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We derive within a time-dependent scattering formalism expressions for both the current through ac-driven
nanoscale conductors and its fluctuations. The results for the time-dependent current, its time average, and,
above all, the driven shot-noise properties assume an explicit and serviceable form by relating the propagator
to a non-Hermitian Floquet theory. The driven noise cannot be expressed in terms of transmission probabilities.
The results are valid for a driving of arbitrary strength and frequency. The connections with commonly known
approximation schemes such as the Tien-Gordon approach or a high-frequency approximation are elucidated,
together with a discussion of the corresponding validity regimes. Within this formalism, we study the coherent
suppression of current and noise caused by properly chosen electromagnetic fields.
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I. INTRODUCTION

The experimental success in the coherent coupling of
quantum dots1–3 has enabled measuring the transport proper-
ties of systems with a molecule-like level structure. Recently,
further progress in this direction has been attained by the
reproducible measurement of currents through molecules
which are coupled to metallic leads.4,5 Together with these
experimental achievements, new theoretical interest in the
transport properties of such nanoscale systems emerged.6,7
One particular field of interest is the interplay of the electron
transport and excitations by an oscillating gate voltage, a
microwave field, or an infrared laser, respectively. Such ex-
citations bear intriguing phenomena such as photon-assisted
tunneling3,8–15 and the adiabatic16–19 and nonadiabatic20–23
pumping of electrons.

A prominent example for the control of quantum dynam-
ics is the so-called coherent destruction of tunneling, i.e., the
suppression of the tunneling dynamics of a particle in a
double-well potential,24 in a two-level system,25 or in a
superlattice.26 Recently, coherent destruction of tunneling
has also been found for the dynamics of two interacting elec-
trons in a double quantum dot.27,28 Moreover, it has been
demonstrated that a corresponding transport effect exists: If
two leads are attached to the ends of a tunneling system, then
a proper driving field can be used to suppress the current
even in the presence of a large transport voltage.29 Moreover,
in such a system the corresponding shot-noise level can be
controlled by proper ac fields.30 Within this work, we pro-
vide more details on this noise control scheme and also ex-
plore its limitations.

An intuitive description of the electron transport through
time-independent mesoscopic systems is provided by the
Landauer scattering formula31 and its various generaliza-
tions. Both the average current32 and the transport noise
characteristics33,34 can be expressed in terms of the quantum
transmission coefficients for the respective scattering chan-
nels. By contrast, the theory for driven quantum transport is
less developed. Scattering of a single particle by an arbitrary
time-dependent potential has been considered35–37 without
relating the resulting transmissions to a current between elec-
tron reservoirs. Such a relation is indeed nontrivial since the

driving opens inelastic transport channels and, therefore, in
contrast to the static case, an ad hoc inclusion of the Pauli
principle is no longer unique. This gave rise to a discussion
about “Pauli blocking factors.”38,39 In order to avoid such
conflicts, one should start out from a many-particle descrip-
tion. In this spirit, within a Green’s function approach,
a formal solution for the current through a time-dependent
conductor has been presented, e.g., in Refs. 38 and 40 with-
out taking advantage of the full Floquet theory for the wire.
Nevertheless in some special cases such as, e.g., for conduc-
tors consisting of a single level41,42 or for the scattering by a
piecewise constant potential,9,20 an explicit solution becomes
feasible. Moreover, for large driving frequencies, the driving
can be treated within a self-consistent perturbation
theory.43,44

The spectral density of the current fluctuations has been
derived for the low-frequency ac conductance45,46 and the
scattering by a slowly time-dependent potential.47 For arbi-
trary driving frequencies, the noise has been characterized by
its zero-frequency component.30 A remarkable feature of the
current noise in the presence of time-dependent fields is its
dependence on the phase of the transmission amplitudes.30,47
By clear contrast, both the noise in the static case33 and the
current in the driven case30 depend solely on transmission
probabilities.

Within this work, we derive within a Floquet approach
explicit expressions for both the current and the noise prop-
erties of the electron transport through a driven nanoscale
conductor under the influence of time-dependent forces. This
generalizes recent approaches since the presented Floquet
formalism is applicable to arbitrary periodically driven tight-
binding systems and, in particular, is valid for arbitrary driv-
ing strength and, as well, extends beyond the adiabatic re-
gime. The dynamics of the electrons is solved by integrating
the Heisenberg equations of motion for the electron creation/
annihilation operators in terms of the single-particle propa-
gator. For this propagator, in turn, we provide a solution
within a generalized Floquet approach. Such a treatment is
valid for effectively noninteracting electrons, i.e., when no
strong correlations occur. Disregarding these interactions
also implies that the displacement currents are not taken into
account entirely. As a consequence, the ac component of the
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electrical current inside the nanoconductor may deviate from
the particle current.38,48

This paper is organized as follows. After introducing in
Sec. II a model for the leads and the conductor under the
influence of external fields, we derive in Sec. III for a situa-
tion with time periodic but otherwise arbitrary driving gen-
eral expressions for the current and its noise and establish a
connection to a Floquet eigenvalue equation. In Sec. IV, we
consider some special cases and approximations. Section V
is devoted to the influence of an electromagnetic dipole field
on a conductor consisting of a few tight-binding levels. Situ-
ations with an ac transport voltage are addressed in Appendix
A, while in Appendix B, we detail an alternative derivation
which has been introduced in Ref. 30.

II. LEAD-WIRE MODEL

We start out by introducing a model for the central con-
ductor (“wire”) under the influence of an external driving
field such as, e.g., a molecular wire subject to laser radiation
or coupled quantum dots1,3 driven by microwaves or an os-
cillating gate voltage. The conductor is attached by tunneling
couplings to external leads. The entire setup of our nanoscale
system is described by the time-dependent Hamiltonian

Hstd = Hwirestd + Hleads + Hcontacts, s1d

where the different terms correspond to the wire, the leads,
and the wire-lead couplings, respectively. We focus on the
regime of coherent quantum transport where the main phys-
ics at work occurs on the wire itself. In doing so, we neglect
other possible influences originating from driving-induced
hot electrons in the leads, dissipation on the wire, and
electron-electron interaction effects, as well. Then, the wire
Hamiltonian in a tight-binding approximation with N orbitals
unl reads

Hwirestd =o
n,n8

Hnn8stdcn
†cn8. s2d

For a molecular wire, this constitutes the so-called Hückel
description where each site corresponds to one atom. The
fermion operators cn, cn

† annihilate and create, respectively,
an electron in the orbital unl. The influence of an applied ac
field with frequency V=2p /T results in a periodic time de-
pendence of the wire Hamiltonian: Hnn8st+Td=Hnn8std. The
leads are modeled by ideal electron gases,

Hleads =o
q

eqscLq
† cLq + cRq

† cRqd , s3d

where cLq
† scRq

† d creates an electron in the state uLqlsuRqld in
the left (right) lead. The tunneling Hamiltonian

Hcontacts =o
q

sVLqcLq
† c1 + VRqcRq

† cNd + H.c. s4d

establishes the contact between the sites u1l, uNl and the re-
spective lead, as sketched in Fig. 1. This tunneling coupling
is described by the spectral density

G,sed = 2po
q

uV,qu2dse − eqd s5d

of lead ,, ,=L ,R. If the lead modes are dense, G,sed be-
comes a smooth function.

To fully specify the dynamics, we choose as an initial
condition for the left/right lead a grand-canonical electron
ensemble at temperature T and electrochemical potential
mL/R, respectively. Thus, the initial density matrix reads

r0 ~ e−sHleads−mLNL−mRNRd/kBT, s6d

where N,=oqc,q
† c,q is the number of electrons in lead , and

kBT denotes the Boltzmann constant times temperature. An
applied voltage V maps to a chemical potential difference
mR−mL=eV with −e being the electron charge. Then, at ini-
tial time t0, the only nontrivial expectation values of the wire
operators read kc,8q8

† c,ql= f,seqdd,8,dqq8 where f,sed= s1
+expfse−m,d /kBTgd−1 denotes the Fermi function.

In our model Hamiltonian (1), the leads are time indepen-
dent. Thus, it seemingly cannot describe ac transport volt-
ages. Such a situation, however, can be mapped by a gauge
transformation to one with time-independent chemical poten-
tials as demonstrated in Appendix A.

