
An Institution for Simple UML State Machines

Alexander Knapp1, Till Mossakowski2, Markus Roggenbach3, and Martin Glauer2

1 Universität Augsburg, Germany
2 Otto-von-Guericke Universität Magdeburg, Germany

3 Swansea University, UK

Abstract. We present an institution for UML state machines without hierarchi-
cal states. The interaction with UML class diagrams is handled via institutions
for guards and actions, which provide dynamic components of states (such as
valuations of attributes) but abstract away from details of class diagrams. We also
study a notion of interleaving product, which captures the interaction of several
state machines. The interleaving product construction is the basis for a semantics
of composite structure diagrams, which can be used to specify the interaction of
state machines. This work is part of a larger effort to build a framework for for-
mal software development with UML, based on a heterogeneous approach using
institutions.

Keywords: UML, state machines, interleaving product, institutions.

1 Introduction

The “Unified Modeling Language” (UML [1]) is a heterogeneous language: UML com-
prises a language family of 14 types of diagrams of structural and behavioural nature.
These sub-languages are linked through a common meta-model, i.e., through abstract
syntax; their semantics, however, is informally described mainly in isolation. In [2], we
have outlined our research programme of “institutionalising UML”. Our objective is to
give, based on the theory of institutions [3], formal, heterogeneous semantics to UML,
that — besides providing formal semantics for the individual sub-languages — ulti-
mately allows to ask questions concerning the consistency between different diagram
types and concerning refinement and implementation in a system development. In this
paper, we propose a new institution for UML state machines.

Behavioural UML state machines specify the behaviour of model elements, like
components, whereas protocol UML state machines express usage protocols, like the
message exchange over a connector between components. Both variants describe dy-
namical system behaviour in terms of action effects and messages, where conditions
are used to choose between different possibilities of the behaviour. We tackle the well-
known resulting problem of integrating specifications of data (i.e., action effects and
messages), logic (i.e., conditions), and processes (i.e., state machines) [4,5,6,7] by a
two-step semantics: In the first step, we define institutions of guards and actions that
capture which guards, actions, and messages can be used in order to define a state ma-
chine. In general, other UML diagrams like class diagrams or OCL constraints specify
these items, i.e., define a suitable environment. In a second step, we then define in-
stitutions for behavioural and protocol state machines relative to given institutions of

4

guards and actions. However, currently both of our institutions are restricted to “flat”,
non-hierarchical state machines; in fact, most of the hierarchical features can be re-
duced to this format [8,9]. A previous UML state machine institution by D. Calegari
and N. Szasz [10] encoded all these features on a single (signature) level thus reducing
integration flexibility considerably; furthermore, it only comprised behavioural state
machines and captured each state machine in isolation. By contrast, we study interact-
ing state machines and the refinement of state machines.

Our institution of behavioural state machines has the peculiarity of being a “pro-
gramming language-like” institution, in the sense that each sentence essentially has one
model, its canonical model. By contrast, our institution of protocol state machines is
a “loose semantics” institution where generally a sentence has many models. For sys-
tem development, we introduce an interleaving product of several state machines in
our institution, which allows us to consider refinement for checking the correct imple-
mentation of protocols and which ideally could be integrated into the current efforts
for providing precise semantics for UML composite structures [11]. Furthermore, we
consider the determinism of state machines to foster code generation [12].

The remainder of this paper is structured as follows: In Sect. 2 we provide some
background on our goal of heterogeneous institution-based UML semantics and intro-
duce a small example illustrating behavioural and protocol UML state machines. In
Sect. 3 we define institutions for these variants of state machines. We study a notion
of determinism for state machines, their interleaving, and their refinement based on the
institutions in Sect. 4. Finally, in Sect. 5 we conclude with an outlook to future work.

2 Heterogeneous Institution-Based UML Semantics

The work in this paper is part of a larger effort [2] of giving an institution-based hetero-
geneous semantics to several UML diagrams as shown in Fig. 1. The vision is to provide
semantic foundations for model-based specification and design using a heterogeneous
framework based on Goguen’s and Burstall’s theory of institutions [3]. We handle the
complexity of giving a coherent semantics to UML by providing several institutions
formalising different diagrams of UML, and several institution translations (formalised
as so-called institution morphisms and comorphisms) describing their interaction and

Interactions

Protocol State
Machines

Object Constraint
Language (OCL)

State Machines

Component Diagram

Class Diagram

State Machine
Instances

Composite Structure
Diagram

Object Diagram

Modelling in UML

ACSL C
Implementation

Properties Types Instances

Fig. 1. Languages and diagrams to be considered

 5

information flow. The central advantage of this approach over previous approaches to
formal semantics for UML (e.g., [13]) is that each UML diagram type can stay “as-is”,
without the immediate need of a coding using graph grammars (as in [14]) or some
logic (as in [13]). Such coding can be done at verification time — this keeps full flex-
ibility in the choice of verification mechanisms. The formalisation of UML diagrams
as institutions has the additional benefit that a notion of refinement comes for free, see
[15,16]. Furthermore, the framework is flexible enough to support various development
paradigms as well as different resolutions of UML’s semantic variation points. This is
the crucial advantage of the proposed approach to the semantics of UML, compared
to existing approaches in the literature which map UML to a specific global semantic
domain in a fixed way.

