependence of the relative magnetore-
sistance at three pressures: the directly measured ∆ρ(Hmax)/ρ (red curve for
BaV S3#13 and orange for BaV S3#9), the results of the field sweeps (green open
triangles) and the calculated ∆ρ(Hmax)/ρ in first and second order of ∆TMI(Hmax)
(dash dotted line and blue curve, respectively).

The first order expansion (plotted in Fig. 4.19, too) also gives a good approx-

imation except in the narrow vicinity of the transition. In the region where the

first order approximation is valid (i.e. ∆ρ(T,H)
ρ(T )

= − 1
ρ(T )

∂ρ(T )
∂T

∆TMI) the field depen-

dence of the transition shift is simply proportional to the field dependence of the

magnetoresistance which was found to be quadratic at every temperature. Thus,

the relative shift of the transition has the following form:
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∆TMI(H)

TMI

=
α(T )

TMI
∂lnρ(T )

∂T

H2 = −βH2 . (4.5)

While β is directly obtained from the measured transition temperature shifts, the

analysis of the field dependencies supplies the value of α, and β can be calculated

from them, too. The pressure dependence of the coefficients is given in Fig. 4.20.

Figure 4.20: The value of the coefficient β at five pressures. The blue symbols
indicate the results obtained from the transition temperature shift in 12T while
the green symbols are the average of the results obtained from the field sweeps.

The results presented above are mainly based on the transversal magnetoresis-

tance in the chain direction (with the current flowing parallel and magnetic field

pointing perpendicular to the c-axis). At ambient pressure the anisotropy of the

magnetoresistance was also tested on BaV S3#9. The temperature dependence of

the a direction magnetoresistance (also in perpendicular field) is also plotted in

Fig. 4.19. Since the magnetoresistance is fully related to the shift of the transition

we expect it to be isotropic, as it has been experimentally found.

4.4.2 Magnetoresistance in the low-temperature pressure

induced metallic phase

We have found that the pressure is convenient for the coarse suppression of the

metal to insulator transition while with the magnetic field we can do the fine
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tuning. Our purpose is to shift TMI by pressure to such a low temperature that

the transition can be completely suppressed by fields lower than 12T. The Ar-

rhenius plot in Fig. 4.21 shows the resistivity under the required circumstances.

At 19.1 kbar the insulating phase is completely suppressed by a field between 4T

and 8T. The metallic behaviour in case of B = 8T and 12T is demonstrated in

the linear plot of the inset.

Figure 4.21: The Arrhenius plot of the resistivity in various magnetic fields under
19.1 kbar. The inset focuses on the high-field metallic curves.

For the 0 − 4T graphs TMI can be determined by the logarithmic derivative.

The peak in the derivatives is diminished and gradually smeared out with increas-

ing field as shown in Fig. 4.22.

The onset of a magnetic field induced transition is also evidenced by the mag-

netoresistance data measured at low temperatures. At T = 2.6K the resistivity,

after a 99% drop, reaches its metallic value around B = 6.5T (see Fig. 4.23).

The same can be noticed in case of the field dependence measured at T = 4.2K,

although the change is “only” 93% due to the lower initial value of the resis-

tivity in the insulating phase. We have a not so dramatic but still remarkable

magnetoresistance at least up to 30K.

In order to determine the critical magnetic field where the transition takes

place, we further analyze the magnetoresistance curves measured at T = 2.6K. In

Fig. 4.24 ∆R/R · B is plotted to enlarge the high-field behaviour. It shows that
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Figure 4.22: The logarithmic derivative of the resistivity for four different fields:
B = 0, 2, 3 and 4T.

Figure 4.23: The field dependence of the resistivity. The left scale corresponds
to the data measured at T = 2.6K and 4.2K while the right scale to the higher
temperature data. The arrow indicates the field value the sample is already inside
of the metallic phase.

following a radical decrease of the resistivity, there is a break aroundB = 5.8T and

then is saturates at the metallic value. We assign this break with the transition.

Till now, the dominant role of the magnetic field was the moving of the phase

boundary. Therefore, we have not got insight into the effect of magnetic field on

the scattering processes in the low-temperature metallic phase. If we stabilize the

metal solely by pressure but also take care of staying in a close vicinity of the

critical pressure, pcr ≈ 21 kbar, the magnetoresistnace will provide information

about the scattering mechanism. Fig. 4.25 shows the competition of a negative and



CHAPTER 4. EXPERIMENTAL RESULTS AND ANALYSIS 56

Figure 4.24: ∆R/R · B vs. B at 2.6K. The break of the slope indicate a field
induced transition, which occurs at Bc ≈ 5.8T.

a positive term. Both of them gradually weaken as the temperature is increased

and only the negative term survives above ∼ 30K. (The systematic error due to

the magnetoresistance of the thermometer is lower than 0.4%.)

Figure 4.25: The field dependence of the resistivity studied in a wide range of
temperature.

The large positive term appears in the same region where the zero field re-

sistivity can be characterized by the power-law temperature dependence. This

is shown in Fig. 4.26 by the double logarithmic plot of the temperature depen-

dent resistivity measured at p = 20.3 kbar. The data obtained for BaV S3#4 at a

slightly higher pressure, p = 22.5 kbar, is also presented. A power-law behaviour

with an exponent, n ≈ 1.25 is observed between 1.2K and 40K.
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Figure 4.26: The double logarithmic plot of the resistance of two samples. The
residual resistance is subtracted in both cases.

Figure 4.27: Double logarithmic plot of the resistance for different fields. The
residual resistance is subtracted in each case.

Finally, we present the resistivity data measured in various constant magnetic

fields (B = 4, 6, 12T) in the same interval of temperature. After the subtraction

of the residual resistance each of them follows a power-law behaviour with an

exponent around n = 1.2. The residual resistance subtracted is slightly field

dependent, it varies within 7%.



Chapter 5

Discussion

5.1 Nature of the metal-insulator transition

From phenomenologic aspect the TMI = 70K phase transition is well specified:

a transition from a high-temperature paramagnetic metal to a low-temperature

non-magnetic insulator, which is accompanied by the significant freezing out of

the spin degrees of freedom in the low-temperature state. However, there is no

microscopic description for the phase transition and the ordinary order parameters

are ruled out by the experiments. Based on a phase boundary analysis we point

out that the transition is of second order.

The shift of the transition temperature in presence of magnetic field was found

to be negative. The onset of an antiferromagnetic order below TMI is not sup-

ported by the experiments instead the development of a spin gap, ∆s was de-

tected either by NMR or neutron scattering measurements. The magnetic field

acts through the χH2/2 term of the free energy. Since we have a large Curie-

susceptibility in the metal, while the magnetic excitations are gapped in the in-

sulator, the low-temperature phase is suppressed by the application of magnetic

field. The H−T phase boundary has quadratic shape in moderate magnetic fields

and for pressures up to 15 kbar as we demonstrated in 4.4.1. Let us recall the form

of the H − T phase boundary given by Eq. 4.5:

∆TMI(H, p)

TMI(p)
= −βH2 , (5.1)

58
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where β was obtained from magnetoresistance measurements at different pres-

sures. Assuming the above form of the phase boundary is adequate also for higher

magnetic fields, one can deduce the critical field (Hc = 1/
√
β), which would com-

pletely suppress the transition. The high value of the critical field, Hc ≈ 1700 kG

at ambient pressure, is in accordance with the small shift of the transition tem-

perature. Furthermore, the pressure dependence of the critical field scales with

that of the transition temperature as it is pointed out in Fig. 5.1.