III. SCATTERING APPROACH FOR TIME-DEPENDENT
POTENTIALS

Due to their experimental accessibility, the central quan-
tities in a quantum transport problem are the stationary cur-
rent and the low-frequency part of its noise spectrum. Within
a scattering picture of nondriven mesoscopic transport, both
quantities can be expressed in terms of a transmission func-
tion TsEd which reflects the probability that an electron is
transmitted from one lead to the other.33 Due to energy con-
servation, the reversed process occurs with equal probability.
This is no longer true for driven systems and, consequently,
the scattering approach needs to be generalized. Thus, in this
section, we derive expressions for the currents and its noise
properties for the transport through the time-dependent sys-
tem modeled above. In the so-called wide-band limit, the
more compact derivation presented in Ref. 30 becomes pos-
sible, cf. Appendix B. We will show that the average electri-
cal current contains only transition probabilities and, thus,
resembles a scattering formula. In clear contrast to the static

FIG. 1. Level structure of a nanoconductor with N=3 orbitals.
The end sites are coupled to two leads with chemical potentials mL
and mR=mL+eV.
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two-terminal case, however, we will find that the noise de-
pends in addition also on the phases of the scattering matrix.

A. Charge, current, and their fluctuations

To avoid the explicit appearance of commutators in the
definition of correlation functions, we perform the derivation
of the central transport quantities in the Heisenberg picture.
As a starting point we choose the operator

Q,std = eN,std − eN,st0d s7d

that describes the charge accumulated in lead , with respect
to the initial state. Due to total charge conservation, Q,

equals the net charge transmitted across the contact ,; its
time derivative defines the corresponding current

I,std =
d
dt
Q,std . s8d

The current noise is described by the symmetrized correla-
tion function

S,st,t8d = 1
2 kfDI,std,DI,st8dg+l s9d

of the current fluctuation operator DI,std= I,std− kI,stdl,
where the anticommutator fA ,Bg+=AB+BA ensures hermi-
ticity. It can be shown that at long times, S,st , t8d=S,st
+T , t8+T d shares the time periodicity of the driving.49
Therefore, it is possible to characterize the noise level by the
zero-frequency component of S,st , t−td averaged over the
driving period,

S̄, =
1
TE0

T
dtE

−`

`

dtS,st,t − td . s10d

We find below that for two-terminal devices S̄, is indepen-
dent of the contact ,, i.e., S̄L= S̄R; S̄.

The evaluation of the zero-frequency noise S̄ directly
from its definition (10) can be tedious due to the explicit
appearance of both times t and t−t. This inconvenience can
be circumvented by employing the relation

d
dt

fkQ,
2stdl − kQ,stdl2g = 2E

0

`

dtS,st,t − td , s11d

which follows from the integral representation of Eqs. (7)
and (8), Q,std=et0

t dt8I,st8d, in the limit t0→−`. By averag-
ing Eq. (11) over the driving period and using Sst , t−td
=Sst−t , td, we obtain

S̄ = K ddt kDQ,
2stdlL

t
, s12d

where DQ,=Q,− kQ,l denotes the charge fluctuation opera-
tor and k. . .lt the time average. The fact that the time average
can be evaluated from the limit S̄=limt0→−`kDQ,

2stdl / st
− t0d.0 allows us to interpret the zero-frequency noise as the
“charge diffusion coefficient.” As a dimensionless measure
for the relative noise strength, we employ the so-called Fano
factor50,51

F =
S̄

euĪu
, s13d

where Ī denotes the time average of the current expectation
value kI,stdl. Note that in a two-terminal device, the absolute
value of the average current is independent of the contact ,.

B. Transition amplitudes

In order to take the exclusion principle properly into ac-
count, we have formulated the transport problem under con-
sideration in terms of second quantization. Nevertheless, in
the absence of interactions, both the current and its noise can
be traced back to the solution of the corresponding single-
particle problem. Thus, our next step is to relate the expec-
tation value and the variance of the charge operator (7) to the
transmission of electrons from one lead to the other. For that
purpose, we start from the Heisenberg equations of motion

ċL/Rq = −
i
"

eqcL/Rq −
i
"
VL/Rqc1/N , s14d

ċ1/N = −
i
"
o
n8

H1/N,n8stdcn8 −
i
"
o
q
VL/Rq
* cL/Rq , s15d

ċn = −
i
"
o
n8

Hnn8stdcn8, n = 2, . . . ,N − 1. s16d

For these coupled linear equations, the formal solution

c,8q8std =o
,,q

k,8q8uUst,t0du,qlc,qst0d

+o
n

k,8q8uUst,t0dunlcnst0d s17d

involves the propagator Ust , t0d of the corresponding single-
particle problem. We insert Eq. (17) into Eq. (7) and use the
initial condition (6) to obtain for the transferred charge at
long times [i.e., in the limit t0→−`, where all transients die
out and, in particular, the second line in Eq. (17) becomes
irrelevant] the expectation value

kQLstdl = e o
q8,q,,

sukLq8uUst,t0du,qlu2 − d,Ldqq8df,seqd .

s18d

To symmetrize this expression, we eliminate the backscatter-
ing terms, i.e., the contributions with ,=L, by employing the
completeness relation

1 =o
q

uLqlkLqu +o
q

uRqlkRqu +o
n

unlknu s19d

;PL + PR + Pwire, s20d

where PL, PR, and Pwire denote the projectors onto the states
of the left lead, the right lead, and the wire, respectively.
Then, from the time derivative of Eq. (18), we find for the
current through the left contact the result
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kILstdl = eo
q,q8

hwLq8,RqstdfRseqd − wRq8,LqstdfLseqdj

− eo
n,q
wn,LqstdfLseqd s21d

and mutatis mutandis for the current through the right con-
tact. This expression already obeys the “scattering form”
with the time-dependent transmission

T,8,st,ed = 2p"o
q,q8

w,8q8,,qstddse − eqd s22d

of electrons with energy e from lead , to lead ,8. At
asymptotic times, the transitions from the lead state u,ql to
the lead state u,8q8l and the wire state unl happen with the
rates

w,8q8,,qstd = lim
t0→−`

d
dt

uk,8q8uUst,t0du,qlu2, s23d

wn,,qstd = lim
t0→−`

d
dt

uknuUst,t0du,qlu2. s24d

The last term in the current (21) describes a periodic charg-
ing of the wire stemming from the external driving. With an
average over one driving period, this contribution vanishes
and, thus, the dc current reads

Ī = eo
q,q8

hw̄Lq8,Rq fRseqd − w̄Rq8,Lq fLseqdj , s25d

with w̄,8q8,,q denoting the time average of the rate (23). In-
terchanging in Eq. (25) L and R yields the negative current
−Ī. Thus, as expected from total charge conservation, the
average current is, besides its sign, independent of the con-
tact at which it is evaluated. We emphasize that Eq. (25)
obeys the form of the current formula obtained for a static
conductor within a scattering formalism. In particular, con-
sistent with Refs. 32 and 38, no “Pauli blocking factors” s1
− f,d appear in our derivation. In contrast to a static situation,
this is in the present context relevant since for a driven sys-
tem generally w̄Lq,Rq8Þ w̄Rq8,Lq, such that a contribution pro-
portional to fLseq8dfRseqd would not cancel.38,39

The zero-frequency noise S̄ is conveniently derived from
the charge fluctuation with the help of relation (12). Express-
ing the charge fluctuation by the Heisenberg operators (17)
yields for the initial condition (6) after some algebra

kDQL
2stdl =o

q,q8

hfRseq8d f̄RseqdukRq8uU†PLUuRqlu2

+ fLseq8d f̄RseqdukLq8uU†PLUuRqlu2

+ fLseq8d f̄LseqdukLq8uU
†sPR + PwiredUuLqlu2

+ fRseq8d f̄LseqdukRq8uU
†sPR + PwiredUuLqlu2j .

s26d

By using the completeness relation (19), we have achieved a
form which is, besides the appearance of Pwire, symmetric

under exchanging L↔R. Here, U is a shorthand notation for
Ust , t0d and f̄,=1− f,. Taking the time derivative and averag-
ing over the driving period yield

S̄ = e2o
q,q8

hWRq8,Rq
L fRseq8d f̄Rseqd +WLq8,Rq

L fLseq8d f̄Rseqd

+WLq8,Lq
R fLseq8d f̄Lseqd +WRq8,Lq

R fRseq8d f̄Lseqdj , s27d

where we have defined

W,8q8,,q
,9 = lim

t0→−`
K ddt uk,8q8uU†st,t0dP,9Ust,t0du,qlu2L

t
.

s28d

The contributions in Eq. (26) which contain the projector
Pwire on the wire states do not contribute to the zero-
frequency noise. This can be demonstrated by inserting for
the propagator the explicit expressions (34) and (35) which
we derive in the following section. Interestingly enough, the
noise S̄ depends on both the diagonal and the off-diagonal
elements of the projector U†P,9U. By contrast, the current
(21) depends only on the diagonal elements of this operator.
As a consequence, in the presence of driving it is not pos-
sible to express the noise solely by transmission probabili-
ties; cf. Eq. (45) below.