2.1 Institutions

Institutions are an abstract formalisation of the notion of logical systems. Informally,
institutions provide four different logical notions: signatures, sentences, models and
satisfaction. Signatures provide the vocabulary that may appear in sentences and that is
interpreted in models. The satisfaction relation determines whether a given sentence is
satisfied in a given model. The exact nature of signatures, sentences and models is left
unspecified, which leads to a great flexibility. This is crucial for the possibility to model
UML diagrams (which in the first place are not “logics”) as institutions.

More formally [3], an institution I = (SigI , SenI ,ModI , |=I) consists of (i) a
category of signatures SigI ; (ii) a sentence functor SenI : SigI → Set, where Set is
the category of sets; (iii) a contra-variant model functor ModI : (SigI)op → Class,
where Class is the category of classes; and (iv) a family of satisfaction relations |=I

Σ ⊆
ModI (Σ) × SenI (Σ) indexed over Σ ∈ |SigI |, such that the following satisfaction
condition holds for every signature morphism σ : Σ → Σ′ in SigI , every sentence
ϕ ∈ SenI (Σ) and for every Σ′-model M ′ ∈ ModI (Σ′):

ModI (σ)(M ′) |=I
Σ ϕ ⇔ M ′ |=I

Σ′ SenI (σ)(ϕ) .

ModI (σ) is called the reduct functor (also written −|σ), SenI (σ) the translation
function (also written σ(−)).

A theory T in an institution consists of a signature Σ, written sig(T), and a set of
Σ-sentences; its model class is the set of all Σ-models satisfying the sentences.

An institution I has the weak amalgamation property for a pushout

Σ Σ1

Σ2 ΣR

if any pair (M1, M2) ∈ ModI (Σ1) × ModI (Σ2) that is compatible in the sense
that M1 and M2 reduce to the same Σ-model can be amalgamated to a ΣR-model
MR (i.e., there exists a MR ∈ ModI (ΣR) that reduces to M1 and M2, respectively).
Weak amalgamation allows the computation of normal forms for specifications [17],
and implies good behaviour w.r.t. conservative extensions, as well as soundness of proof
systems for structured specifications [18].

6

ATM2Bank Scenario

verify(17, 4711)

reenterPIN()

verify(17, 4242)

verified()

sd

bank : Bankatm : ATM

(a) Interaction

«component» «component»atmCom

bankCom

userCom

Systemcmp

bank : Bankatm : ATM

(b) Composite structure

{ { OCL } trialsNum >= 3 }
«precondition»

card(in c : Integer)

«interface»
UserOut

PIN(in p : Integer)

«interface»
UserIn

keepCard()
ejectCard()

(c) Interfaces

markInvalid /

ATM2Bank { protocol }stm

VerifyingIdle

reenterPIN /

verified /

verify /

(d) Protocol state machine

userCom.card(c) /

cardId = c

[trialsNum >= 3] /

userCom.keepCard();
bankCom.markInvalid(cardId);
trialsNum = 0

bankCom.reenterPIN /

/ bankCom.verify(cardId, pin)

bankCom.verified /

/ userCom.ejectCard(); trialsNum = 0

pin = p

userCom.PIN(p) /

[trialsNum < 3] /
trialsNum++

Idle PINEntered

Verifying

Verified

CardEntered

ATM Behaviourstm

(e) State machine

Fig. 2. ATM example

2.2 ATM Example

In order to illustrate our approach to a heterogeneous institutions-based UML semantics
in general and the institutions for UML state machines in particular, we use as a small
example the design of a traditional automatic teller machine (ATM) connected to a
bank. For simplicity, we only describe the handling of entering a card and a PIN with
the ATM. After entering the card, one has three trials for entering the correct PIN (which
is checked by the bank). After three unsuccessful trials the card is kept.

Figure 2(a) shows a possible interaction between an atm and a bank, which consists
out of four messages: the atm requests the bank to verify if a card and PIN number
combination is valid, in the first case the bank requests to reenter the PIN, in the second
case the verification is successful.

 7

The composite structure of the ATM-bank system is specified in the component dia-
gram in Fig. 2(b). In order to communicate with a bank component, the atm component
has a behaviour port called bankCom and the bank component has a behaviour port
atmCom. Furthermore, atm has a port userCom to a user. Interpreted at the component
instance level this composite structure diagram also specifies the initial configuration
of the system with the component instances atm and bank for the interaction.

Figure 2(c) provides structural information in the form of the interfaces specifying
what is provided at the userCom port of the atm instance (UserIn) and what is required
(UserOut). An interface is a set of operations that other model elements have to im-
plement. In our case, the interface is described in a class diagram. Here, the operation
keepCard is enriched with the OCL constraint trialsNum >= 3, which refines its seman-
tics: keepCard can only be invoked if the OCL constraints holds.

The communication protocol on this connector is captured with a protocol state ma-
chine, see Fig. 2(d). The protocol state machine fixes in which order the messages verify,
verified, reenterPIN, and markInvalid between atm and bank may occur.

The dynamic behaviour of the atm component is specified by the behavioural state
machine shown in Fig. 2(e). The machine consists of five states including Idle, CardEn-
tered, etc. Beginning in the initial Idle state, the user can trigger a state change by enter-
ing the card. This has the effect that the parameter c from the card event is assigned to
the cardId in the atm object (parameter names are not shown on triggers). Entering a PIN
triggers another transition to PINEntered. Then the ATM requests verification from the
bank using its bankCom port. The transition to Verifying uses a completion event: No ex-
plicit trigger is declared and the machine autonomously creates such an event whenever
a state is completed, i.e., all internal activities of the state are finished (in our example
there are no such activities). If the interaction with the bank results in reenterPIN, and
the guard trialsNum < 3 is true, the user can again enter a PIN.