Figure 5.1: The pressure dependence of Hc (blue and green symbols are used in the
same sense as in Fig. 4.20). The transition temperature as a function of pressure
is also presented.

If we assume that a singlet-triplet gap has to be bridged over, then ∆s =

2gSµBHc and we can rewrite Eq. 5.1 in a dimensionless form:1

∆TMI(H, p)

TMI(p)
= −

(

2gSµBH

∆s(p)

)2

. (5.2)

The ambient pressure value of the spin gap based on this assumption, ∆s ≈ 250K

is identical with that one obtained from the NMR measurements (Knight shift

and T1 relaxation) of Ref. [8].2 The spin gap of the insulating state scales with

1In our notation ∆s is the entire energy needed for the excitation, not its half. This convention
will be followed in case of the charge excitations, too.

2On the basis of their neutron scattering experiment the same group reported a single spin
excitation energy what they also identified as a spin gap with a rather different value, ∆s ≈
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the transition temperature according to ∆s(p) = ξ · kBTMI with ξ ≈ 3.6, which is

close to the BCS ratio.

Eq. 5.1 can be reformulated in another meaningful way:

∆TMI(H, p)

TMI(p)
= −γ

(

gµBSH

kBTMI(p)

)2

. (5.3)

The dimensionless constant is be γ = 0.45±0.04 and it is independent of pressure

since the critical field scales with the transition temperature (see Fig. 5.1). The

invariance of γ means that the pressure does not modify the shape of the H − T
phase boundary. The same relationship describes the suppression of the transition

in spin-Peierls systems by a magnetic field, with very similar value of γ. From

theoretical side, it was predicted to be γ = 0.44 by Bulaevskii et al. [16] and

γ = 0.38 by Cross [17]. Experiments performed later verified that this H − T

phase boundary is universal both for organic [18] and inorganic [19] compounds

with γ = 0.41± 0.05.

The lowest order thermodynamic quantity which clearly shows non-analytic

behaviour at the transition is the temperature derivative of the susceptibility. It

has a large jump at TMI as it is shown in the right panel of Fig. 5.2.

Figure 5.2: The comparison of the specific heat and the temperature derivative of
the susceptibility in the vicinity of TMI (based on data taken from [20] and [21],
respectively).

10meV = 116K [15].
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On the basis of general thermodynamical reasoning, for a quadratic shape

phase boundary one can obtain the following relationship between the disconti-

nuities belonging to quantities of different order:3

∆

(

∂χ

∂T

)

= β∆C +
1

12βTMI

∆χ(3) , (5.4)

which implies that the jump of ∂χ/∂T has to be balanced by that of the specific

heat, C and the non-linear susceptibility, χ(3). The phase boundary parameter,

β is introduced in Eq. 5.1. Next we checked the validity of the above relation.

Although the specific heat is measured with poorer temperature resolution, it

is also suggestive to have a discontinuity as indicated in Fig. 5.2. The value

obtained for ∆C is smaller than it could all alone keep the balance (β∆C = (0.5±
0.1)∆(∂χ/∂T )), thus a fraction of ∆(∂χ/∂T ) has to be matched by ∆χ(3). The

high-field magnetization data of Ref. [22] show non-linearity only in the metallic

phase and the size of the discontinuity in χ(3) is sufficient to satisfy Eq. 5.4.

Though the strongest indicator of the transition, ∂χ/∂T , is a third derivative

of the free energy, the finite discontinuity of the specific heat in Eq. 5.4 confirms

that the transition is of second order. In case of second order transitions a further

relation can be derived (Eq. 9.14 in Chapter 9), which contains only the jump of

the specific heat and the derivative of the linear susceptibility:

β∆C = ∆(∂χ/∂T )/2 . (5.5)

Though the size of the specific heat discontinuity is a bit ambiguous, our obser-

vation is close to satisfy this relation, as shown in Fig. 5.2. The quantities in

Eq. 5.5 corresponds to the arrows drawn in the figure with β obtained from an

independent experiment (Fig 4.20 ambient pressure).

Besides the H − T phase boundary, the p − T transition line is also known.

Thus, one may raise the question whether the same kind of analysis can be carried

out in that case, too. The corresponding phase boundary differential equation is

the usual Ehrenfest relation:

3This is a phase boundary differential equation evaluated in the H = 0, T = TMI point with

the notation β = ∂2TMI

∂H2

∣

∣

∣

H=0
. The detailed derivation of the relation is given in Chapter 9.
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∂TMI

∂p
= TMIV

∆βV

∆C
, (5.6)

where βV is the volume thermal expansion coefficient and V is the volume. Since

the above quantities are only measured at ambient pressure, we can make the

analysis at p = 1bar similarly to the previous case, where we were restricted to

the H = 0 point. Using the value of the initial slope, ∂TMI/∂p ≈ −2.7K/kbar
and ∆C we would expect ∆βV ≈ −2.3 · 10−5K−1. However, for the first sight

the thermal expansion coefficient obtained by the derivation of the linear thermal

expansion by Ref. [11] shows a high negative peak instead of discontinuity. But

if we have a look at the raw data of the thermal expansion and notice that the

temperature resolution is only about 2K, we can state that the presence of the

required jump in the derivative cannot be excluded (see Fig. 5.3). In case of

susceptibility and specific heat the better temperature resolution makes it easier

to judge, since whole jump can be localized in a 2− 3K wide range for both.

Figure 5.3: The linear thermal expansion and the volume thermal expansion coef-
ficient of BaVS3 from Ref. [11].

Our argumentation, that the metal-insulator transition is of second order, has

recently got a direct verification. Inami et al. [23] found a structural character

of the transition by X-ray scattering which has been believed to be absent for a

long time. They observed a superlattice reflection appearing at TMI and gradually

developing below it, as it is typical of second order structural transitions (see Fig.
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5.4). Furthermore, they found that a symmetry breaking of the lattice occurs.

Figure 5.4: The temperature dependence of the superlattice reflection appearing
below TMI from Ref. [23].

In contrast to the high-temperature phase where all vanadiums are equivalent,4

in the low symmetry insulating state there are two different crystallographic sites

(VA and VB) and the vanadiums form an alternating chain along the c-axis: VA−
VA − VB − VB − VA − VA − VB − VB.

The anomalies in the thermodynamical and transport quantities make it obvi-

ous that the transition cannot be purely crystallographic but the electron system

is also involved. We will examine one by one the simplest type of electronic

orderings consistent with the X-ray results.

The onset of spin-Peierls (SP) order is supported by the low-field shape of the

H − T phase boundary and consistent with all of the measurements. This kind

of order appears in systems with quasi-1D crystal structure resulting in strong

exchange coupling between neighbours along the chain, while the exchange energy

(J) is negligible between sites at neighbouring chains. The transition can primarily

be driven either by the lattice or by the electron system. In the first case the

original Hamiltonian is usually the 1D antiferromagnetic (AF) Heisenberg model

with uniform first neighbour exchange coupling, J1. Since the exchange depends

on the distance between the atoms, the structural pairing causes a modulation of

4This is in contrast with early X-ray studies where the orthorhombic distortion was at-
tributed to inequivalent vanadium atoms forming a zigzag chain along the c direction, where
the orthorhombic distortion occurs at Ts = 250K.
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J1. This leads to singlet formation on the pairs. The illustration of this process

is shown in Fig. 5.5.

Figure 5.5: The “steps” of the spin-Peierls transition: I. equidistant vanadium
chain with uniform J , II. distorted vanadium chain with modulated J , III. dis-
torted lattice and singlet pairs.

