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Abstract. The magnetoresistance of the quasi-one-dimensional organic conductor (TMTSF),PF is studied for
currents flowing parallel to the best conducting a and second best conducting b directions in magnetic fields
perpendicular to the a-b plane under a hydrostatic pressure of 0.8 GPa. As a function of the magnetic field, the

magnetoresistance follows a power law AR/R =(B/B,)*'? both in the a and b directions. The a-b plane
conductivity anisotropy is field independent. The scaling field B, characterizing the strength of the

magnetoresistance, follows an exponential temperature dependence B, «« exp(T/Ty) with a field-independent
characteristic temperature 7o = 10 K.

The problem of the magnetoresistance in the quasi-one-dimensional organic conductor (TMTSF),PFs
continues to receive considerable attention because there are indications that Fermi liquid (FL) theory is
inappropriate to describe the peculiar behavior of this strongly correlated metal in a magnetic field [1,2].
The amisotropy of the electronic properties is well characterized by the room-temperature conductivities
along the well conducting chains (e direction) and perpendicular to the chains (b and ¢ directions):
Caa® Obp - Tec =90 : 1 : (1/700) with oz, ~ 1000 Qlem™ [3]. Without a magnetic field and at low enough
temperatures, the transport properties are consistent with a three-dimensional (3d) FL state [4]: The
anisotropies are temperature independent below about 80 K down to the temperature of the transition to a
spin-density wave (SDW) insulator state at Tspw = 12 K, and the temperature dependence of the
resistivities is well described by a power law 7% with the exponent « close to 2. The transport in a
magnetic field, on the other hand, is very difficult to understand in the framewotk of FL theory [1,2].

The magnetoresistance is best studied if the SDW transition is suppressed by applying a hydrostatic

pressure. In our experiments, we apply a pressure of p = 0.8 GPa, for which Tspw ~ 5 K. The
temperature dependence of the resistance with current parallel to the chains, R,, is shown in Fig. 1
without magnetic field as well as in a field perpendicular to the well conducting a-b plane. A very large
magnetoresistance develops below about 40 K, in sharp contrast with the expectation for a metal with an
open Fermi surface. As a result, the metallic temperature dependence of the resistance gradually turns to
an “insulating behavior” (dR/AT < 0) with a resistance minimum occurring at a field dependent
temperature Toin (see Fig. 1). At low temperature, the resistance saturates at a field-independent
temperature Ts, ~ 8 K and varies little until the SDW transition.
This picture has been further enriched by studies of the magnetoresistance as a function of the orientation
of the magnetic field. Chashechkina and Chaikin [5] find a “2d” behavior above about 5 K: here the
magnetoresistance depends only on the ¢ component of the field. At low temperature, however, the a-b
component of the field also plays a role: If the field is parallel to a lattice vector of the crystal, then the
resistance decreases with decreasing temperature, while dR/dT remains negative for incommensurate
field directions [6]. In a detailed analysis of the angular dependence, Strong, Clarke, and Anderson [7]
find evidence for non-FL behavior. They describe the system with the field in a commensurate direction
as a collection of coherent 2d conducting planes. They argue that a field in an incommensurate direction,
however, destroys interplane coherence leaving a set of incoherently coupled 2d non-FL’s. Along a
similar line of arguments, Behnia et al. [8] explain the resistance minimum in the 2d region by the “one-
dimensionalizing” effect (confinement of coherence to the conducting chains) of the magnetic field [9].

In this article we investigate the magnetoresistance in the temperature range 5 K < 7<35 K, i.e., the
region of strong “2d” magnetoresistance. The magnetic field is perpendicular to the conducting a-b
planes and the current flows along the a or b direction. Our original aim—with the “one-
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Figure 1: Temperature dependence of the resistance in the @ direction in zero magnetic field as well as in magnetic fields of
6 T and 12 T applied perpendicular to the conducting planes. The hydrostatic pressure is 0.81 GPa.

Figure 2: Magnetoresistance vs. magnetic field at temperatures (from top to bottom) 7 K,10 K, 13 K, 22 K, 27 K in the @
direction and 8 K, 12 K, 17 K in the b direction. The dashed line represents the power law AR « B>,

dimensionalization™ picture in mind—was to infer a characteristic magnetic field separating the high-
field “one-dimensional” state from the low-field state. We find no such characteristic field as the
magnetoresistance both along a and b follows a power law:

b gl
Paa(bb) = Paa(bb) {1 +[B/By(I))" § . 0

The a-b anisotropy is field independent, i.e., the parameters By and f§ are the same for the ¢ and b
directions. For the exponent we find a temperature-independent value § = 1.49 + 0.1. The temperature
dependence of the scaling field By is well described by an exponential form

B,(T) =B, exp(T/T;) )

with To =10 K, Boo =18T.

We have measured the magnetoresistance of two (TMTSF),PF¢ single crystals. The arrangement of
the electrode contacts allowed measurement with current flowing either along the a or b directions on the
first sample, and only along the a direction on the second sample. A hydrostatic pressure of about 0.8
GPa (8 kbar) was applied to the samples in a Cu-Be cell with kerosene as pressure transmitting fluid.
The samples were visually aligned so that the magnetic field was always perpendicular to the a-b plane.