Questions on the model. Given the above diagrams specifying one system, the question
arises if they actually “fit” together. Especially, one might ask if the diagrams are con-
sistent, and if the different levels of abstraction refine each other. In our ATM example
we have:

Example 1 (Consistency). The interface in Fig. 2(c) requires the operation keepCard
only to be invoked when the precondition trialsNum >= 3 holds. This property holds for
the state machine in Fig. 2(e) thanks to the guard trialsNum < 3.

Example 2 (Refinement). As the only trace of the interaction in Fig. 2(a) is a possible
run of the state machine in Fig. 2(e), the interaction refines to the state machine.

Example 3 (Refinement). Similarly, we can consider if the protocol state machine in
Fig. 2(d) refines to the product of the state machine of the atm, shown in Fig. 2(e),
and of the bank; this essentially means to check for a trace inclusion w.r.t. messages
observable on the interfaces, as the protocol state machine has no post conditions.

In order to study, e.g., such a refinement between a protocol state machine and its
implementation by state machines, in the following we develop institutions for state
machines including a notion of product.

8

3 Institutions for Simple UML State Machines

We now detail a possible formalisation of a simplified version of UML state machines
as institutions. In particular, we omit hierarchical states. Our construction is generic in
w.r.t. an institution of guards. Then, we give an institutions for the actions of a state ma-
chine. These fix the conditions which can be used in guards of transitions, the actions
for the effects of transitions, and also the messages that can be sent from a state ma-
chine. The source of this information typically is a class or a component diagram: The
conditions and actions involve the properties available in the classes or components, the
messages are derived from the available signals and operations. The sentences of the
action institution form a simple dynamic logic (inspired by OCL) which can express
that if a guard holds as pre-condition, when executing an action, a certain set of mes-
sages is sent out, and another guard holds as post-condition. We then build a family
of institutions for state machines over the institutions for guards and actions. A state
machine adds the events and states that are used. The events comprise the signals and
operations that can be accepted by the machine; some of these will, in general, coin-
cide with the messages from the environment. Additionally, the machine may react to
completion events, i.e., internal events that are generated when a state of the machine
has been entered and which trigger those transitions that do not show an explicit event
as their trigger in the diagrammatic representation (we use the states as the names of
these events). The initial state as well as the transitions of the machine are represented
as sentences in the institution.1 In a next step, we combine the family of state machine
institutions parameterised over actions into a single institution.

3.1 Institution of Guards

We assume that there is an institution of guards. Typically, guards are formulas in some
language like OCL. More formally, an institution of guards is an institution where sig-
natures are sets, and signature morphisms are functions. We will call the elements of
these sets variables, but one can think of attributes or properties. Models of a signa-
ture V are valuations ω : V → Val into a fixed set of values Val2. Model reduct
is just composition, that is, given a signature morphism υ : V → V ′ and a model
ω′ : V ′ → Val, its υ-reduct is ω′ ◦ υ. The nature of sentences G(V) and their transla-
tion G(υ) : G(V) → G(V ′) is left unspecified, as well as the satisfaction relation —
we only require the satisfaction condition, which amounts to

ω′ |= G(υ)(g) iff ω′ ◦ υ |= g .

Example 4. Consider the UML component ATM. A guard signature for ATM would con-
tain the variable trialsNum, leading to sentences such as true, trialsNum < n, and trialsNum
== n for n ∈ N.

1 For simplicity, final states are left implicit here. For hierarchical states, they need to be made
explicit.

2 In UML, variables and values would be typed, and variable valuations have to respect the
typing. For simplicity, we disregard this here. Moreover, UML queries, could be covered by
valuations assigning values in some function space. However, a more elaborate institution
would be preferable for OCL.

 9

3.2 Institution of Actions

An object of the category of action signatures SigAct is a triple of sets

H = (AH , MH , VH)

of actions, messages and variables; and a morphism H → H ′ of SigAct is a triple of
functions η : (ηA : AH → AH′ , ηM : MH → MH′ , ηV : VH → VH′). The class of
action structures ModAct(H) for an action signature H consists of transition relations

Ω ⊆ |Ω| × (AH × ℘(MH)) × |Ω| ,

where |Ω| = (VH → Val) represents the possible configurations of data states, and

(ω, a, m, ω′) ∈ Ω (also written ω
a,m−−→
Ω

ω′)

expresses that action a leads from state ω ∈ (VH → Val) to state ω′ ∈ (VH → Val)
producing the set of messages m ⊆ MH .

The reduct Ω′|η of an H ′-action structure Ω′ along the morphism η : H → H ′ is
given by all transitions

ω1|ηV

a,η−1
M

(m)−−−−−−→
Ω′|η

ω2|ηV for which ω1
ηA(a),m−−−−−→

Ω′
ω2 .

An action a is called deterministic if ω1
a,m−−→
Ω

ω2 and ω1
a,m′
−−−→

Ω
ω′
2 imply m =

m′ and ω2 = ω′
2. An action relation Ω is called deterministic if all its actions are

deterministic, that is, it is a partial function of type |Ω| × AH ⇀ ℘(MH) × |Ω|.
Note that reducts can introduce non-determinism. Given an action signature (A, M,

{x, y}) suppose that a deterministic action a leads to a change of state expressed by
the assignment x := x + y. Now take the reduct to the signature (A, M, {x}), i.e., the
variable y has been removed. Then a performs a non-deterministic assignment x :=
x + y where the value for y is non-deterministically guessed.