C. Lead elimination

The evaluation of the rates w,8q8,,q and W,8q8,,q
,9 involves

the matrix elements of the time-evolution operator Ust , t0d
with the wire and the lead states. In the following, we elimi-
nate the lead states and will find expressions for the rates that
depend explicitly only on the propagator for the wire elec-
trons and the spectral density of the couplings to the leads.

We start from the Schrödinger equation for the propaga-
tor, i"]Ust , t8d /]t=HstdUst , t8d, where Hstd is the single-
particle Hamiltonian underlying Eq. (1). Formal integration
with the initial condition Ust8 , t8d=1 results in the Dyson
equation

Ust,t8d = U0st,t8d −
i
"
E
t8

t

dt9U0st,t9dHcontactsUst9,t8d ,

s29d

where U0 denotes the propagator in the absence of the wire-
lead coupling. We emphasize that due to the explicit time
dependence of the wire Hamiltonian, the integral in Eq. (29)
is not a mere convolution. Using k,8q8uU0st , t8du,ql
=d,8,dqq8expf−ieqst− t8d /"g, we find for the transition matrix
elements the relations

knuUst,t0du,ql = −
i
"
V,q
* E

t0

t

dt8e−ieqst8−t0d/"knuUst,t8dun,l

s30d

and
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k,8q8uUst,t0du,ql

= e−iseq8t−eqt0d/"Hd,8,dqq8 −
V,8q8V,q

*

"2 E
t0

t

dt8E
t0

t8
dt9

3eiseq8t8−eqt9d/"kn,8uUst8,t9dun,lJ , s31d

where n, denotes the wire site attached to lead ,, i.e., nL
=1 and nR=N.

At this stage, it is convenient to make use of the time
periodicity of the Hamiltonian, Hstd=Hst+Td. This has the
consequence52 that Ust , t8d=Ust+T , t8+Td and, thus, the re-
tarded Green’s function

Gst,ed = −
i
"
E
0

`

dteiet/"Ust,t − td = Gst + T,ed s32d

can be decomposed into a Fourier series, Gst ,ed
=ok=−`

` e−ikVtGskdsed, with the coefficients

Gskdsed =
1
TE0

T
dteikVtGst,ed . s33d

Physically, Gskdsed describes the propagation of an electron
with initial energy e under the absorption (emission) of uku
photons for k.0 sk,0d. We emphasize that generally all
sidebands k=−`¯` contribute to the Green’s function (32)
and that, consequently, the summations over k are unre-
stricted.

After making use of Eqs. (32) and (33), the transition
amplitudes (30) and (31) become

knuUst,t0du,ql = V,q
* e−ieqst−t0d/"o

k
e−ikVtknuGskdseqdun,l

s34d

and

k,8q8uUst,t0du,ql = e−iseq8t−eqt0d/"Hd,8,dqq8 −o
k
V,8q8V,q

*

3
eiseq8−eq−k"V−ihdt/"

eq8 − eq − k"V − ih
kn,8uG

skdseqdun,lJ ,
s35d

respectively. Since below we restrict ourselves to asymptotic
times, t0→−`, we have shifted the lower limit of the inte-
grals accordingly. Moreover, in order to perform the t8 inte-
gration in Eq. (31), we have introduced a converging factor
eht8/" and will finally consider the limit h→0.

1. Average current

For the further evaluation of the average current (25), we
insert the transition amplitude (35) into Eq. (23). After taking
the time derivative, averaging over time t, and considering
the limit h→0, we find

w̄Lq8,Rq =
2p

"
uVLq8VRqu

2o
k

uG1N
skdseqdu2dseq8 − eq − k"Vd

s36d

and the corresponding expression for w̄Rq8,Lq. We have intro-
duced the notation Gnn8= knuGun8l. By use of the spectral
density (5), we replace the remaining sums over the lead
states by energy integrals and obtain as our first main result
the dc current

Ī =
e
h o
k=−`

` E dehTLR
skdsedfRsed − TRL

skdsedfLsedj , s37d

where

TLR
skdsed = GLse + k"VdGRseduG1N

skdsedu2, s38d

TRL
skdsed = GRse + k"VdGLseduGN1

skdsedu2 s39d

denote the transmission probabilities for electrons from the
right lead and from the left lead, respectively with initial
energy e and final energy e+k"V, i.e., the probability for
scattering event under the absorption (emission) of uku pho-
tons if k.0 sk,0d.

For a static situation, the transmissions TLR
skdsed and

TRL
skdsed are identical and contributions with kÞ0 vanish.

Thus, it is possible to write the current (37) as a product of a
single transmission Tsed and the difference of the Fermi
functions, fRsed− fLsed. We emphasize that in the driven case
this is no longer true.

2. AC current

Although below we focus on the computation of dc cur-
rents, we here continue the derivation of the transport quan-
tities by presenting explicit expressions for the ac currents.
We restrict ourselves to kILstdl since kIRstdl simply follows
by proper index replacements. Evaluating kILstdl, we con-
sider also the last term in Eq. (21) which describes a periodic
charging/discharging of the wire. Apart from the time aver-
age we perform the same steps as in the derivation of the dc
current and obtain

kILstdl =
e
h E dehTLRst,edfRsed − TRLst,edfLsedj − q̇Lstd ,

s40d

where

qLstd =
e
2p

E deGLsedo
n
Uo
k
e−ikVtGn1

skdsedU2fLsed s41d

denotes the charge oscillating between the left lead and the
wire. Obviously, since qLstd is time periodic and bounded, its
time derivative cannot contribute to the average current. The
corresponding charge arising from the right lead, qRstd, is a
priori unrelated to qLstd; the actual charge on the wire reads
qLstd+qRstd. The time-dependent current is determined by
the time-dependent transmission
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TLRst,ed = GRsedReo
k,k8

e−ikVtG1N
sk8+kdsedfG1N

sk8dsedg*

3FGLse + k8"Vd +
i
p
PE de8

GLse8d
e8 − e − k8"V

G .
s42d

The corresponding expression for TRLst ,ed follows from the
replacement sL ,1d↔ sR ,Nd. Note that in the wide-band limit
G,sed=G,, ,=L ,R, the contribution from the principal value
integral vanishes.

3. Zero-frequency noise

In order to obtain the zero-frequency noise S̄, we evaluate
the rates W,8q8,,q

,9 . This step is performed along the lines of
reasoning for the evaluation of w̄,8q8,,q (although the actual
calculation is far more tedious): We insert the transition am-
plitude (35) into Eq. (28), take the derivative with respect to
t, and average over one driving period. Finally, we employ
the relation limh→04hfse−a− ihdse−b+ ihdse8−b− ihdse8
−a+ ihdg−1= s2pd3dse−addse8−bddsa−bd to perform the
limit h→0 and find

WRq8,Rq
L =

2p

"
uVRq8u

2uVRqu2o
k
Uo
k8

GLseq + k8"Vd

3fG1N
sk8−kdseq8dg

*G1N
sk8dseqdU2dseq8 − eq − k"Vd ,

s43d

WLq8,Rq
L =

2p

"
uVLq8u

2uVRqu2o
k
Uo
k8

GLseq + k8"Vd

3fG11
sk8−kdseq8dg

*G1N
sk8dseqd − iG1N

skdseqdU2
3dseq8 − eq − k"Vd . s44d

The corresponding expressions for WLq8,Lq
R and WRq8,Lq

R fol-
low from the replacement sL ,1d↔ sR ,Nd. Inserting these
into the noise expression (27) we arrive at our central result

S̄ =
e2

ho
k
E deHGRsekdGRsedUo

k8

GLsek8dG1N
sk8−kdsekd

3fG1N
sk8dsedg*U2fRsed f̄Rsekd

+ GRsekdGLsedUo
k8

GLsek8dG1N
sk8−kdsekdfG11

sk8dsedg*

− iG1N
s−kdsekdU2fLsed f̄RsekdJ

+ same terms with the replacement sL,1d ↔ sR,Nd .
s45d

We have defined ek=e+k"V and replaced the sums over

the lead states by energy integrations using the spectral den-
sity (5).