The magnetoresistance as a function of magnetic field both in the g and b directions is shown in Fig,
2 for several temperatures. The power law Eq. (1) is obvious above 1 T, a limit set by the experimental
error, up to the highest field 12 T. In case of the 17-K field scan, the magnetic field has been changed
very slowly for an accurate resistance measurement, and the limit of validity of Eq. (1) can be extended
down to about 0.3 T. The 17-K scan is a good example that no change in the field dependence occurs at
the field B* for which the temperature of the resistance minimum, Tty is equal to the temperature of the
field scan. In this case B* = 3.5 T, i.e., the temperature dependence of the resistance is “metallic” (dR/dT
> 0), if B <3.5 T, and “insulating” (dR/dT < 0), if B > 3.5 T, still the power law Eq. (1) is equally valid in
the entire field range of 0.3 T to 12 T.

The temperature dependence of the exponent f#—obtained from 3-parameter fits of Eq. (1) to the
results of field scans—is shown in Fig. 3. Below 20 K, there is no systematic temperature dependence,
and the mean and standard deviation of all data points are 1.49 and 0.10, respectively. Above 20 K, a
weak increase of the exponent is observed what may be due to the admixture of a regular B’
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Figure 3: Temperature dependence of the power law exponent Zin Eq (1) for two samples and two crystalline directions.

Figure 4: Normalized magnetoresistance vs. temperature in a constant magnetic field B = 12 T. The straight line represents
Eq. (2).

magnetoresistance, but the simple fraction £ = 3/2 provides a good description over the entire
temperature range investigated.

Using a temperature independent exponent £ = 3/2, the temperature dependence of the scaling field
By in Eq. (1) is conveniently determined from a comparison of B =0 and B = 12 T temperature scans, as
shown in Fig. 4. The linear temperature dependence in this semi-logarithmic plot corresponds to AR/R o«
exp[(3/2)T/Tp), in agreement with Eq. (2). The results for the characteristic temperature 7j are the
following: Sample #1, a direction: 10.4 K, b direction: 10.4 X; Sample #2, a direction: 9.5 K. Therefore
on both samples and in both crystalline directiors the results are consistent with 75 = 10 K.

A description of the magnetoresistance in a kinetic theory of FL quasiparticles leads to Kohler’s law
AR/R, = flB/Ry) [10]. This relation, however, is incompatible with the observed power-law temperature
dependence of the zero-field resistance and the exponential temperature dependence of the
magnetoresistance. An easy way to see this is to combine Kohler’s law with Egs. (1) and (2) which
yields an exponential temperature dependence for the zero-field resistance Ry as well, in obviouns
contradiction with the experimental results for Ry. Moreover, the power-law exponent 3/2 for the
magnetoresistance and especially the exponential temperature dependence are highly unusual in FL
theory. Therefore an explanation of the magnetoresistance in the framework of a kinetic theory of FL
quasiparticles is unlikely.

If the high-field resistance reflects precursor fluctuations of a phase transition to an SDW [11], one
expects a divergent power-law behavior as the transition is approached from above. The exponential
temperature dependence and the saturation of the magnetoresistance at about Ty = 8 K, well above the
transition temperature (typically 3 to S K in 12 T and close to p,), are difficult to reconcile with this
theory.

Our results are incompatible with the “one-dimensionalization” scenario at two points. First, at the
heart of the “one-dimensionalization” argument is the observation of a field-dependent characteristic
energy Tmin{B). Roughly speaking, the domain above this line in the B-T space would be the “one-
dimensionalized” region. We find, however, no change in the behavior of the magnetoresistance when
the Tmin(B) line is crossed in constant-temperature field scans. In other words, we find that the relevant
energy scale of the magnetoresistance, 7o = 10 K in Eq. (2), is independent of the magnetic field. Our
second argument is that the a-b plane anisotropy is also field (and temperature) independent, pointing
towards a coherent a-b plane transport in the entire field and temperature range investigated. We note
here that the qualitatively very similar magnetoresistance along the ¢ direction reported in Ref. [12]
makes it likely that the transport is coherent along all spatial directions even in a magnetic field. If this is



50, the coherent 3d state should be a FL state. A speculative escape from this contradiction is that the
Landau parameters of the FL are tuned by the ¢ component of the magnetic field.

We conclude that none of the existing theories seem to account for the behavior of the
magnetoresistance. To provide some clue for the interpretation of the phenomenon, we make some
simple phenomenological considerations. It is important to emphasize that the two-parameter (7o, Boo) fit
described by Egs. (1) and (2) works equally well above and below the resistance minimum 7T, as well as
around T, where the magnetoresistance saturates. This finding suggests, that the same mechanism is
responsible for the magnetoresistance in the whole temperature range investigated, S K < T<30 K. In
particular, we find no difference in the behavior below and above the temperature of the resistance
minimum, T

Together with the new characteristic temperature 7, = 10 K, we have now three nearly equal field-
independent energy scales, the other two being the temperature of the saturation of the resistance in a
magnetic field, Ts.e = 8 K, and the interplane electron hopping integral ¢, = 7 K. Previously, Tsu has been
identified with z, [2,5] based on the observation, that Lebed’s anomalies [6] at commensurate field angles,
a 3d effect, are only seen below Ty, It is clear, however, from Fig. 2 of Ref. [5], that the saturation is
equally observable at and away from the commensurate angles. The saturation, on the other hand, arises
naturally from Eq. (2) because By varies little if 7 < T, Since T has been inferred from a “2d”
temperature range, it is possible that Te ~ £, is merely a coincidence.

Finally we note that the exponential temperature dependence of the magnetoresistance with the
exponent proportional to the temperature is highly unusual. By a purely formal analogy, this temperature
dependence may point to the thermal excitations of a bosonic degree of freedom.
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