The set of action sentences SenAct(H) for an action signature H comprises the ex-
pressions

gpre → [a]m � gpost

with gpre, gpost ∈ G(VH) guard sentences over VH , a ∈ AH , and m ⊆ MH , intuitively
meaning (like an OCL constraint) that if the pre-condition gpre currently holds, then,
after executing a, the messages m are produced and the post-condition gpost holds.
The translation η(gpre → [a]m � gpost) of a sentence gpre → [a]m � gpost along
the signature morphism η : H → H ′ is given by G(ηV)(gpre) → [ηA(a)]ηM (m) �
G(ηV)(gpost). Finally, the satisfaction relation Ω |=Act

H gpre → [a]m � gpost holds if,

and only if, for all ω ∈ (VH → Val), if ω |= gpre and ω
a,m′
−−−→

Ω
ω′, then ω′ |= gpost and

m ⊆ m′. Then the satisfaction condition follows.

10

Example 5. Consider the UML component ATM with its properties cardId, pin, and tri-
alsNum, its ports userCom and bankCom, and its outgoing operations ejectCard() and
keepCard() to userCom, and verify() and markInvalid() to bankCom. An action signature
for ATM is derived by forming actions and messages over this information, such that
it will contain the actions userCom.ejectCard(); trialsNum = 0 and trialsNum++, as well
as the messages userCom.ejectCard() and bankCom.markInvalid(cardId). Action sentences
over such an action signature could be

true → [userCom.ejectCard(); trialsNum = 0]{userCom.ejectCard()} � trialsNum == 0

trialsNum == n → [trialsNum++]∅ � trialsNum == n+1 .

3.3 Behavioural State Machine Institution

The institution of state machines is now built over the action institution. Let H be an
action signature and Ω an action structure over H . An object of the category of state
machine signatures SigSM(H, Ω) over H and Ω is given by a triple

Σ = (EΣ , FΣ , SΣ)

of (external) events EΣ , completion events FΣ , and states SΣ with EΣ ∩ FΣ = ∅ and
EΣ ∩ SΣ = ∅; and a morphism σ : Σ → Σ′ of SigSM(H, Ω) is a triple of injective
functions σ = (σE : EΣ → EΣ′ , σF : FΣ → FΣ′ , σS : SΣ → SΣ′), such that
EΣ ∩MH = EΣ′ ∩MH (preservation of internal messages). The class of state machine
structures ModSM(H, Ω)(Σ) for a state machine signature Σ = (EΣ , FΣ , SΣ) over H
and Ω consists of the pairs

Θ = (IΘ , ΔΘ)

where IΘ ∈ ℘(VH → Val) × SΣ represents the initial configurations, fixing the initial
control state; and ΔΘ ⊆ CΣ × ℘(MH) × CΣ with CΣ = (VH → Val) × ℘(EΣ ∪
FΣ) × SΣ represents a transition relation from a configuration, consisting of an action
state, an event pool, and a control state, to a configuration, emitting a set of messages.
The event pool may contain both types of events from the signature: external events
from signals and operations, and completion events (which are typically represented by
states).

Example 6. Consider the state machine of Fig. 2(e) defining the behaviour of ATM. It
works over the action signature sketched in the previous example, and its signature is
(EATM, FATM, SATM) with

EATM = {card, PIN, reenterPIN, verified} ,

FATM = {PINEntered, Verified} ,

SATM = {Idle, CardEntered, PINEntered, Verifying, Verified} .

In particular, the completion events consist of those states from which a completion
transition originates.

 11

The reduct Θ′|σ of a state machine structure Θ′ along the morphism σ : Σ → Σ′ is
given by the structure

({(ω, s) | (ω, σS(s)) ∈ I ′}, Δ) with

Δ = {(ω1, σ−1
P (p1), s1)

m−→ (ω2, σ−1
P (p2), s2) |

(ω1, p1, σS(s1))
m−−−→

ΔΘ′
(ω2, p2, σS(s2))} ,

where σP (p) = σE(p) if p ∈ EΣ and σP (p) = σF (p) if p ∈ FΣ . Here, σ−1
P deletes

those events from the event pool that are not present in the pre-image.
The set of state machine sentences SenSM(H, Ω)(Σ) for a state machine signature Σ

over H and Ω consists of the pairs

ϕ = (s0 ∈ SΣ , T ⊆ SΣ × (EΣ ∪ FΣ) × (G(VH) × AH × ℘(FΣ)) × SΣ)

where s0 means an initial state and the transition set T represents the transitions from
a state s with a triggering event p (either a declared event or a completion event), a
guard g, an action a, and a set of completion events f to another state s′. We also write

s
p[g]/a,f−−−−−→

T
s′ for such a transition. The translation σ(s0, T) of a sentence (s0, T) along

the signature morphism σ : Σ → Σ′ is given by (σS(s0), {σS(s1)
σP (p)[g]/a,℘σF (f)−−−−−−−−−−−−→

σS(s2) | s1
p[g]/a,f−−−−−→

T
s2}). Finally, the satisfaction relation Θ |=SM(H, Ω)