D. Wide-band limit and Floquet theory

In order to evaluate the expressions for Ī and S̄ further, we
derive an eigenfunction representation for the Green’s func-
tion. It is well known that beyond the adiabatic limit, the
eigenfunctions of the Hamiltonian are not of particular use—
rather a proper basis is provided by a Floquet ansatz.52–54

Let us start from the Schrödinger equation for the propa-
gator,

i"
d
dt

knuUst,t0dun8l =o
n9

Hnn9stdkn9uUst,t0dun8l , s46d

for n=2, . . . ,N−1, and

i"
d
dt

kn,uUst,t0dun8l =o
n9

Hn,n9stdkn9uUst,t0dun8l

+o
q
V,q
* k,quUst,t0dun8l , s47d

where n, is defined by nL=1 and nR=N. To eliminate the
lead states in the second line of Eq. (47), we insert Eq. (30)
and replace by use of the spectral density (5) the sum over
the lead states by an energy integral. Then the last term in
Eq. (47) becomes

−
i

2p"
E deG,sedE

t0

t

dt8e−iest8−t0d/"kn,uUst,t8dun8l . s48d

Within the present context, we are mainly interested in the
influence of the driving field on the conductor and not in the
details of the coupling to the leads. Therefore, we choose for
G,sed a rather generic form by assuming that in the relevant
regime, it is practically energy independent,

G,sed → G,. s49d

This so-called wide-band limit allows further progress since
we can now perform in Eq. (48) the remaining energy inte-
gration to obtain "dst8− t0d and, consequently, Eq. (47) be-
comes

i"
d
dt

kn,uUst,t0dun8l =o
n9

Hn,n9stdkn9uUst,t0dun8l

−
i
2

G,kn,uUst,t0dun8l . s50d

Equations (46) and (50), together with the initial conditions
knuUst , tdun8l=dnn8, fully determine the propagator. Solving
this linear set of equations is equivalent to computing a com-
plete set of solutions for the equation

i"
d
dt

ucstdl = fHwirestd − iSgucstdl , s51d

where the self-energy
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S = u1l
GL

2
k1u + uNl

GR

2
kNu s52d

results from the coupling to the leads.
Equation (51) is linear and possesses time-dependent,

T-periodic coefficients. Thus, it is possible to construct a
complete solution with the Floquet ansatz

ucastdl = expfs− iea/" − gadtguuastdl , s53d

uuastdl = o
k=−`

`

uua,klexps− ikVtd . s54d

The so-called Floquet states uuastdl obey the time periodicity
of Hwirestd and have been decomposed into a Fourier series.
In a Hilbert space that is extended by a periodic time coor-
dinate, the so-called Sambe space,54 they obey the Floquet
eigenvalue equation52,55

SHwirestd − iS − i"
d
dtDuuastdl = sea − i"gaduuastdl . s55d

Due to the Brillouin-zone structure of the Floquet
spectrum,52–54 it is sufficient to compute all eigenvalues of
the first Brillouin zone, −"V /2,eaø"V /2. Since the op-
erator on the left-hand side of Eq. (55) is non-Hermitian, the
eigenvalues ea− i"ga are generally complex valued and the
(right) eigenvectors are not mutually orthogonal. Thus, to
determine the propagator, we need to solve also the adjoint
Floquet equation yielding again the same eigenvalues but
providing the adjoint eigenvectors uua

+stdl. It can be shown
that the Floquet states uuastdl together with the adjoint states
uua

+stdl form at equal times a complete biorthogonal basis:
kua

+stduubstdl=dab and oauuastdlkua
+stdu=1. A proof requires to

account for the time periodicity of the Floquet states since
the eigenvalue equation (55) holds in a Hilbert space ex-
tended by a periodic time coordinate.52,56

Using the Floquet equation (55), it is straightforward to
show that with the help of the Floquet states uuastdl the
propagator can be written as

Ust,t8d =o
a

e−isea/"−igadst−t8duuastdlkua
+st8du , s56d

where the sum runs over all Floquet states within one Bril-
louin zone. Consequently, the Fourier coefficients of the
Green function [cf. Eq. (33)] read

Gskdsed = −
i
"
E
0

T dt
T e

ikVtE
0

`

dteiet/"Ust,t − td s57d

=o
a

o
k8=−`

` uua,k8+klkua,k8
+ u

e − sea + k8"V − i"gad
. s58d

Inserting them into Eqs. (37) and (45) yields explicit expres-
sions for the current and the noise, respectively.

IV. LIMITING CASES

In the preceding section, the dc current and the zero-
frequency noise have been derived for a periodic but other-

wise arbitrary driving. Within the wide-band limit, both
quantities can be expressed in terms of the solutions of the
Floquet equation (55), i.e., the solution of a non-Hermitian
eigenvalue problem in an extended Hilbert space. Thus, for
large systems, the numerical computation of the Floquet
states can be rather costly. Moreover, for finite temperatures,
the energy integration in the expressions (37) and (45) has to
be performed numerically. Therefore, approximation
schemes which allow a more efficient computation are of
much practical use.

Before introducing various approximation schemes for the
wire propagator, we discuss two particular cases for which
current and noise assume more intuitive expressions. In do-
ing so, we define quantities to which we will refer later in
this section.

A. Static conductor and adiabatic limit

For consistency, the expressions (37) and (45) for the dc
current and the zero-frequency noise, respectively, must co-
incide in the undriven limit with the corresponding expres-
sions of the time-independent scattering theory.33 This is in-
deed the case since the static situation is characterized by
two relations: First, in the absence of spin-dependent inter-
actions, we have time-reversal symmetry, wLq8,Rq=wRq,Lq8
and, second, all sidebands with kÞ0 vanish, i.e., TRL

skdsed
=TLR

skdsed=dk,0Tsed, where

Tsed = GLsedGRseduG1Nsedu2 s59d

and Gsed is the Green’s function in the undriven limit. Then
the current assumes the known form

I0 =
e
h E deTsedffRsed − fLsedg . s60d

Moreover in a static situation, the relation32,57

uGLsedG11sed + iu2 = 1 − Tsed s61d

allows us to eliminate the backscattering terms in the second
line of Eq. (45) such that the zero-frequency noise can be
expressed solely in terms of the transmission to read33

S0 =
e2

h E dehTsedffLsed f̄Lsed + fRsed f̄Rsedg

+ Tsedf1 − TsedgffRsed − fLsedg2j . s62d

For zero temperature, the terms in the first line vanish and
pure shot noise remains. In contrast, for zero voltage, fR
= fL and the terms in the first line constitute equilibrium
quantum noise. Obviously if both voltage and temperature
are zero, not only the current but also the noise vanishes. In
the presence of driving, this is no longer the case. This be-
comes particularly evident in the high-frequency limit stud-
ied in Sec. IV E.

It is known that in the adiabatic limit, i.e., for small driv-
ing frequencies, the numerical solution of the Floquet equa-
tion (55) becomes infeasible because a diverging number of
sidebands has to be taken into account. In more mathemati-
cal terms, Floquet theory has no proper limit as V→0.58 The
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practical consequence of this is that for low driving frequen-
cies, it is favorable to tackle the transport problem with a
different strategy: If "V is the smallest energy scale of the
Hamiltonian (1), one computes for the “frozen” Hamiltonian
at each instance of time the current and the noise from the
static expressions (60) and (62) being followed up by time
averaging.

B. Infinite voltage

Many phenomena can be discussed in the limit of very
large (practically infinite; subscript `) voltages such that fR
→1 and fL→0 in the relevant energy range. Then, the dc
current (37) becomes

Ī` =
e
hok E deGLse + k"VdGRseduG1N

skdsedu2. s63d

In the zero-frequency noise (45), only the contribution with
fR f̄L remains, thus S̄`=e2oq8,qWRq8,Lq

R =e2oq,q8swRq8,Lq
−WLq8,Lq

R d. To derive this expression, we again have used the
completeness relation (19) and the fact that terms containing
the projector on the wires states do not contribute to time
averages. Expressing wRq8,Lq and WLq8,Lq

R by the Green’s
functions yields

S̄` = eĪ` −
e2

h o
k
E deGLsekdGLsed

3 Uo
k8

GRsek8dGN1
sk8−kdsekdfGN1

sk8dsedg*U2, s64d

where ek=e+k"V. These expressions make explicit that
Ī`.0 and S̄`,eĪ`. Consequently, for infinite voltage the
Fano factor (13) cannot exceed unity.