The above approach would require J1 ≈ 430K for a transition which occurs at

T = 70K. In contrast, the susceptibility of BaVS3 above TMI is Curie type, i.e.

the spin-spin interactions are negligible in the metallic phase. Since the exchange

interaction is almost negligible in the metallic phase (Θ = 10K), we rule out that

the above model is applicable for BaVS3.

It was pointed out (see the references in [24]) that a relatively strong next

neighbour coupling, J2 > 0.24J1 is solely enough for singlet pair formation on

neighbouring sites, which is followed by the distortion of the lattice. However, this

requires the next neighbour overlap to be comparable with the nearest neighbour

one, which is not realistic for BaVS3. Although, this model is basically different

from the previous one, it results in the same ground state. In fact CuGeO3, which

is a good realization of the J1 − J2 model, has a rather similar phase diagram

to that of other spin-Peierls systems described in the framework of the 1D AF

Heisenberg model (see Fig. 5.17).

There is another way to modulate the exchange interaction. BaVS3 has a

twofold orbital degeneracy in the metallic phase. Since the crystal has 3 fold sym-

metry around the chain axis, we can choose from 6 different orbitals. Generally,

systems with orbital degeneracy cannot be treated by a pure spin Hamiltonian,
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but orbital operators have also to be involved. However, in a mean-field approach

for the orbitals one can derive an effective spin Hamiltonian, where the coefficients

of the spin operators depends on the expectation value of the orbital operators. 5

Expressed by the parameters of the Hubbard model, the kinetic exchange energy

has the form of Jkin ∝ t2

U
, which depends on the overlap of the orbitals. In case

of an orbital order it is not likely that the first neighbour overlaps are uniform

along the chain, i.e. there is an alternation of the exchange coupling. Fig. 5.6

illustrates schematically the mechanism of this orbitally motivated spin-Peierls

transition. The orbital order fundamentally changes the effective spin-spin inter-

actions. In the metal there are localized but independent spin moments, while the

low-temperature phase is a singlet insulator. Since ∆s ≈ 250K, one can estimate

the exchange coupling between the singlet forming sites to be J ∼ ∆s/2 = 125K.

Note that in BaVS3 indirect overlap through the p orbitals of the sulfurs dom-

inates as indicated in Fig. 5.6. As far as the order parameter is concerned, the

X-ray measurement cannot differentiate between the different form factor of A

and B orbitals, but detects the accompanying distortion of the sulfur octahedra.

Therefore, this kind of orbital order becomes indirectly observable in structural

studies.

Figure 5.6: The “steps” of the orbitally driven spin-Peierls transition: I. on an
equidistant vanadium chain the orbital order leads to an alternating exchange cou-
pling, II. formation of spin singlets on neighbouring sites, III. due to the singlet
pairing the lattice becomes distorted.

5For a detailed review of the topic see [24].
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We summarize the analogies between the properties of BaVS3 and the SP

systems:

1. The transition is of second order and from thermodynamical aspect it is

characterized by finite jumps in the specific heat and the derivative of the

susceptibility.

2. The transition becomes of first order in magnetic field beyond a critical

point. (This will be pointed out for BaVS3 in 5.2.)

3. The low-field dimensionless H − T phase boundary (when H and T is mea-

sured in units of the zero field transition temperature) is quadratic with a

universal coefficient, γ ≈ 0.45.

4. The gap in the spin excitation spectra, which is the order parameter of the

transition, is much smaller than the charge gap. (This will be shown for

BaVS3 in 5.2.)

5. The transition temperature decreases rapidly with increasing pressure. The

well-known example is (TMTTF )2PF6, where TSP is reduced in an average

rate of ∼ 2K/kbar.

6. The electron system is strongly coupled to the lattice as it is clearly mani-

fested in the structural character of the metal-insulator transition.

If the low-lying phase of BaVS3 is really a SP insulator, it has certainly the highest

transition temperature among the known compounds.

Two objections can be raised against the spin-Peierls scenario. The first is

that neutron scattering measurements suggest the onset of 2D AF order below

Tx = 30K with homogenous (FM) ordering along the chains. It is questionable

how the SP phase can be switched to this type of ground state. However, a change

in the character of the orbital order, possibly occuring at Tx = 30K may turn the

antiferromagnetic exchange coupling to ferromagnetic. The second is that spin-

Peierls transition usually happens between two insulating phase, while BaVS3 is

metallic at high temperatures. (The basic criterion is the presence of localized

moments.) However, the Curie susceptibility rather indicates the presence of
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localized electrons and the analysis of transport properties (will be given in 5.3)

also proves that the electron system is at the edge of a localized state.

Another possibility that the driving force of the transition is charge ordering

and thus the two non-equivalent lattice sites are simply VA =V4+δ and VB =V4−δ.

If it is the case, it should be certainly partial (δ < 1), because V5+ is nonmagnetic

and therefore charge order results in a modulation of the spin density, which has

not been observed by neutron scattering. This could not account for the radical

freezing out of the susceptibility. Furthermore, the onset of a spin gap remains

unexplained, too.

A purely orbital order is also unlikely for the same reasons. The spin degrees

of freedom must be basically involved to the transition.

Summarizing, we took into account the simplest electronic orderings consistent

with the structural distortion at TMI = 70K. We propose a picture of an orbitally

driven spin-Peierls transition.6

5.2 Extended phase diagram

We have applied several kinds of experimental techniques in order to explore the

p − H − T phase diagram of the material. We have rigorously proved that the

transition is of second order at ambient pressure. We believe that the phase

boundary obtained from our high-pressure transport and optical measurements

is the extension of the ambient pressure phenomenon, i.e. a continuous line of

second order transitions as a function of pressure. The same should be valid for

magnetic fields, too. The following arguments support the above assumption:

1. The peak in logarithmic derivative of the resistivity, the sign change of the

thermoelectric power and the gap opening observed in the optical spectra

coincide with the anomaly of thermodynamic quantities (jump in the specific

heat and the susceptibility derivative) at ambient pressure and in zero field.

6We demonstrated that the electron transport is nearly isotropic and the same is valid for
the susceptibility. However, these findings do not exclude the relevance of a 1D AF effective
spin model. The latter only means that the coupling is almost isotropic in spin space as it is
the case for SP systems. According to our knowledge no measurement has been reported about
the spatial anisotropy of the exchange coupling in BaVS3.
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2. Under hydrostatic pressure or in magnetic field, the transition shows up in

the same way in the resistivity, the thermoelectric power and the optical

spectra than at ambient pressure and in zero field.

3. The ratio of the spin gap and the transition temperature is independent of

pressure. (In this section we will show that the same is valid for the charge

gap.)

The p − T phase boundary based on our resistivity and thermoelectric power

measurements is presented in Fig. 5.7. It is almost linear up to 15 kbar, above

which it drops more steeply. The highest pressure, where the metal-insulator

transition was established is p = 19.1 kbar. Above p = 20.3 kbar the system was

found to be metallic in the whole temperature range investigated. We have just

emphasized that a continuous line of second order transitions of the same kind

is observed under pressure. We will come back to that point later whether this

picture can be held unlimitedly.

Figure 5.7: The p− T phase boundary on the basis of transport measurements.

What happens to the character of the insulating phase while it is more and

more suppressed? We could already realize the charge gap and the spin gap are

very different. The ratio of the gap and the transition temperature is unusually

large for the former, ∆ch/kBTMI ≈ 10, while it is around the BCS value with

∆s/kBTMI ≈ 3.6 in case of the latter. In 5.1 we have already discussed the evo-

lution of the spin gap with pressure which scales with the transition temperature
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at least up to 15 kbar. Now, we will focus on the charge excitations and analyze

the pressure dependence of the charge gap what we have investigated by trans-

port and optical conductivity measurements. The results are shown in Fig. 5.8.