Σ (s0, T) holds

if, and only if π2(IΘ) = s0 and ΔΘ is the least transition relation satisfying3

(ω, p :: p, s) m\EΣ−−−−→
ΔΘ

(ω′, p � ((m ∩ EΣ) ∪ f), s′) if

∃s
p[g]/a,f−−−−−→

T
s′ . ω |= g ∧ ω

a,m−−→
Ω

ω′

(ω, p :: p, s) ∅−−→
ΔΘ

(ω, p, s) if

∀s
p′[g]/a,f−−−−−→

T
s′ . p
= p′ ∨ ω
|= g

where p :: p expresses that some element p from the pool p is extracted, and p �
p′ adds the events in p′ to the pool p with respect to some extraction and selection
schemes (where completion events are prioritised). The messages on a transition in the
structure Θ are only those that are not accepted by the machine itself, i.e., not in EΣ .
The accepted events in EΣ as well as the completion events are added to the event
pool of the target configuration. When no transition is triggered by the current event,
the event is discarded (this will happen, in particular, to all superfluously generated
completion events). Checking the satisfaction condition

Θ′|σ |=SM(H, Ω)
Σ (s0, T) ⇔ Θ |=SM(H, Ω)

Σ′ σ(s0, T)

for a state machine signature morphism σ : Σ → Σ′ is straightforward.

3 Usually, the two cases do not overlap, so the two cases are complete characterisations (iff).

12

Example 7. Continuing the previous example for the state machine of Fig. 2(e) defining
the behaviour of ATM, this state machine can be represented as the following sentence
over this signature:

(Idle, {Idle
card[true]/cardId = c,∅−−−−−−−−−−−→

T
CardEntered,

CardEntered
PIN[true]/pin = p,PINEntered−−−−−−−−−−−−−−→

T
PINEntered,

PINEntered
PINEntered[true]/bank.verify(cardId, pin),∅−−−−−−−−−−−−−−−−−−−−−→

T
Verifying,

Verifying
reenterPIN[trialsNum < 3]/trialsNum++,∅−−−−−−−−−−−−−−−−−−−−→

T
CardEntered, . . .}) .

In particular, PINEntered occurs both as a state and as a completion event to which
the third transition reacts. The junction pseudostate for making the decision whether
trialsNum < 3 or trialsNum >= 3 has been resolved by combining the transitions.

3.4 Protocol State Machine Institution

Protocol state machines differ from behavioural state machines by not mandating a
specific behaviour but just monitoring behaviour: They do not show guards and effects,
but a pre- and a post-condition for the trigger of a transition. Moreover, protocol state
machines do not just discard an event that currently does not fire a transition; it is an
error when such an event occurs.

For adapting the state machine institution to protocol state machines we thus change
the sentences to

ϕ = (s0, e ∈ SΣ , T ⊆ SΣ × (G(VH)× EΣ × G(VH)× ℘(MH)× ℘(FΣ)) × SΣ)

where s0 is the start state and e a dedicated error state, the two occurrences of G(VH)
represent the pre- and the post-conditions, and ℘(MH) represents the messages that
have to be sent out in executing the triggering event (protocol state machines typically
do not show completion events). The satisfaction relation now requires that when an
event e is chosen from the event pool the pre-condition of some transition holds in the
source configuration, its post-condition holds in the target configuration, and that all
messages have been sent out. Instead of the second clause of ΔΘ , discarding an event,
the error state is targeted when no transition is enabled.

3.5 Flat State Machine Institution

Given an institution of guards, we now flatten the institutions SM(H, Ω) for each action
signature H and each action structure Ω over H into a single institution SM.4 The sig-
natures 〈H, Σ〉 consist of an action signature H and a state machine signature Σ, simi-
larly for signature morphisms as well as for structures 〈Ω, Θ〉. As 〈H, Σ〉-sentences we
now have both dynamic logic formulas (over H), as well as control transition relations

4 This is an instance of a general construction, namely the Grothendieck institution [19].

 13

(over H and Σ). Also satisfaction is inherited. Only the definition of reducts is new, be-
cause they need to reduce state machine structures along more complex signature mor-
phisms: 〈Ω′, Θ′〉|(η, σ) = 〈Ω′|η, Θ′|σ|η〉 where Θ′′|η = (IΘ′′ , {c′′

1 , η−1
M (m′′), c′′

2) |
(c′′

1 , m′′, c′′
2) ∈ ΔΘ′′}).

4 Determinism, Interleaving, and Refinement

4.1 Deterministic State Machines

The transition and action relations are not required to be functions. Thus a transition
may have multiple choices for the same configuration of states, variables and events.
But when moving towards the implementation, deterministic behaviour is desirable.

i-a) A transition set T is called syntactically deterministic if it is a partial function of
type SΣ × (EΣ ∪ FΣ) ⇀ GH × AH × ℘(FΣ) × SΣ .

i-b) A transition set T is called semantically deterministic if for any two distinct tran-

sitions s
p[g1]/a1,f1−−−−−−−→

T
s1 and s

p[g2]/a2,f2−−−−−−−→
T

s2 sharing the same pre-state s and

trigger event p, their guards must be disjoint, that is, there is no ω : VH → Val
satisfying both g1 and g2.

ii) A transition relation ΔΘ is called deterministic if and only if it is a partial function
of type CΣ ⇀ ℘(MH) × CΣ .5

iii) A state machine structure (Ω, Θ) of SM is called deterministic if and only if the
corresponding action relation and transition relation are deterministic.

The transition relation ΔΘ is defined by Ω and T . So it is justified to expect some
inheritance of determinism between those.