C. Weak wire-lead coupling

In the limit of a weak wire-lead coupling, i.e., for cou-
pling constants G, which are far lower than all other energy
scales of the wire Hamiltonian, it is possible to derive within
a master equation approach a closed expression for the dc
current.59 The corresponding approximation within the
present Floquet approach is based on treating the self-energy
contribution −iS in the non-Hermitian Floquet equation (55)
as a perturbation. Then, the zeroth order of the Floquet
equation

SHwirestd − i"
d
dtDufastdl = ea

0 ufastdl , s65d

describes the driven wire in the absence of the leads, where
ufastdl=okexps−ikVtdufa,kl are the “usual” Floquet states
with quasienergies ea

0 . In the absence of degeneracies the
first-order correction to the quasienergies is −i"ga

1 where

ga
1 =

1
"
E
0

T dt
T kfastduSufastdl s66d

=
GL

2"
o
k

uk1uufa,klu2 +
GR

2"
o
k

ukNufa,klu2. s67d

Since the first-order correction to the Floquet states will con-
tribute to neither the current nor the noise, the zeroth-order
contribution uuastdl= uua

+stdl= ufastdl is already sufficient for
the present purpose. Consequently, the transmission (38) as-
sumes the form

TLR
skdsed = GLGR o

a,b,k8,k9

kNufa,k8lkfa,k8+ku1l

e − sea
0 + k8"V + i"ga

1d

3
k1ufb,k9+klkfb,k9uNl

e − seb
0 + k9"V − i"gb

1d
s68d

and TRL
skdsed accordingly. The transmission (68) exhibits for

small values of G, sharp peaks at energies ea
0 +k8"V and

eb
0 +k9"V with widths "ga

1 and "gb
1 . Therefore, the relevant

contributions to the sum come from terms for which the
peaks of both factors coincide and, in the absence of degen-
eracies in the quasienergy spectrum, we keep only terms with

a = b, k8 = k9. s69d

Then, the fraction in Eq. (68) is a Lorentzian and can be
approximated by pdse−ea

0 −k8"Vd /"ga
1 provided that ga

1 is
small. Consequently, the energy integration in Eq. (37) can
be performed even for finite temperature and we obtain for
the dc current the expression

Ī =
e
"

o
a,k,k8

GLakGRak8

GLa + GRa

ffRsea
0 + k8"Vd − fLsea

0 + k"Vdg .

s70d

The coefficients

GLak = GLuk1ufa,klu2, GLa =o
k

GLak , s71d

GRak = GRukNufa,klu2, GRa =o
k

GRak s72d

denote the overlap of the kth sideband ufa,kl of the Floquet
state ufastdl with the first site and the last site of the wire,
respectively. We have used 2"ga

1 =GLa+GRa which follows
from Eq. (67). Expression (70) has been derived in a prior
work59 within a rotating-wave approximation of a Floquet
master equation approach.

Within the same approximation, we expand the zero-
frequency noise (45) to lowest order in G,: After inserting the
spectral representation (58) of the Green’s function, we again
keep only terms with identical Floquet index a and identical
sideband index k to obtain

S̄ =
e2

"
o

a,k,k8

GRak8 f̄Rsea
0 + k8"Vd

sGLa + GRad3
h2GLa

2 GRak fRsea
0 + k"Vd

+ sGLa
2 + GRa

2 dGLak fLsea
0 + k"Vdj

+ same terms with the replacement L↔ R . s73d
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Of particular interest for the comparison to the static situa-
tion is the limit of a large applied voltage such that practi-
cally fR=1 and fL=0. Then, in Eqs. (70) and (73), the sums
over the sideband indices k can be carried out such that

Ī` =
e
"
o

a

GLaGRa

GLa + GRa

, s74d

S̄` =
e2

"
o

a

GLaGRasGLa
2 + GRa

2 d
sGLa + GRad3

. s75d

These expressions resemble the corresponding expressions
for the transport across a static double barrier.33 If now
GLa=GRa for all Floquet states ufastdl, we find F=1/2. This
is in particular the case for systems obeying reflection
symmetry.60 In the presence of such symmetries, however,
the existence of exact crossings, i.e., degeneracies, limits the
applicability of the weak-coupling approximation.

D. Homogeneous ac driving

In many experimental situations, the driving field acts as a
time-dependent gate voltage, i.e., it merely shifts all on-site
energies of the wire uniformly. Thus, the wire Hamiltonian is
of the form

Hwirestd = H0 + fstdo
n

unlknu , s76d

where, without loss of generality, we restrict fstd to possess
zero time average. A particular case of such a homogeneous
driving is realized with a system that consists of only one
level.42,61,62 Then trivially, the time and the position depen-
dences of the Floquet states factorize and, therefore, the dc
current can be obtained within the formalism introduced by
Tien and Gordon.8 Here, we establish the relation between
such a treatment and the present Floquet approach.

Since the time-dependent part of the Hamiltonian is pro-
portional to the unity operator, the solution of the Floquet
Equation (55) is, besides a phase factor, given by the eigen-
functions ual of the static operator H0− iS,

uuastdl = e−iFstdual , s77d

where sH0− iSdual= sea− i"gadual and dFstd /dt= fstd /". The
quasienergies sea− i"gad coincide with the eigenvalues of the
static eigenvalue problem. Note that Fstd obeys the T peri-
odicity of the driving field since the time average of fstd
vanishes by definition. Thus, the phase factor in the Floquet
states (77) can be written as a Fourier series,

e−iFstd =o
k
ake−ikVt s78d

and, consequently, we find uua,kl=akual and the adjoint states
accordingly. Then, the Green’s function (33) becomes

Gskdsed =o
k8

ak8+kak8
* Gse − k8"Vd , s79d

where Gsed denotes the Green’s function in the absence of
the driving field. Inserting Eq. (79) into Eq. (37) and employ-
ing the sum rule ok8ak8

* ak8+k=dk,0 yield

Ī =o
k

uaku2
e
h E deTse − k"VdffRsed − fLsedg , s80d

where Tsed is the transmission in the absence of the driving.
This expression allows the interpretation that for homoge-
neous driving, the Floquet channels contribute independently
to the current Ī. For the special case of a one-site conductor
and a sinusoidal driving, this relation to the static situation
has been discussed in Refs. 61 and 62.

Addressing the noise properties, we obtain by inserting
the Green’s function (79) into Eq. (45) the expression

S̄ =
e2

ho
k
E deHUo

k8

ak8+k
* ak8Tse − k8"VdU2fRsed f̄Rse + k"Vd

+ GLGRUo
k8

ak8+k
* ak8G1Nse − k8"Vd

3fGLG11
* se − k8"Vd − igU2fLsed f̄Rse + k"Vd

+ same terms with the replacement sL,1d ↔ sR,NdJ .
s81d

While the term in the first line contains only the static trans-
mission at energies shifted by multiples of the photon ener-
gies, the contribution in the second line cannot be brought
into such a convenient form. The reason for this is that the
sum over k8 inhibits the application of relation (61). As a
consequence, in clear contrast to the dc current, the zero-
frequency noise cannot be interpreted in terms of indepen-
dent Floquet channels. Only in the limit of large driving
frequencies, we find below that the channels become effec-
tively independent and Eq. (81) reduces to an expression that
depends only on the transmission in the absence of the driv-
ing and the Fourier coefficients ak, cf. following section.

Expressions for the dc current and the noise that depend
only on the static transmission have been derived by Tucker
and Feldman63,64 within a Tien-Gordon approach.8 The cen-
tral approximation of this approach is the description of a
time-dependent chemical potential by an effective electron
distribution. While this yields the correct expression (80) for
the dc current, it does not capture the interference terms in
the noise formula (81). This reveals that a Tien-Gordon-like
approach yields the correct dc current while for the noise
(and other higher-order correlation functions) it is only valid
in a high-frequency limit.

For large voltages where fL=0 and fR=1, the sums over
the Fourier coefficients in Eqs. (80) and (81) can be evalu-
ated with the help of the sum rule ok8ak8

* ak8+k=dk,0. Then
both the dc current and the zero-frequency noise become
identical to their value in the absence of the driving. This
means that for a sufficiently large transport voltage, a time-
dependent gate voltage has no influence on the average cur-
rent and the zero-frequency noise.
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E. High-frequency driving

Many effects occurring in driven quantum systems, such
as coherent destruction of tunneling24 or current and noise
control,29,30 are most pronounced for large excitation fre-
quencies. Thus, it is particularly interesting to derive for the
present Floquet approach an expansion in terms of 1/V.
Thereby, the driven system will be approximated by a static
system with renormalized parameters. Such a perturbation
scheme has been developed for two-level systems in Ref. 53
and applied to driven tunneling in bistable systems65 and
superlattices.26 For open quantum systems, the coupling to
the external degrees of freedom (e.g., the leads or a heat
bath) bears additional complications that have been solved
heuristically in Ref. 44 by replacing the Fermi functions by
effective electron distributions. In the following, we present
a rigorous derivation of this approach based on a perturba-
tion theory for the Floquet equation (55).