Similarly to the spin gap, the charge gap vanishes proportionally to TMI , roughly

according to ∆ch(p) ≈ 10 · kBTMI . It is a central result because it justifies that

the nature of the transition is invariant in the region where these scaling relations

hold.

We note that the values of the charge gap determined by transport experiments

and optical spectroscopy agree within 20% in BaVS3.

Figure 5.8: The charge gap of the insulating phase vs. transition temperature. Left
side: the gap resulting from transport experiments. Right side: the gap derived
from the IR optical spectra.

In a semiconductor the static dielectric constant is described by the following

expression:

ε(ω = 0) = ε∞ +

(

ωp

∆opt

)2

, (5.7)

where ε∞ is the dielectric constant in the high-frequency limit and ωp is the plasma

frequency. A consistency check can be performed by inserting the measured value

of the parameters into Eq. 5.7. The real part of the dielectric function in the

insulator phase at ambient pressure is presented in Fig. 5.9. The static dielectric

constant is ε(ω = 0) ≈ 100 and ε∞ ≈ 1. The plasma frequency in the metallic

phase is ωp ≈ 5800cm−1 = 8300K (as it will be determined in 5.3). With these
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Figure 5.9: The real part of the dielectric function of BaVS3 at T = 60K and
10K.

numbers one obtain for the charge gap ∆opt = 830K, which agrees within 10%

error with the value determined from the conductivity curve.

The optical measurements have pointed out that going through the phase

transition the charge gap opens very sharply. At ambient pressure it reaches its

zero temperature value already at T = 64K as shown in Fig. 4.16. The gap opens

rapidly also at higher pressures.

Next we discuss the high-pressure part of the phase diagram. The measure-

ments under 19.1 kbar and 20.3 kbar are the closest ones surrounding the region

where the insulator phase vanishes. In order to fine scan the intermediate range,

we applied magnetic field. The critical field, which could completely suppress the

transition, is Bc = 170T at ambient pressure. Furthermore, we showed that Bc

decreases proportionally to TMI with increasing pressure. Thus, at p = 19.1 kbar

where the transition is pushed down to TMI = 7.5K, we would expect a critical

field Bc ≈ 18T, if the shape of the H − T phase boundary does not vary dramat-

ically. However, it does. The smooth decrease of the transition temperature with

magnetic field is broken around B = 5.8T and it suddenly drops down to zero

which suggests that the character of the transition changes at this point as shown

in Fig. 5.10.

This is a further similarity to spin-Peierls systems, where it was found that

the dimer phase boundary in low fields is of second order, but above a critical

point, (H∗, T ∗) it becomes of first order and the transition temperature sharply

drops to zero. Fig. 5.17, presented at the end of this Chapter, summarizes the
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Figure 5.10: The H −T phase boundary in the vicinity of pcr ≈ 20 kbar. The gray
line shows the behaviour expected from the low-field extrapolations. The red line
shows how the transition occurs presumably.

theoretical predictions and also shows experimental results obtained for several

SP compounds.

Concerning Cross’s theoretical predictions, which fairly agrees with the ex-

perimental results on several SP compounds, the location of the critical point

can be related to the zero field transition temperature, TSP (0) according to the

following relations: T ∗ = 0.77TSP (0) and µBH
∗ = 0.69kBTSP (0).

7 In BaVS3

at p = 19.1 kbar the transition occurs at TMI = 7.5 ± 0.4K without mag-

netic field, thus the corresponding location of the critical point should be at

H∗ = 7.2 ± 0.4 · 104G and T ∗ = 5.8 ± 0.3K, which is very close to our obser-

vation.

Furthermore, in high-field magnetization measurement performed at ambient

pressure, Shiga et al. [27] observed a metamagnetic transition (a positive jump

in the magnetization) around 50T, which is only 25% lower than what would be

expected from Cross’s theory. They measured the magnetization between 4.2K

and 40K at different temperatures and found that the field, where the transition

takes place, is independent of temperature. They emphasized that the transition

is accompanied by a ∼ 10T wide hysteresis, i.e. it is of first order. All these

7It also gives a good description of CuGe3, although the mechanism of the spin-Peierls
transition is rather different in this compound.
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results support a spin-Peierls-like transition.

This scenario explains the collapse of the second order phase boundary in

presence of magnetic fields but still allows that the transition can be suppressed

to any infinitesimal temperature by the applied pressure. The complete p − T

phase diagram looks like as it is presented in Fig. 5.11.

Figure 5.11: The p − T phase diagram of BaVS3. It can be divided into four
regions: the normal part of the metallic phase (∂ρ/∂T > 0), the precursor region,
the singlet insulator and the underlying 2D antiferromagnet. The phase boundary
between the last two states is not known.

Since we also have explored the effect of magnetic field on the transition, we

can construct the whole p−H−T phase diagram of the system. It has to be note

that we rely on the low-field behaviour and the higher field regions are obtained

by extrapolation. In the pressure range of p = 0− 15 kbar the ratio of the highest

applied field and the critical field moves between 7% and 17%. However, in spin-

Peierls systems the low-field quadratic behaviour gives a good approximation of

the phase boundary up to the critical point as it is shown in Fig. 5.17 in case of

CuGeO3.
8 The critical line in Fig. 5.12, along which the transition becomes of

first order, corresponds to the criterion of Cross, µBH
∗ = 0.69kBTSP (0, p), where

8This also verify the validity of the relation what we used to derive the spin gap, ∆s =

2gSµBH. In their notation the phase boundary has the form ∆TMI(H)
TMI

= −γ
(

gµBH
∆s

)2

with

γ = 0.384. Taking into account that ∆s/kBTMI ≈ 3.52, this is equivalent to Eq.5.3.
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Figure 5.12: The H−p−T phase boundary of the singlet insulator state in BaVS3.
The red lines show the region of the measurements.

TSP (0.p) is the zero field transition temperature as a function of pressure.

5.3 “Bad metal” phase

The contradiction between the metallic transport and the Curie-like susceptibility

(characteristic of localized moments) in the high-temperature phase of BaVS3 has

not been solved so far. If someone was impressed by the shape of the susceptibility

and the resistivity upturn (below Tmin = 140K ∂ρ/∂T < 0), and thus was sceptic

whether the high-temperature phase would be a real metal at all, the results of

the optical conductivity measurements should convince him.

Above TMI the reflectivity tends R → 1 approaching zero frequency as ex-

pected for metals. The low-frequency range was fitted by the Hagen-Rubens law

(R ≈ 1 − 2
√

4πω(cm−1)
Z0σ0

) both at room temperature and T = 70K. The results

were consistent with the dc conductivity obtained from transport experiments.9

We can try whether the entire shape of the reflectivity can be interpreted in the

simple Drude model. Fig. 5.13 shows the Drude fits for both temperatures.

9The optical measurements have been performed with arbitrary polarization in the a−c plane,
therefore the optical conductivity is a mixture of the conductivity along and perpendicular to
the chain direction.
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Figure 5.13: The frequency dependence of the reflectivity in the metallic phase of
BaVS3 at T = 70 and 300K. The dashed lines indicate the result of the Drude
fits. The gray lines are the low-frequency Hagen-Rubens fits.