Theorem 1. If T is syntactically or semantically deterministic and Ω is deterministic,
then ΔΘ is also deterministic.

Proof. Consider a configuration (ω, p :: p, s). If there is any transition, then the new
state s′ and executed action a are determined by T (s, p) = (g, a, f, s′) (if defined) in
the syntactic case. The sent message m and the new configuration of the variables ω′

result from Ω(ω, a) = (m, ω′). In the semantic case, at most one guard can be enabled,
hence at most one transition in T can fire.

4.2 Interleaving Product of State Machines

Inside the flat state machine institution SM we can consider the composition of state ma-
chines over different action signatures. The composition captures the interplay between
different state machines and their communication. The different action signatures repre-
sent the local views of the state machines. This composition interleaves the behaviours

5 Note that this function is total if ΔΘ satisfies some sentence. This originates from the discard-
ing of events that can not be processed in the current state and configuration, which is again a
transition.

14

of the UML state machines. The communication is performed by the exchange of mes-
sages which are turned into events, not by synchronisation over shared events.

Given two state machine signatures 〈H1, Σ1〉 and 〈H2, Σ2〉 of SM with EΣ1∩EΣ2 =
∅ and SΣ1 ∩ SΣ2 = ∅, we combine these into a single signature 〈Ĥ, Σ̂〉 of SM by
taking the component-wise union for the guard, actions, messages, and variables, the
union of events and states for the events, and the product of the state sets for the states.
Now consider two state machine structures (Ω1, Θ1) over 〈H1, Σ1〉 and (Ω2, Θ2) over
〈H2, Σ2〉, respectively. Their interleaving product is given by

〈Ω1, Θ1〉 ‖ 〈Ω2, Θ2〉 = (Ω1 ‖ Ω2, Θ1 ‖ Θ2) where

– Ω1 ‖ Ω2 is given by ω
a,m−−−−→

Ω1‖Ω2
ω′ if for some i ∈ {1, 2}: a ∈ AHi and ω|VHi

a,m−−→
Ωi

ω′|VHi and for i
= j ∈ {1, 2} : ω|(VHj \ VHi) = ω′|(VHj \ VHi)
– Θ1 ‖ Θ2 = (IΘ1 ‖ IΘ2 , ΔΘ1 ‖ ΔΘ2) with, letting IΘi = (Γi, si),

IΘ1 ‖ IΘ2 = ({ω : VH1 ∪ VH2 → Val | ∀j ∈ {1, 2} . ω|VHj ∈ Γj}, (s1, s2)) and

(ω, p :: (p1 ∪ p2), (s1, s2))
m\EΣ̂−−−−−−→

ΔΘ1 ‖ΔΘ2

(ω′, (p1 ∪ p2)� ((p′ ∪ m) ∩ EΣ̂), (s′
1, s′

2))

iff ∃i ∈ {1, 2} . (ω|VHi, p :: pi, si)
m−−−→

ΔΘi

(ω′|VHi , pi � p′, s′
i) ∧

∀j ∈ {1, 2} \ {i} . (ω|VHj , pj , sj) = (ω′|VHj , pj , s′
j) .

There is also a syntactic version of the interleaving product: given sentences (s10, T1)
and (s20, T2), their interleaving (s10, T1) ‖ (s20, T2) is given by ((s10, s20), T) with

(s1, s2)
p[g]/a,f−−−−−→

T
(s′

1, s′
2) iff ∃i ∈ {1, 2} . si

p[g]/a,f−−−−−→
Ti

s′
i ∧∀j ∈ {1, 2}\{i} . sj = s′

j .

The syntactic version is compatible with the semantic interleaving product:

Theorem 2. If 〈Ωi, Θi〉 |= (si
0, Ti) for i ∈ {1, 2}, then 〈Ω1, Θ1〉 ‖ 〈Ω2, Θ2〉 |=

(s10, T1) ‖ (s20, T2).

Example 8. Consider the composite structure diagram in Fig. 2(b), showing instances
atm and bank of the ATM and Bank components, respectively, that are connected through
their bankCom and atmCom ports. In execution, atm and bank will exchange messages,
as prescribed by their state machines, and this exchange is reflected by the interleaving
product which internalises those events that are part of the common signature. On the
other hand, messages to the outside, i.e., through the userCom port are still visible.

A system resulting from an interleaving product 〈Ω1, Θ1〉 ‖ 〈Ω2, Θ2〉 represents a
state machine in our notation. Thus it can be again part of an interleaving product

〈(〈Ω1, Θ1〉 ‖ 〈Ω2, Θ2〉) ‖ 〈Ω3, Θ3〉〉 .

The interleaving product meets the intuitive algebraic properties. Due to the disjoint
event sets each event can only trigger at most one machine. Messages are stripped off

 15

M1 M2

M3

(Ω1 ‖ Ω2, Θ1 ‖ Θ2)

m

m ∩ EΣ1

m ∩ EΣ2

m\(EΣ1 ∪ EΣ2)

m ∩ EΣ3

m\((EΣ1 ∪ EΣ2) ∪ EΣ3)

Fig. 3. Messages sent between three machines on transition in machine M1

the events which can be processed by either of the inner machines, and remaining mes-
sages are sent to the third machine, which also extracts its corresponding events as
illustrated in Fig. 3. Hence it is impossible that the inner machines consume an event
that can also be processed by the third machine. The same behaviour occurs, if the first
machine sends a message to a system of the two remaining machines. Thus the dis-
tinction in “inner” and “outer” machines becomes obsolete and the interleaving product
is associative. Since each machine extracts the events present in its event set, it is not
required to consider the order of the machines, and hence the interleaving product is
commutative. Finally, we can regard a state machine with no events, no messages, and
only one state. In an interleaving product this nearly empty machine would have no
effect on the behaviour of the other machine, and thus behaves as a neutral element.