We assume a driving that leaves all off-diagonal matrix
elements of the wire Hamiltonian time independent while the
tight-binding levels undergo a position-dependent, time-
periodic driving fnstd= fnst+Td with zero time-average. Then,
the wire Hamiltonian is of the form

Hwirestd = H0 +o
n
fnstdunlknu . s82d

If "V represents the largest energy scale of the problem, we
can in the Floquet equation (55) treat the static part of the
Hamiltonian as a perturbation. Correspondingly, the eigen-
functions of the operator onfnstdunlknu− i"d /dt determine the
zeroth order Floquet states

e−iFnstdunl . s83d

We have defined the phase

Fnstd =
1
"
E
0

t

dt8fnst8d = Fnst + Td , s84d

which is T periodic due to the zero time average of fnstd. As
a consequence of this periodicity, to zeroth order the quasien-
ergies are zero smod "Vd and the Floquet spectrum is given
by multiples of the photon energy, k"V. Each k
=0, ±1, ±2, . . . defines a degenerate subspace of the ex-
tended Hilbert space. If now "V is larger than all other en-
ergy scales, the first-order correction to the Floquet states
and the quasienergies can be calculated by diagonalizing the
perturbation in the subspace defined by k=0. Thus, we have
to solve the time-independent eigenvalue equation

sHeff − iSdual = sea
1 − i"ga

1dual . s85d

The time-independent effective Hamiltonian Heff is defined
by the matrix elements of the original static Hamiltonian H0
with the zeroth order Floquet states (83),

sHeffdnn8 = E
0

T dt
T e

iFnstdsH0dnn8e
−iFn8std. s86d

The t integration constitutes the inner product in the Hilbert
space extended by a periodic time coordinate.54 To first order
in 1/V, the quasienergies ea

1 − i"ga
1 are given by the eigen-

values of the static equation (85) and, consequently, the cor-
responding Floquet states read

uuastdl =o
n
e−iFnstdunlknual . s87d

The fact that all Fnstd are T periodic allows us to write in Eq.
(87) the time-dependent phase factor as a Fourier series,

e−iFnstd =o
k
an,ke−ikVt. s88d

Thus, knuua,kl=an,kknual and the Green’s function for the
high-frequency driving reads

Gnn8
skd sed =o

k8

an,k8+kan8,k8
* Gnn8

eff se − k8"Vd , s89d

where Geffsed denotes the Green’s function corresponding to
the static Hamiltonian Heff with the self-energy S. Finally,
substituting e→e+k8"V and using the sum rule
ok8an,k+k8an,k8

* =dk,0, we obtain

Ī =
e
h E deTeffsedhfR,effsed − fL,effsedj . s90d

The effective transmission Teffsed=GLGR uG1N
effsedu2 is com-

puted from the effective Hamiltonian (86); the electron dis-
tribution is given by

fL,effsed =o
k

ua1,ku2fLse + k"Vd s91d

and fR,eff follows from the replacement s1,Ld→ sN ,Rd.
In order to derive a high-frequency approximation for the

zero-frequency noise S̄, we insert the Green’s function (89)
into Eq. (45) and neglect products of the type Geffse
−k"VdGeffse−k8"Vd for kÞk8. Employing the above sum
rule for the Fourier coefficients an,k, we obtain for the noise
the static expression (62) but with the transmission Tsed and
the Fermi functions fR,Lsed replaced by the effective trans-
mission Teffsed and the effective distribution function (91),
respectively. The fact that fL,effsed is generally not a mere
Heaviside step function has an intriguing consequence: In
the presence of driving, the noise remains finite even if both
voltage and temperature are zero.

Two differences between the high-frequency approxima-
tion and the homogeneous driving, cf. Sec. IV D, are worth
mentioning: First, the static transmission is now replaced by
an effective transmission which can be considerably influ-
enced by the driving, see below. Second, in general a1,k
ÞaN,k such that fR,effÞ fL,eff. This means that the driving can
create an effective bias and thereby create a nonadiabatic
pump current. By contrast Eq. (80) reveals that a homoge-
neous driving cannot create such a pump current. Moreover,
if all Fn are identical as in the case of a homogeneous driv-
ing, the effective Hamiltonian Heff equals the original static
Hamiltonian. Then, also the second line of Eq. (81) can be
written in terms of the static transmission Tsed.
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V. CONDUCTOR DRIVEN BY AN OSCILLATING DIPOLE
FIELD

In this section, we apply the formalism derived in Secs.
III and IV to study the conduction and noise properties of a
nanoscale conductor under the influence of an electromag-
netic field. As an elementary model that captures the essen-
tial features of a molecular wire,6 we employ a tight-binding
model composed of N sites as sketched in Fig. 1. Each or-
bital is coupled to its nearest neighbor by a hopping matrix
element D; thus, the single-particle wire Hamiltonian reads

Hwirestd = − Do
n=1

N−1

sunlkn + 1u + un + 1lknud

+o
n

fEn + fnstdgunlknu , s92d

where En denote the on-site energies of the tight-binding
levels. Within a dipole approximation, the oscillating electro-
magnetic field causes the time-dependent level shifts

fnstd = A cossVtdxn s93d

with xn= sN+1–2nd /2 being the scaled position of site unl.
Since typical laser frequencies are below the work function
of a usual metal, we assume that the radiation does not pen-
etrate the leads and that, consequently, the leads stay in ther-
mal equilibrium. The energy A denotes the electrical field
amplitude multiplied by the electron charge and the distance
between two neighboring sites. This model describes, as
well, an array of coherently coupled quantum dots1–3 under
the influence of microwave radiation.

The tight-binding parameters D and A both depend on the
physical length of the sample. The driving amplitude A is
directly proportional to the length scale and, thus, in smaller
samples, the same physical effects are obtained at higher
field strengths. The tunnel matrix element D obeys an even
more sensitive length dependence which results from the fact
that the tunnel probability decreases exponentially with in-
creasing barrier width. This finally causes a length depen-
dence of the transmission and the electrical current.

The dipole approximation inherent to the driving (93) ne-
glects the propagation of the electromagnetic field and, thus,
is valid only for wavelengths that are much larger than the
size of the sample.66 This condition is indeed fulfilled for
both applications we have in mind: For molecular wires, we
consider frequencies up the optical spectral range, i.e., wave-
lengths of the order 1 mm and samples that extend over a
few nanometers. Coupled quantum dots typically1–3 have a
distance of less than 1 mm while the coupling matrix ele-
ment D is of the order of 30 meV which corresponds to a
wavelength of roughly 1 cm.

We assume that the wire couples equally strong to both
leads; thus, GL=GR;G. An applied transport voltage V is
mapped to a symmetric shift of the leads’ chemical poten-
tials, mR=−mL=eV /2. Moreover, for the evaluation of the dc
current and the zero-frequency noise, we restrict ourselves to
zero temperature. The zero-temperature limit is physically
well justified for molecular wires at room temperature and

for quantum dots at helium temperature since in both cases
thermal electron excitations do not play a significant role.

A. Current and noise suppression

For a wire described by the Hamiltonian (92), it has been
found30 that a dipole force of the form (93) suppresses the
transport if the ratio A /"V is close to a zero of the Bessel
function J0 (i.e., the values 2.405. . . ,5.520. . . ,8.654. . . , . . .).
Moreover, in the vicinity of such suppressions, the shot noise
characterized by the Fano factor (13) assumes two character-
istic minima. These suppression effects are most pronounced
in the high-frequency regime, i.e., if the energy quanta "V of
the driving exceed the energy scales of the wire. Thus, before
going into a detailed discussion, we start with a qualitative
description of the effect based on the static approximation
for a high-frequency driving that has been derived in Sec.
IV E.

Let us consider first the limit of a voltage which is so
large that in Eq. (90), fR,eff− fL,eff can be replaced by unity.
Then, the average current is determined by the effective
Hamiltonian

Heff = − Deffo
n=1

N−1

sunlkn + 1u + un + 1lknud + o
n=1

N

Enunlknu ,

s94d

which has been derived by inserting the driving (93) into
Eqs. (84) and (86). Then, obviously Heff is identical to the
Hamiltonian (92) in the absence of the driving field but with
the tunnel matrix element renormalized according to

D → Deff = J0sA/"VdD . s95d

Since the Bessel function J0 assumes values between 0 and
1, the amplitude of the driving field allows us to switch the
absolute value of the effective hopping on the wire, Deff,
between 0 and D. Since the transmission of an undriven wire
is proportional to uDu2, the effective transmission Teffsed ac-
quires a factor J0

2sA /"Vd. This renormalization of the hop-
ping results finally in a current suppression.29,30

For the discussion of the shot noise, we employ the Fano
factor (13) as a measure. In the limit of large applied volt-
ages, we have to distinguish two limits: (i) weak wire-lead
coupling G!Deff (i.e., weak with respect to the effective
hopping) and (ii) strong wire-lead coupling G@Deff. In the
first case, the tunnel contacts between the lead and the wire
act as “bottlenecks” for the transport. In that sense they form
barriers. Thus qualitatively, we face a double-barrier situa-
tion and, consequently, expect the shot noise to exhibit a
Fano factor F<1/2.33 In the second case, the links between
the wire sites act as N−1 barriers. Correspondingly, the Fano
factor assumes values F<1 for N=2 (single barrier) and F
<1/2 for N=3 (double barrier).67 At the crossover between
the two limits, the conductor is optimally “barrier free” such
that the Fano factor assumes its minimum.