The relaxation time, found to be τ ≈ 2.3 · 10−15 s at both temperature, is one

order of magnitude shorter than in normal metals like Cu, Ag, etc. The plasma

frequency is different in the two cases, ωp ≈ 1.5 · 1015 s−1 and 1.1 · 1015 s−1 at

T = 300K and 70K, respectively. The resulting dc conductivity values (σ0 =

ω2
pτ/4π) are about 70% of those determined by the Hagen-Rubens law since the

Drude fits underestimate the low-frequency reflectivity. Assuming that the charge

carrier density is one electron per site (n = 4.5 · 1021 cm−3), one can also derive

the effective mass in the Drude model (ω2
p = 4πne2/m∗) and finds m∗ ≈ 7me− at

room temperature.10 Although the Drude model gives only a rough description of

the metallic phase of BaVS3, the obtained small relaxation time and large effective

mass indicate that correlations are important not only in the insulating phase but

also in the metallic state.

10The carrier density could be determined from the conductivity sum rule, but in our case the
investigated frequency range is too narrow for this purpose, since the reflectivity is still as high
as R ≈ 0.2 at the highest frequency of the measurement.
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The overall shape of the temperature dependence of the Seebeck coefficient11

suggests the presence of propagating electrons. In a quasi-free electron model one

would expect the Seebeck coefficient linearly increasing with temperature:

Π = −π
2

3

kB
e

T

TF

, (5.8)

where the Fermi temperature is related to the effective mass and the density of the

carriers, kBTF = εF = ~2

2m∗ (3π
2n)2/3. For a quasi-free electron gas the one-electron

entropy has a quite similar form, S = π2

2
kB

T
TF

.

In contrast with the above limit, in case of strong electron-electron interactions

(at temperatures U À kBT À t), Chaikin and Beni [28] derived that the ther-

moelectric power is constant, since it measures the configurational entropy per

carrier (the single carrier entropy corresponding to the actual band filling) which

is saturated.

BaVS3 does not give a good realization either of the quasi-free electron picture

or a completely localized system. Fig. 5.14 gives a comparison of the entropy

(measured by H. Imai et al. [20]), the magnetic susceptibility (from Ref. [21]) and

the transport properties in the metallic phase of BaVS3.

Though the entropy increases above TMI its temperature dependence is not

linear. It is far from S = Rln4 even at T = 300K (which would correspond to

total liberation of the spin and orbital degrees of freedom), suggesting that in a

metallic picture the temperature is well below the bandwidth.

The magnetic susceptibility implies the localized character of the carriers. The

Curie constant is C = 0.25 emu/mole at room temperature. The spin only value of

the susceptibility12 with one electron per site would be Cs = 0.37 emu/mole, which

means that localized moments are present at about 70% of the vanadium sites.

(If we assume that each vanadium carries uniform magnetic moment, we obtain

peff ≈ 1.4 effective Bohr magneton number, instead of peff ≈ 1.73 corresponding

to the spin only value.)

If we enforce a metallic interpretation of the Seebeck coefficient, since it is

11From now on the thermoelectric power is marked by Π and S is reserved for the entropy.
12Although it is a good approximation in many 3d-systems, since the orbital moment is

quenched by the crystal field, it is undoubtedly a rough estimation in BaVS3, where the low-lying
e(t2g) doublet carries orbital momentum.
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Figure 5.14: Temperature dependence of the entropy, the Curie constant, the ther-
moelectric power and the resistivity in the metallic phase of BaVS3. The first two
are based on the data from Ref. [20] and [21].

roughly linear up to T = 700K (as shown in Fig. 4.7), we obtain TF ≈ 4000K. The

linear fit shown in Fig. 5.14 fairly approximates the data at higher temperature,

too. This value is one order of magnitude smaller than in good metals, like alkali

metals. The effective mass derived in this model is meff = 3me− . This is 2 times

smaller than what we obtained from the Drude fit.

Finally, we turn to the analysis of the resistivity. Above 140K ∂ρ/∂T > 0 and

the resistivity is almost linear in a wide range of temperature as it can be checked

in Fig. 4.2. However, a simple high-temperature electron-phonon scattering fails

to explain this behaviour since the corresponding residual resistivity would be
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extremely high, ρ0 ≈ 0.45mΩcm, which can be excluded by the high-pressure

measurements. On the other hand, the absolute value of the resistivity is very

large; it is about 35 times larger than that of the vanadium metal at T = 300K and

it is close to the Ioffe-Regel limit at T = 700K, i.e. the mean free path is reduced

to the range of the lattice constant. (The Ioffe-Regel criterion, ρ = ~a
e2

gives

1.5mΩcm minimal metallic resistivity with an average lattice constant of a = 5 Å.

This has to be compared to the resistivity at 700K, which is ρ = 1.15mΩcm.)

Below 140K there is an anomalous metallic region, where ∂ρ/∂T < 0. Fig.

5.14 points out that this anomaly is reflected in all of the measured quantities.

The enhancement inside of the metallic phase, which is present both in the en-

tropy and the Curie constant, suggests the appearance of additional degrees of

freedom. One possible explanation is that, the effective band occupancy changes

in this temperature range. (The increase of the entropy shows up also in the ther-

moelectric power, since it depends on the band occupancy for strong correlations.)

This is supported also by our observation that the plasma frequency is smaller at

T = 70K than at room temperature, which corresponds to a factor of 2 decrease

in the carrier concentration.

Summarizing our results about the metallic phase of BAVS3, we can conclude

that the system is situated at the edge of the metallic state with strong tendency

towards localization. The susceptibility perceives localized carriers while transport

and the optical properties imply that the electrons have anomalously short lifetime

(or mean free path) and large effective mass. We have already mentioned in

2.6 that the on-site Coulomb repulsion for d orbitals is U ≈ 1 eV. With the

approximated bandwidth,13 Weff ≈ 4000K = 0.34 eV the relative strength of the

correlation, U/Weff is around unity in BaVS3.

5.4 Quantum critical phenomena

Phase transition usually occurs when the thermal fluctuations are strong enough

to destroy the order of the low-temperature state. However, phase transitions can

also be induced at zero temperature by tuning some parameter (let us call it s)

13Which is half of the value predicted by band structure calculations [4].
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of the Hamiltonian by the application of pressure, magnetic field or by changing

the composition of the compound. In these kinds of transitions the disappearance

of the collective order is caused by quantum fluctuations and therefore they are

called quantum phase transitions. The observation of this phenomenon is not

restricted to absolute zero temperature. As far as the characteristic energy of

the quantum fluctuations is larger than the temperature they have noticeable

influence on macroscopic properties. Similarly to second order phase transitions,

the thermodynamical properties satisfy scaling relations. Close to the critical

value of the control parameter (scr), where the quantum phase transition occurs,

these quantities show power-law dependence on the temperature, while at zero

temperature they depend in the same way on the reduced control parameter,

(s − scr)/scr. This part of the phase diagram is called quantum critical region.