Theorem 3. The set of state machine structures (over all signatures) with interleav-
ing product ‖ forms a discrete symmetric monoidal category, which is a “commutative
monoid up to isomorphism”.

It is desirable that the interleaving product of two deterministic machines preserves
this determinism. The new action function is determined by the two old ones in such
a way, that the new configuration is taken from the configuration of the triggered sub-
machine, which is deterministic, and the missing variable configuration remains un-
touched. Thus the new action relation is deterministic. The same goes for the transition
relation. The sent messages and configuration are determined by the (as argued above)
deterministic action relation and the new state and events result from the triggered sub-
machine. However, we need the following prerequisite: Two action relations Ω1, Ω2 are
called compatible if Ω1|(H1 ∩ H2) = Ω2|(H1 ∩ H2).

Theorem 4. Let (Ω1, Θ1) and (Ω2, Θ2) be deterministic state machines with both ac-
tion relations compatible. Then (Ω1 ‖ Ω2, Θ1 ‖ Θ2) is also deterministic.

Using a slightly modified version of the interleaving product construction where
messages of shared actions leading to compatible states are united, instead of generating
two separate transitions, we can prove:

Theorem 5. The action institution admits weak amalgamation for pushout squares
with injective message mappings.

16

4.3 Institutional Refinement of State Machines

We have defined an institution capturing both behavioural and protocol state machines
via different sentences. With the machinery developed so far, we can now apply the
institution independent notion of refinement to our institution of state machines. The
simplest such notion is just model class inclusion, that is, a theory T1 refines to T2,
written T1 � T2, if ModSM(T2) ⊆ ModSM(T1). (Note that state machines are theories
consisting typically of one sentence only.)

However, this is too simple to cover the phenomenon of state abstraction, where
several states (like Idle, CardEntered, PinEntered and Verified in Fig. 2(e)) in a more
concrete state machine can be abstracted to one state (like Idle in Fig. 2(d)) in a more
abstract state machine. This situation can be modelled using the institution independent
notion of translation of a theory T along a signature morphism σ : sig(T) → Σ,
resulting in a structured theory σ(T) which has signature Σ, while the model class
is {M ∈ ModSM(Σ) | M |σ ∈ ModSM(T)}, i.e., models are those Σ-models that
reduce (via σ) to a T -model. Moreover, sometimes we want to drop events (like card
in Fig. 2(e)) when moving to a more abstract state machine. This can be modelled by a
notion dual to translation, namely hiding. Given a theory T and a signature morphism
θ : Σ → sig(T), the structured theory θ−1(T) has signature Σ, while the model class
is {M |θ ∈ ModSM(Σ) | M ∈ ModSM(T)}, i.e., models are all θ-reducts of T -models.
Altogether, we arrive at

Definition 1. An “abstract” (behavioural or protocol) state machine T1 refines into
a “concrete” state machine T2 via signature morphisms θ : sig(T1) → Σ and σ :
sig(T2) → Σ into some “mediating signature” Σ, if

T1 � θ−1(σ(T2))

in other words, for all Σ-models M

M |σ ∈ ModSM(T2) ⇒ M |θ ∈ ModSM(T1) .

Concerning our original refinement question stated in Ex. 3, we now can argue: As
the state machine of the atm, shown in Fig. 2(e) is a refinement of the protocol state ma-
chine in Fig. 2(d), using a suitable signature morphism, the interleaving product of the
atm and bank state machine, in the syntactic version, will be so as well. As furthermore
the protocol state machine has no post conditions, we have established a refinement.

5 Conclusions

We have presented institutions for behavioural and protocol UML state machines and
have studied an interleaving product and a notion of determinism. We furthermore pre-
sented first steps of how to study refinement in such a context. Our institutions pro-
vide the necessary prerequisites for including UML state machines into a heteroge-
neous institution-based UML semantics and to develop their relationship to other UML
sub-languages and diagram types.

 17

An important future extension for the state machine institutions is to add hierarchical
states, and to consider refinements from hierarchical to flat state machines. For an inte-
gration into the software development process, the study of correct code generation is
indispensable. The Heterogeneous Tool Set (Hets [18,20]) provides analysis and proof
support for multi-logic specifications, based on a strong semantic (institution-based)
backbone. Implementation of proof support for UML state machines (and other kinds
of UML diagrams) is under way.