In order to be more quantitative, we evaluate the current
and the zero-frequency noise in more detail thereby consid-
ering a finite voltage. This requires a closer look at the ef-
fective electron distribution (91); in particular, we have to
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quantify the concept of a “practically infinite” voltage. In a
static situation, the voltage can be replaced by infinity,
fRsed=1=1− fLsed, if all eigenenergies of the wire lie well
inside the range fmL ,mRg. In contrast to the Fermi functions,
the effective electron distribution (91), which is decisive
here, decays over a broad range in multiple steps of size "V.
Since for our model, Teffsed is peaked around e=0, we re-
place here the effective electron distributions by their values
for e=0,

f,,effs0d = o
k,m,/"V

Jk
2SAsN − 1d

2"V
D , s96d

for zero temperature. We have inserted the coefficients a1,k
=JkfAsN−1d /2"Vg and aN,k=J−kfAsN−1d /2"Vg which have
been computed directly from their definition (88); Jk denotes
the kth order Bessel functions of the first kind. The current,
the noise, and the Fano factor are given by the static expres-
sions (60) and (62) with the transmission and the electron
distribution replaced by the corresponding effective quanti-
ties, Teff and feff,,, respectively. Thus, we obtain

Ī = lĪ`, s97d

S̄ = l2S̄` +
e
2

s1 − l2dĪ`, s98d

F = lF` +
1 − l2

2l
, s99d

respectively, where the subscript ` denotes the correspond-
ing quantities in the infinite voltage limit,

Ī` =
e
h E deTeffsed , s100d

S̄` =
e2

h E deTeffsedf1 − Teffsedg , s101d

and F`= S̄` /eĪ`. The factor

l = fR,effs0d − fL,effs0d = o
ukuøKsVd

Jk
2SAsN − 1d

2"V
D s102d

reflects the influence of a finite voltage; KsVd denotes the
largest integer not exceeding e uV u /2"V. Since Jksxd<0 for
uk u .x and okJk

2sxd=1, we find l=1 if KsVd.AsN
−1d /2"V. This means that for small driving amplitudes
A,eV / sN−1d, we can consider the voltage as practically
infinite. With an increasing driving strength, l decreases and,
thus, the current becomes smaller by a factor l but still ex-
hibits suppressions. By contrast, since F`ø1 for all situa-
tions considered here [cf. the remark after Eq. (64)], we
find from Eq. (99) that the Fano factor will increase with
smaller l.

B. Numerical results

The qualitative discussion of the current and noise sup-
pressions can be corroborated by exact numerical results. For

this purpose, we have solved numerically the Floquet equa-
tion (55). With the resulting Floquet states and quasienergies,
we obtained the Green’s function (58). In the zero-
temperature limit considered here, the Fermi functions in the
expressions for the average current (37) and the zero-
frequency noise (45) become step functions. The remaining
energy integrals can be performed analytically since the in-
tegrands are rational functions.

1. Intermediate wire-lead coupling

Figure 2 depicts the average current, the zero-frequency
noise, and the corresponding Fano factor for a wire that con-
sists of N=3 sites with on-site energies En=0 as sketched in
Fig. 1. The driving frequency V=5D /" lies above all transi-
tion energies of the wire states and the applied voltage V
=48D /e is relatively large. This particular value of the volt-
age has been selected to avoid chemical potentials to lie
close to multiples of "V, i.e., close to the steps of the effec-
tive electron distribution (96). The wire-lead coupling G
=0.5D is sufficiently weak, such that in the absence of the
driving, the transport is dominated by resonant tunneling.
Correspondingly, the current is essentially determined by the
hopping rate G /2" of the electrons from the lead to the wire.
The noise exhibits a Fano factor F<1/2 which is the char-
acteristic value for the transport across a double barrier.68,33
With an increasing driving amplitude, the current becomes
smaller until it reaches its minimum when the ratio A /"V
assumes a zero of the Bessel function J0. Note that while the
analytical treatment within a high-frequency approximation

FIG. 2. Time-averaged current (a), zero-frequency noise (b), and
Fano factor (c) for a conductor consisting of N=3 sites with equal
on-site energies, En=0, as functions of the driving amplitude A. The
driving frequency is V=5D /", the wire-lead coupling is G=0.5D,
and the chemical potentials are mR=−mL=24D. The exact numerical
results (solid lines) are compared to the high-frequency approxima-
tion for finite (dashed) and infinite voltage (dash-dotted).
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predicts a vanishing current, the exact result is still roughly
1% of the value in the absence of the driving. Close to the
current suppression, the effective tunnel matrix element (95)
is much smaller than the wire-lead coupling G and the con-
nections to the central site of the wire form a double barrier.
Consequently, we again find a Fano factor F<1/2. At the
crossover Deff<G, the effective barriers vanish and, there-
fore, the Fano factor assumes its minimum. These exact nu-
merical results are well reproduced by the expressions
(97)–(99) obtained within a high-frequency approximations
for finite voltage. Figure 2 also reveals that for small driving
amplitudes, A,eV / sN−1d, the assumption of a practically
infinite voltage yields the correct results. By contrast, for
larger driving amplitudes, A.eV / sN−1d, the Fano factor
can assume values F.1, i.e., the shot noise becomes even
larger than in the static situation.

As the coupling strength G is lowered, the distance be-
tween a pair of minima of the Fano factor becomes smaller
until the minima finally vanish30 (not shown). In this limit,
the current and the noise are given by the weak-coupling
results (74) and (75), respectively. The corresponding Fano
factor F=1/2 [cf. the discussion after Eq. (75)] is indepen-
dent of the driving amplitude.

Figure 3(a) depicts the behavior for a driving frequency
which is of the order of the wire excitations, V=D /". Then,
the high-frequency approximation is no longer applicable.
Nevertheless, the average current exhibits clear minima with
a reduction of the order 50%. Compared to the high-
frequency case, these minima are shifted towards smaller
driving amplitudes, i.e., they occur for ratios A /"V slightly
below the zeros of the Bessel function J0. At the minima of

the current, the Fano factor [solid line in Fig. 3(b)] still as-
sumes a maximum with a value close to F<1/2. Although
the sharp minima close to the current suppressions have van-
ished, in between the maxima the Fano factor assumes re-
markably low values sF<0.2d. Figure 3(b) also reveals that
already for V<3D /", the high-frequency regime is reached.

2. Strong wire-lead coupling

For strong wire-lead coupling, it is possible to choose a
driving frequency that is large with respect to the wire exci-
tations, but small as compared to the coupling G; thus D
!"V!G. Figure 4 depicts the current and the Fano factor in
this limit for wires with a different number of sites. The
qualitative difference between these cases can be explained
by the fact that due to the strong coupling, the first and the
last wire sites hybridize with the leads. Then the setup be-
haves similar to a wire with N−2 sites and a weak wire-lead
coupling ~D2 /G. This means that for N=2 the wire acts as
point contact while for N=3, we qualitatively have resonant
transport through a single level. In both cases no tunneling
matrix element of the wire that could be renormalized re-
mains and, consequently, for Nø3 the current suppressions
vanish in the strong-coupling limit [cf. Fig. 4(a)]. This sce-
nario is also reflected in the behavior of the Fano factor [Fig.
4(b)] which exhibits the characteristic values F<1 (point
contact) for N=2 and F<1/2 (single resonant level) for N
=3. Finally, for N=4 we observe the behavior of a driven
wire with two sites and weak coupling.44 Then, a vanishing
effective hopping Deff<0 corresponds to a point contact;
thus F<1. Although the behavior of the Fano factor can be
explained by drawing analogies to a weakly coupled wire
with N−2 sites, the global decay of the current with the

FIG. 3. (a) Time-averaged current (solid line) and zero-
frequency noise (dashed line) as a function of the driving amplitude
for the driving frequency V=D /". (b) Corresponding Fano factor
for the same data (solid line) and for the driving frequencies V
=1.5D /" (broken) and V=3D /" (dash-dotted). All other param-
eters are as in Fig. 2.

FIG. 4. Time-averaged current (a) and Fano factor (b) as a func-
tion of the driving amplitude A for a wire with N=2,3 ,4 sites and
the wire-lead coupling strength G=10D. The other parameters are
En=0, V=5D /", and mR=−mL=25D.
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driving amplitude, cf. Fig. 4(a), is not within the scope of
this intuitive picture.