Not only thermodynamic properties but the conductivity is also predicted to follow

a scaling relationship by Ref. [29]:

σ(T, s) = ξ(s)−µ/νf(Tτ(s)) , (5.9)

where ξ(s) is the correlation length and τ(s) is the relaxation time, both diverging

at the quantum phase transition according to ξ(s) ∝ (s − scr)
−ν and τ(s) ∝

(s− scr)−zν . The dynamical exponent, z, which controls the critical slowing down

may vary but µ = 1 has been found to be universal for many systems. At zero

temperature Eq. 5.9 becomes simpler:

σ(s) ∝ (s− scr)µ . (5.10)

In some cases this scaling with the control parameter was directly observed at very

low temperatures (typically below 100mK) [30, 31]. Usually the power-law be-

haviour of the conductivity with a non-conventional exponent is the only indicator

for the presence of quantum critical fluctuations in a region where the transition

was sufficiently suppressed. In a Fermi-liquid the electron-electron interaction

results in a quadratic temperature dependence of the resistivity:

ρ(T ) = ρ0 + AT 2 , (5.11)
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where ρ0 is the residual resistivity due to impurity scattering and A is the electron-

electron scattering amplitude which is constant at low temperatures. This expres-

sion can remain valid in case of strong correlations, though A is enhanced similarly

to the effective mass. In the vicinity of a quantum critical point the scattering is

stronger due to the quantum fluctuations and therefore ρ(T )−ρ0 = ∆ρ ∝ T n with

an exponent 1 6 n < 2 over 1− 2 decades of the temperature as found in several

f -electron systems like CePd2Si2 [32], CeCu2Si2 [33], CeNi2Ge2 [33], YbRh2Si2

[34], and the d-electron system CaRuO3 [35].

In the above nearly antiferromagnetic systems the closeness of the antifer-

romagnetic quantum critical point is thought to be responsible for the anoma-

lous scattering. In most cases either the susceptibility or the specific heat were

also measured and found to follow a power-law behaviour predicted theoretically.

There are also several examples for nearly ferromagnetic systems (LiHoF4 [31],

MnSi [36]) which can be driven through a ferromagnetic quantum critical point.

As far as we know, quantum phase transition has not been observed yet from a

singlet insulator state to a paramagnetic metal.

We have demonstrated that the singlet insulator phase of BaVS3 can be sup-

pressed by hydrostatic pressure and we have explored the p − T phase bound-

ary. The highest pressure where the onset of the metal to insulator transition

was observed is p = 19.1 kbar with the corresponding transition temperature,

TMI = 7.5K. Under p = 20.3 kbar the transition, if exists at finite temperature,

takes place below 2K. On the other hand, the measurement at p = 22.5 kbar was

certainly above the critical pressure. We do not have an insight into the pressure

dependence of the low-temperature resistivity in the vicinity of the critical point,

but we can analyze the temperature dependent resistivity at the two nearest pres-

sures. In 4.4.2, the double logarithmic plot of the temperature dependence of the

resistivity showed that at the highest pressure the resistivity follows power-law

behaviour from 1K to 40K with an exponent n ≈ 1.25, while at p = 20.3 kbar

the exponent shows a slight magnetic field dependence. A more accurate analysis

can be carried out if we directly determine the temperature dependence of the

exponent in the different cases. Fig. 5.15 shows the exponent as a function of

temperature for the higher pressure and for the lower pressure both in zero field

and 12T.
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Figure 5.15: The exponent of the power-law behaviour characteristic of the low-
temperature resistivity vs. temperature. The dashed line corresponds to n = 1.25
in each case.

The resistivity at p = 22.5 kbar clearly follows ∆ρ ∝ T 1.25 up to 40K. In case

of the lower pressure, it turns out that the right description is not a slightly

changing exponent for different magnetic fields. Instead the exponent of the

power-law remains constant and the validity of this behaviour is restricted to

different range of temperature depending on the magnetic field. With increasing

field the region gradually extends and in B = 12T it is almost as wide as in

case of p = 22.5 kbar. The field dependence of the low-temperature magnetore-

sistance under p = 20.3 kbar, shown in Fig. 4.25, is composed of two terms. The

low-field negative contribution indicates that the metal to insulator transition is

not completely suppressed by the pressure (although it is below the range covered

by the experiment) and can be further suppressed by magnetic field. At higher

fields a positive term dominates which can be related to the enhanced scattering

amplitude approaching the critical point. This is supported by the fact that this

contribution only exists on the scale where the power-law behaviour holds.

We can finally conclude that the critical pressure is very close to 22.5 kbar
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in BaVS3. The transition from the singlet insulator to the paramagnetic metal

ground state is accompanied by quantum critical fluctuations in an extended range

of temperature in the vicinity of pcr. The magnetic field can also play the role

of the control parameter and the combined application of pressure and magnetic

field gives the opportunity to fine scan this region.

Figure 5.16: The p − T phase diagram of BaVS3 indicating schematically the
quantum critical region between the singlet insulator and the paramagnetic metal.
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Figure 5.17: Upper graph: Universal phase diagram of spin-Peierls systems [18].
D, I, U denote the dimer, the intermediate and the uniform phases. The lines
labelled with C, B and BBK are the theoretical curves of Cross, Bray and Bu-
laevskii et al. The experimental data are obtained for TTF-AuS4C4(CF3)4, TTF-
CuS4C4(CF3)4 and MEM-(TCNQ)2. Left lower panel: The phase boundary of
CuGeO3 [25]. The dashed line shows the extrapolation of the low-field quadratic
behaviour. Right lower plot: The phase boundary of (TMTTF)2PF6 compound
[26]. Red cross corresponds to the location of the critical point concerning Cross.



Chapter 6

Conclusion

6.1 Summary

The aim of my Ph.D. research was to explore the “magnetic field – pressure – tem-

perature” (H − p− T ) phase diagram of a vanadium based correlated d-electron

compound, the BaVS3. To determine the phase boundary and characterize the

phases I used various experimental techniques, namely dc transport measurements

(resistivity, magnetoresistivity, conduction anisotropy, thermoelectric power) and

infrared spectroscopy. All of these methods have also been applied under hydro-

static pressure, typically in the range of p = 0 − 25 kbar. The main results are

summarized in the following thesis points:

1. On the basis of the resistivity, thermoelectric power and infrared spec-

troscopy measurements performed at the ambient pressure in the high-

temperature phase of BaVS3, I have demonstrated that the system is sit-

uated at the edge of the metallic state with a strong tendency towards

localization. Transport and optical properties demonstrate that the elec-

trons have anomalously short lifetime (the mean free path is very close to

the lattice constant) and large effective mass (m∗ ≈ 7me−) [1, 2]. Conduc-

tion anisotropy measurements have shown that the transport mechanism is

nearly isotropic [1]. Based on the results of the thermoelectric power experi-

ments I estimated the bandwidth to beWeff ≈ 4000K= 0.34 eV. The on-site

Coulomb repulsion for d orbitals is U ≈ 1 eV. Thus the relative strength of

83
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the correlation, U/Weff in BaVS3 is close to unity.

2. I have shown that the metal to insulator transition, which occurs at TMI =

70K, is of second order at ambient pressure [3]. The argumentation is based

on the analysis of the low-field H−T phase boundary determined by magne-

toresistance measurements and the comparison of the magnetic susceptibil-

ity and specific heat anomalies reported in the literature. This statement has

recently got direct evidence by the observation of the structural component

of the transition in X-ray experiments.

3. I have explored the p − T phase boundary both by transport and infrared

conductivity experiments [4, 5]. For the optical studies I have developed a

pressure cell which is applicable up to 30 kbar and allows investigations also

in the long wavelength, far-infrared region. The metal-insulator transition

is suppressed under hydrostatic pressure with a rate of ∼ 3.5K/kbar. The

second order transition line extends up to at least p = 19 kbar, where the

transition temperature is reduced to TMI = 7.5K.

4. I have proposed that the metal-insulator transition is an orbitally driven

spin-Peierls-like transition. The reducedH−T phase boundary of the singlet

insulator (whenH and T are measured in the units of the zero field transition

temperature) is independent of pressure and agrees well with the universal

phase diagram of the spin-Peierls systems [3]. The spin gap, which is the

order parameter of the singlet insulator, is derived from magnetoresistance

measurements as a function of pressure in the range of p = 0− 15 kbar [3].