3. Internal bias

So far, we have assumed that all on-site energies of the
wire are identical. In an experimental setup, however, the
applied transport voltage acts also as a static dipole force
which rearranges the charge distribution in the conductor and
thereby causes an internal potential profile.69–71 The self-
consistent treatment of such effects is, in particular in the
time-dependent case, rather ambitious and beyond the scope
of this work. Thus, here we only derive the consequences of
a static bias without determining its shape from microscopic
considerations. We assume a position-dependent static shift
of the on-site energies by an energy −bxn, i.e., for a wire with
N=3 sites,

E1 = b, E2 = 0, E3 = − b . s103d

Figure 5(a) demonstrates that the behavior of the average
current is fairly stable against the bias. In particular, we still
find pronounced current suppressions. Note that since b
!V a high-frequency approximation is still possible. As a
main effect of the bias, we find reduced current maxima
while the minima remain. By contrast, the minima of the
Fano factor [Fig. 5(b)] become washed out: Once the bias
becomes of the order of the wire-lead coupling, b<G, the
structure in the Fano factor vanishes and we find F<1/2 for
all driving amplitudes A,eV / sN−1d [cf. the discussion after
Eq. (102)]. Interestingly, the value of the Fano factor at cur-
rent suppressions is bias independent.

VI. CONCLUSIONS

We have derived with Eqs. (37)–(40) and (45) expressions
for the dc current, the zero-frequency noise, and the time-
dependent current for the electron transport through ac-
driven nanoscale systems. A cornerstone of our approach is
the relation of the propagator to a non-Hermitian Floquet
equation. This yields explicit formulas for the current and the
noise. Moreover, the connection to Floquet theory allows us
to elucidate various approximation schemes that enable an
efficient computation and, in addition, provide physical in-
sight. Above all, a high-frequency approximation has
emerged to be very useful: Within an expansion in 1/V, the
driven transport problem can be approximated by a time-
independent transport problem with a renormalized tunneling
and effective distribution functions for the lead electrons.
The conductance properties of the latter can be derived with
standard methods. Moreover, for the case of a time-
dependent gating voltage, we have revealed the limitations of
the Tien-Gordon approach: While such a treatment provides
the correct expression for the current, it neglects interfer-
ences of different Floquet channels.

A detailed investigation of the recently found shot-noise
suppression provided a deeper understanding of this effect.
In particular, the analytical treatment within a high-
frequency approximation can explain the characteristic emer-
gence of the current suppressions which are accompanied by
a noise maximum and two remarkably low minima. A nu-
merical study fully confirmed the analytical results. For
lower driving frequencies, i.e., beyond the high-frequency
limit, the current suppressions become considerably less pro-
nounced. By contrast, the shot-noise suppression turned out
to be more stable. Thus, since the current stays remarkably
large while the noise is controllable, this regime is particu-
larly promising for applications. At first sight, in the limit of
strong wire-lead coupling these phenomena appear quite dif-
ferent. A closer look, however, revealed that the strong cou-
pling entails a hybridization of the first and the last sites with
the respective lead. Therefore, the wire behaves qualitatively
like a weakly coupled wire with two sites less. Moreover, we
have found that the noise suppressions are quite sensitive to
an internal bias. Once the on-site energies of neighboring
sites have differences of the order of the wire-lead coupling
energy, the minima of the Fano factor vanish. A most inter-
esting application of these results is the development of cur-
rent sources with a controllable noise level.
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APPENDIX A: AC TRANSPORT VOLTAGE

Within this work, we focus on models where the driving
enters solely by means of time-dependent matrix elements of

FIG. 5. Time-averaged current (a) and Fano factor (b) as a func-
tion of the driving amplitude A for a wire with N=3 sites in the
presence of an internal bias. The on-site energies are E1=b, E2=0,
E3=−b. All other parameters are as in Fig. 2.
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the wire Hamiltonian while the leads and the wire-lead cou-
plings remain time independent. An a priori different type of
driving is the application of a time-dependent transport volt-
age. In this appendix, we demonstrate that a setup with an
oscillating transport voltage can be mapped by a gauge trans-
formation to a Hamiltonian of the form (1). Consequently, it
is possible to apply the formalism derived in Sec. III also to
situations with an oscillating transport voltage.

We restrict the discussion to the case where the electron
energies of only the left lead are modified by an external
T-periodic voltage Vacstd with zero time average; thus in the
left lead

eq → eq − eVacstd . sA1d

The generalization to a situation where also the levels in the
right lead are T-periodically time dependent is straightfor-
ward. Since an externally applied voltage causes a potential
drop along the wire,69–71 we have to assume for consistency
that for an ac voltage, the wire Hamiltonian also obeys a
time dependence. Ignoring such a time-dependent potential
profile enables a treatment of the transport problem within
the approach of Refs. 63 and 64. In the general case, how-
ever, we have to resort to the approach put forward with this
work.

We start out by a gauge transformation of the Hamiltonian
(1) with the unitary operator

Uacstd = expH− ifstdSc1†c1 +o
q
cLq
† cLqDJ , sA2d

where

fstd = −
e
"
Et

dt8 Vacst8d sA3d

describes the phase accumulated from the oscillating voltage.
The transformation (A2) has been constructed such that the
new Hamiltonian H̃std=Uac

† HstdUac− i"Uac
† U̇ac possesses a

time-independent tunnel coupling. Since, the operator c1
transforms as c1→c1expf−ifstdg, the matrix elements
Hnn8std of the wire Hamiltonian acquire an additional time
dependence,

Hnn8std → H̃nn8std = Hnn8stde
−ifstdsdn81−dn1d + eVacstddn1dn81.

sA4d

The second term in the Hamiltonian (A4) stems from
−i"Uac

† U̇ac. Owing to the zero time average of the voltage
Vacstd, the phase fstd is T periodic. Therefore, the trans-
formed wire Hamiltonian is also T periodic while the contact
and the lead contributions are time independent; thus, H̃std is
of form (1).

APPENDIX B: ALTERNATIVE DERIVATION

In Ref. 30, the expressions (37) and (45) for the current
and the noise in the wide-band limit have been derived by
eliminating the leads in favor of a stochastic operator. In this
appendix, we detail this approach. Like in Sec. III, we start

here also from the Heisenberg equations (14)–(16) for the
annihilation operators. The ones for the lead operators, Eq.
(14), are easily integrated to read

cLqstd = cLqst0de−ieqst−t0d/" −
iVLq

"
E
0

t−t0
dte−ieqt/"c1st − td

sB1d

and cRqstd accordingly. Inserting Eq. (B1) into the Heisen-
berg equations (15) for the wire operators yields

ċ1/N = −
i
"
o
n8

H1/N,n8stdcn8 −
GL/R

2"
c1/N + jL/Rstd ,

ċn = −
i
"
o
n8

Hnn8stdcn8, n = 2, . . . ,N − 1. sB2d

Owing to the wide-band limit, the dissipative terms
are memory free. Within the chosen grand-canonical
ensembles the operator-valued Gaussian noise j,std
=−si /"doqV,q

* e−ieqst−t0d/"c,qst0d obeys

kj,stdl = 0, sB3d

kj,
†stdj,8st8dl = d,8,

G,

2p"2 E deeiest−t8d/"f,sed . sB4d

The current operator then assumes the form

ILstd =
e
"

GLc1
†stdc1std − ehc1

†stdjLstd + jL
†stdc1stdj . sB5d

The homogeneous set of equations that corresponds to Eq.
(B2) coincides with the equations of motion Eqs. (46) and
(50), which are solved by the Floquet states uuastdl. Thus, the
Floquet states uuastdl together with the adjoint states uua

+stdl
allow us to write the solution of Eq. (B2) in closed form. In
the asymptotic limit t0→−`, it reads

cnstd = E
0

`

dtknuUst,t − tdhu1ljLst − td + uNljRst − tdj ,

sB6d

where Ust , t−td is the propagator (56) for the wire electrons.
To obtain the current kILstdl, we insert the operator (B6)

into the expression (40) and use the expectation values (B4).
With the Green’s function (32), we find the still unsymmetric
expression

kILstdl =
eGL
2p"

E dehGLuG11st,edu2fLsed + GRuG1Nst,edu2fRsed

+ ifG11
* st,ed − G11st,edgfLsedj . sB7d

For a symmetrization, we eliminate the backscattering terms,
i.e., terms containing G11, by use of the relation38
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G†st,ed − Gst,ed = i"
d
dt
G†st,edGst,ed + 2iG†st,edSGst,ed ,

sB8d

which follows readily from the Floquet representation (56)
of the propagator and the Floquet eigenvalue equation (55)
together with its adjoint. A subsequent Fourier transforma-
tion with respect to t= t− t8 yields Eq. (B8). By inserting

the matrix element k1u . . . u1l, we obtain from Eq. (B7)
for the time-dependent current the symmetric expression
(40).

To derive an expression for the zero-frequency noise, we
insert the operator (B6) into the definition (9) of the current-
current correlation function and integrate over the times t

and t. Again, we employ the relation (B8) to bring S̄ into the
symmetric form (45).
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