Its is ∆s ≈ 250K at ambient pressure and satisfies a scaling relationship:

∆s(p) ≈ 3.6 · kBTMI(p), where the scaling factor is close to the BCS value.

5. I have determined the charge gap of the insulating phase both by dc trans-

port and infrared conductivity measurements at various pressures up to

p = 18 kbar [5]. It is ∆ch ≈ 750K at ambient pressure and it also scales with

the transition temperature according to ∆ch(p) ≈ 10 ·kBTMI(p). The charge

excitations are of much higher energy than the spin excitations. Their scale

is related to the on-site Coulomb repulsion, since they are accompanied with

a double occupation on the vanadium sites. In contrast, the energy needed



CHAPTER 6. CONCLUSION 85

to break up of singlet pairs, which does not necessarily result in double

occupancy, is determined by the exchange coupling.

6. At high pressures, when the transition temperature is sufficiently reduced, I

have observed the magnetic field induced collapse of the second order phase

boundary. At p = 19 kbar, the metal to insulator transition becomes first

order at a critical magnetic field of Bc ≈ 6T. The appearance of a first

order phase boundary in the presence of a magnetic field is characteristic of

spin-Peierls systems.

7. The insulating phase is completely suppressed at p = 22.5 kbar and the

metallic state extends to zero temperature. At a certain pressure between

p = 19 kbar and 22.5 kbar, a quantum phase transition occurs at zero tem-

perature from the singlet insulator to the paramagnetic metal [4, 6]. The

quantum fluctuations become strong enough to destroy the singlet phase.

In the vicinity of the critical pressure, the fluctuations enhance the electron-

electron scattering over an extended range of temperature. This results in

a power-law behaviour of the resistivity ρ ∝ T α with an unusual exponent

α < 2. In our case α ≈ 1.25 and the power-law holds from T = 1K to 40K.

Such a phenomenon has been known to be present in systems close a ferro-

magnetic or antiferromagnetic critical point, but not in a singlet insulator.
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Mihály
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Moshchalkov

Phonon and spin dynamics in BaVS3 single crystals

Phys. Rev. B 65, 132301 (2002)
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Kézsmárki, and G. Mihály
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Appendix A

7.1 Relative and absolute reflectivity measure-

ment

The reflectivity of a sample relative to a transparent reference material can be

determined by placing it behind a slightly wedged block of the reference crystal.

Concerning Eq. 3.11 and 3.12 the relative reflectivity can be written as:

Rs/d(ω) ,

∣

∣

∣

∣

ns(ω)− nm(ω)

ns(ω) + nm(ω)

∣

∣

∣

∣

2

=
Rb(ω)

Rf (ω)
· Rm(ω)

(1−Rm(ω))2
, (7.1)

where ns and nm the refractive index of the sample and the reference material and

Rm is the reflectivity of the reference. Rb and Rf are the measured reflectance

of the back surface (reference-sample) and the front surface (vacuum-reference).

Together with the absolute reflectivity of the sample (Rs(ω) =
∣

∣

∣

ns(ω)−1
ns(ω)+1

∣

∣

∣

2

) two inde-

pendent optical quantities are experimentally obtained, i.e. each optical property

is fully determined.

89



Chapter 8

Appendix B

8.1 Detailed analysis of the IR reflectivity mea-

sured under pressure

At first we still focus on ambient pressure studies but with the sample already

embedded in the pressure cell, behind a diamond window. This results in a stack

of complications, as we will see soon. We emphasized in 3.5 how important was

the application of wedged diamond window in order to eliminate the interference

effects. In spite of our efforts the reflectivity data are influenced by multiply

reflections as it is obvious from Fig. 8.1. The distance corresponding to the period

of the oscillation varied in the 20− 40µm range for the experiments performed at

different pressures. This means that the sample and the diamond do not strictly

touch each other but there is a space between them. From now on, we have to

accept, that we do not directly measure the reflectivity of the sample relative

to the diamond as it would follow in ideal case from Eqs. 3.11, 3.12 but an extra

frequency dependence of the back face scattering, Sextra(ω) comes into the picture

which cannot be eliminated by the front face reference. Since we determined the

complex dielectric function (or which is equal, the absolute refractive index, n)

by the previous out of cell measurement, the reflectivity relative to the diamond,

RBaV S3/d =
∣

∣

n−2.43
n+2.43

∣

∣

2
can be easily calculated. Fig. 8.2 gives a comparison of the

measured and calculated data.

The only way to eliminate Sextra(ω) and proceed in the evaluation is to take
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Figure 8.1: FIR optical reflectivity of a BaVS3 sample embedded in the pressure
cell. The two stacks of red and blue curves are measured in the metallic and the
insulating phase, respectively. Each graph is affected by an interference related
oscillation.

Figure 8.2: The reflectivity relative to the diamond in ideal case and obtained by
the measurement for both phases of the material.

the ratio of the reflectivity measured in the metallic and insulating phase. In

order to check whether it is enough to become free of any systematic error we can

compare it to the ratio of the calculated values. Fig. 8.3 shows these two quantities

together with the same ratio for the absolute (out cell measured) reflectivities. All

the curves have the same shape but we can draw the conclusion that we loose a
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Figure 8.3: The ratios of the metallic and insulating reflectivity in and out of the
cell.

part of the intensity in the measurement of the metallic phase. The possible

reason is the following: in order to have a large enough sample we prepared a

mosaic of characterized crystals. This mosaic was enclosed in a block of paraffin

and finally polished to have a plain surface. As it is usual in case of mosaics,

despite our efforts, we end up with free space among the small parts. The paraffin

itself among the plaquettes does reflect some portion of the light, which gives a

non-expected baseline for the measurement. Its reflectivity, since it is insulator, is

smaller than that of the metallic BaVS3, so we experience the decrease of the ratio.

(
Rmetal+Rparaffin

Rinsulator+Rparaffin
is necessarily smaller than Rmetal

Rinsulator
.) Two more complications

have to be mentioned here. First, with the application of pressure the sample can

slightly move relative to the diamond, i.e. Sextra(ω) can change from pressure to

pressure. Thus, the only information can be picked up from the experiment is the

Rmetal/Rinsulator ratio which is shown in Fig. 8.4 for each pressure investigated.

The ambient pressure in cell ratio are scaled to the out cell ratio and this scaling

factor was applied to the high-pressure data, too. Notice, that the in cell ratio

differs from its calculated value and is rather identical with the out cell measured

one so this step resulted no more than 10% correction of the data at any frequency.

On the other hand due to thermal expansion of the sample holder the sample

can move perpendicular to the beam and its overlap with the light spot may

vary. The estimation for the change in the sample position between room and low
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Figure 8.4: The ratio of the metallic and insulating reflectivity for different pres-
sures. At ambient pressure both out and in cell data are presented. For the ex-
periment under 26 kbar the ratio of the data measured at T = 10K and 40K is
shown.

temperatures is 0.5mm. This can be easily tested by the reproducibility of the

front face reflection which should be otherwise temperature independent. After

having a look at Fig. 8.5 we can conclude that the spectra are only reproducible

below 100K where the thermal expansion is negligible.

Figure 8.5: The evolution of the intensity of the front face reflection with temper-
ature.

Thus, we are restricted to temperatures below 100K and (due to the uncer-

tainty of the detected reflectivity discussed above) we are able to observe only
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robust changes of the spectra like the opening of a gap. After all, the goal which

we try to score is the determination of the gap as a function of pressure. As we

have already seen the reflectivity of the metallic phase does not change more than

10% between room temperature and TMI at any frequency and its shape is rather

invariant without the appearance of sharp features. It can also be noticed in Fig.

8.1, where the transition is accompanied with a jump of the spectrum, but hardly

anything happens in the 70 − 100K range. This observation remains valid for

the high-pressure data, too. On the other hand the dc conductivity increases also

monotonously with increasing pressure, about 25% under p = 20 kbar. Based on

these facts we take the following consideration: at any pressure the reflectivity

of the metallic phase can be replaced with that of the ambient pressure metal

and using the current value of the Rmetal/Rinsulator ratio (shown in Fig. 8.4) the

reflectivity of the insulator can be obtained for each pressure. The results are

nicer than we would expect after so much trouble: the reflectivity of the insulator

goes through a tendentious variation from pressure to pressure as it is visualized

in Fig. 8.6.

Figure 8.6: Left panel: Reflectivity of BaVS3 at five different pressures. The grey
lines indicate the out cell results at T = 300K and 60K. Right panel: Conductivity
of BaVS3 at the same pressures.

As it was mentioned we normalized the metallic reflectivity at each pressure

to the ambient pressure out cell measured one to obtain the insulating reflectivity.

For this purpose we used above the T = 70K data of the out cell experiment.

However, we went through the same method using the T = 300K data. The test
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verified our consideration the sharp features (in our case the gap and the phonon

at 100 cm−1) do not change, only the absolute value of the conductivity increased

corresponding to the difference between the two reflectivities.
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Appendix C

9.1 Differential equations of H−T phase bound-

ary

The free energy is an analytic function of its variable on the whole H − T plane

except the phase boundary and continuous even on the phase boundary, i.e.:

∆f(H(s), TMI(H(s))) ≡ 0 , (9.1)

where s is the length parameter of the transition line. The above equation is

valid for phase transitions of any kind. For first order transitions this is the sole

relation. Since ∆f ≡ 0 on the phase boundary all of its s derivatives have to be

zero along the curve. In the case of quadratic field dependence of the transition

temperature (TMI(H) = T 0
MI − αH2) we show it is equivalent to the vanishing of

the field derivatives:

∆
dnf

dsn
(H(s), TMI(H(s))) = 0⇔ ∆

dnf

dHn
(H,TMI(H)) = 0 . (9.2)

Parameter transformation for the above quadratic curve:

dTMI = −2αHdH
ds =

√

dH2 + dT 2
MI =

√
1 + 4α2H2dH
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∂H

∂s
=

1√
1 + 4α2H2

6= 0 ∀s

The equivalence claimed in Eq. 9.2 can be easily checked for any n.

For n = 1 it goes as:

0 = ∆
df

ds

∣

∣

∣

∣

γ

= ∆
df

dH

∣

∣

∣

∣

γ

∂H

∂s
and

∂H

∂s
6= 0 ∀s

⇒ ∆
df

dH

∣

∣

∣

∣

γ

= 0 .

For n = 2:

0 = ∆
d2f

ds2

∣

∣

∣

∣

γ

= ∆
d2f

dH2

∣

∣

∣

∣

γ

(

∂H

∂s

)2

+∆
df

dH

∣

∣

∣

∣

γ

∂2H

∂s2
,

∆
df

dH

∣

∣

∣

∣

γ

= 0 and
∂H

∂s
6= 0 ∀s

⇒ ∆
d2f

dH2

∣

∣

∣

∣

γ

= 0 .

For any given n:

0 = ∆
dnf

dsn

∣

∣

∣

∣

γ

= an∆
dnf

dHn

∣

∣

∣

∣

γ

+ an−1∆
dn−1f

dHn−1

∣

∣

∣

∣

γ

+ a1∆
df

dH

∣

∣

∣

∣

γ

,

i < n : ∆
dif

dH i

∣

∣

∣

∣

γ

= 0 and
∂H

∂s
6= 0 ∀s

⇒ ∆
dnf

dHn

∣

∣

∣

∣

γ

= 0.

In this notation ai contains the product of ∂jH
∂sj -type derivatives. These are

finite in the present case. (The above argument remains valid in general when
∂H
∂s
6= 0 ∀s and ∂jH

∂sj is finite for j < n, i.e. in the case of regular parameter

transformation.)
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Detailed form of the phase boundary differential equations

From the continuity of the free energy in first order one can derive the well-known

Clausius-Clapeyron equation:

∆
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∣

∣

∣

γ

+ ∆
∂f
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∣
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γ

∂TMI
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= 0 . (9.3)

In second order:
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In third order:
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Finally in 4th order:
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Eqs. 9.3-9.6 relate discontinuities of different thermodynamical properties to

each other through the shape of the phase boundary. (Since they are valid for any

kind of phase transition with continuous transition line they allow the order of the

transition to change along the phase boundary. In the case of second or higher

order phase transitions one can derive similar equations from the continuity of the

corresponding thermodynamical properties (entropy, magnetization, etc.) which
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further specify the relations between the discontinuities.)

Quadratic phase boundary

From now on the usual notation of the partial derivatives of the free energy is

used. The ratio of their jumps will be determined at H = 0 point of the phase

boundary (∆TMI(H)

T 0
MI

= −βH2).

∆M(0, T 0
MI) = 0 (9.7)

∆χ(1)(0, T 0
MI)− 2βT 0

MI∆S(0, T
0
MI) = 0 (9.8)

∆
∂χ(1)

∂H
(0, T 0

MI)− 6βT 0
MI∆

∂M

∂T
(0, T 0

MI) = 0 (9.9)

∆χ(3)(0, T 0
MI)− 12βT 0

MI∆
∂χ(1)

∂T
(0, T 0

MI) + 12β2T 0
MI∆C(0, T 0

MI) = 0 (9.10)

Due to the quadratic shape of TMI(H) different order derivatives of the free

energy simultaneously appear in Eqs. 9.8-9.10.

If the system shows second order phase transition in an extended part of

the H − T plane two more thermodynamical quantities are continuous at the

phase boundary thus the relations between the discontinuities become further

determined, i.e.:

∆S(H,TMI(H)) ≡ 0 (9.11)

∆M(H,TMI(H)) ≡ 0 (9.12)

Following the same treatment than for the free energy one obtains from Eq.

9.11 up to third order:

∆
∂M

∂T
(0, T 0

MI) = 0 (9.13)

∆
∂χ(1)

∂T
(0, T 0

MI)− 2β∆C(0, T 0
MI) = 0 (9.14)



CHAPTER 9. APPENDIX C 100

−6βT 0
MI∆

∂2M

∂T 2
(0, T 0

MI) + ∆
∂2χ

∂T∂H
(0, T 0

MI) = 0 (9.15)

And from the continuity of the magnetization:

∆χ(1)(0, T 0
MI) = 0 (9.16)

∆
∂χ(1)

∂H
(0, T 0

MI)− 2βT 0
MI∆

∂M

∂T
(0, T 0

MI) = 0 (9.17)

−6βT 0
MI∆

∂χ(1)

∂T
(0, T 0

MI) + ∆χ(3)(0, T 0
MI) = 0 (9.18)

Summary

The higher order analysis of the phase boundary can help to identify the nature

of transitions when only higher order derivatives of the free energy (higher than

the expected order of the transition) and the shape of the phase boundary are

determined experimentally. This method is appropriate when the first derivative

of the boundary line is zero thus the Ehrenfest-like-relations are zero statements.

In this case - as we noticed - the related quantities are not of the same order.
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