References

1. Object Management Group: Unified Modeling Language. Standard formal/2011-08-06,
OMG (2011)

2. Knapp, A., Mossakowski, T., Roggenbach, M.: Towards an Institutional Framework for Het-
erogeneous Formal Development in UML - A Position Paper. In: De Nicola, R., Hennicker,
R. (eds.) Wirsing Festschrift. LNCS, vol. 8950, pp. 215–230. Springer, Heidelberg (2015)

3. Goguen, J.A., Burstall, R.M.: Institutions: Abstract model theory for specification and pro-
gramming. J. ACM 39, 95–146 (1992)

4. Große-Rhode, M.: Semantic Integration of Heterogeneous Software Specifications. Mono-
graphs in Theoretical Computer Science. Springer (2004)

5. Roggenbach, M.: CSP-CASL: A New Integration of Process Algebra and Algebraic Specifi-
cation. Theo. Comp. Sci. 354, 42–71 (2006)

6. Mossakowski, T., Roggenbach, M.: Structured CSP – A Process Algebra as an Institution. In:
Fiadeiro, J.L., Schobbens, P.-Y. (eds.) WADT 2006. LNCS, vol. 4409, pp. 92–110. Springer,
Heidelberg (2007)

7. O’Reilly, L., Mossakowski, T., Roggenbach, M.: Compositional Modelling and Reasoning
in an Institution for Processes and Data. In: Mossakowski, T., Kreowski, H.-J. (eds.) WADT
2010. LNCS, vol. 7137, pp. 251–269. Springer, Heidelberg (2012)

8. Schattkowsky, T., Müller, W.: Transformation of UML State Machines for Direct Execution.
In: VL/HCC 2005, pp. 117–124. IEEE (2005)

9. Fecher, H., Schönborn, J.: UML 2.0 State Machines: Complete Formal Semantics Via core
state machine. In: Brim, L., Haverkort, B.R., Leucker, M., van de Pol, J. (eds.) FMICS and
PDMC 2006. LNCS, vol. 4346, pp. 244–260. Springer, Heidelberg (2007)

10. Calegari, D., Szasz, N.: Institutionalising UML 2.0 State Machines. Innov. Syst. Softw.
Eng. 7, 315–323 (2011)

11. Object Management Group: Precise Semantics of UML Composite Structures. Beta Specifi-
cation ptc/14-06-15, OMG (2014)

12. Dereziska, A., Szczykulski, M.: Interpretation Problems in Code Generation from UML State
Machines — A Comparative Study. In: Kwater, T. (ed.) Computing in Science and Technol-
ogy 2011: Monographs in Applied Informatics, pp. 36–50. Warsaw University (2012)

13. Lano, K. (ed.): UML 2 — Semantics and Applications. Wiley (2009)
14. Engels, G., Heckel, R., Küster, J.M.: The Consistency Workbench: A Tool for Consistency

Management in UML-Based Development. In: Stevens, P., Whittle, J., Booch, G. (eds.) UML
2003. LNCS, vol. 2863, pp. 356–359. Springer, Heidelberg (2003)

15. Mossakowski, T., Sannella, D., Tarlecki, A.: A Simple Refinement Language for CASL. In:
Fiadeiro, J.L., Mosses, P.D., Orejas, F. (eds.) WADT 2004. LNCS, vol. 3423, pp. 162–185.
Springer, Heidelberg (2005)

16. Codescu, M., Mossakowski, T., Sannella, D., Tarlecki, A.: Specification Refinements: Cal-
culi, Tools, and Applications (2014) (submitted)

18

17. Borzyszkowski, T.: Logical Systems for Structured Specifications. Theor. Comput. Sci. 286,
197–245 (2002)

18. Mossakowski, T., Autexier, S., Hutter, D.: Development Graphs — Proof Management for
Structured Specifications. J. Log. Alg. Program. 67, 114–145 (2006)

19. Diaconescu, R.: Grothendieck Institutions. Applied Cat. Struct. 10, 383–402 (2002)
20. Mossakowski, T., Maeder, C., Lüttich, K.: The Heterogeneous Tool Set, HETS. In: Grum-

berg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 519–522. Springer, Heidelberg
(2007)

	Preface
	Organization
	Contents
	Models and Synthesis
	An Institution for Simple UML State Machines
	1 Introduction
	2 Heterogeneous Institution-Based UML Semantics
	2.1 Institutions
	2.2 ATM Example

	3 Institutions for Simple UML State Machines
	3.1 Institution of Guards
	3.2 Institution of Actions
	3.3 Behavioural State Machine Institution
	3.4 Protocol State Machine Institution
	3.5 Flat State Machine Institution

	4 Determinism, Interleaving, and Refinement
	4.1 Deterministic State Machines
	4.2 Interleaving Product of State Machines
	4.3 Institutional Refinement of State Machines

	5 Conclusions
	References

	Map-Based Transparent Persistence for Very Large Models
	1 Introduction
	2 Motivation
	2.1 Running Example
	2.2 Persisting Very Large Models

	3 Scalable Model-Persistence Layer
	4 NEOEMF/MAP
	4.1 Memory Management
	4.2 Map-Based Data Model
	4.3 Model Operations as Map Operations

	5 Experimental Evaluation
	5.1 Selected Backends and Execution Environment
	5.2 Experiments
	5.3 Discussion

	6 Related Work
	7 Conclusion and Future Work
	References

	
Composing Message Translators and Inferring Their Data Types Using Tree Automata
	1 Introduction
	2 Background
	2.1 Encapsulated Message Formats
	2.2 Data Type Inference

	3 Message Translator Composition
	4 Data-Schema Composition
	4.1 Definitions
	4.2 Tree Automata Composition

	5 Assessment
	6 Conclusions
	References

	On-the-Fly Synthesis of Scarcely Synchronizing
Distributed Controllers from Scenario-Based
Specifications

	1 Introduction
	2 Foundations
	2.1 MSD Specifications
	2.2 The Controller System

	3 Algorithm for Distributed Synthesis
	3.1 Computation of Reachable Unimplemented SSG States
	3.2 Creation of Successor Candidate
	3.3 Removal of Duplicates
	3.4 Correctness

	4 Example Execution of the Distributed Synthesis
	5 Related Work
	6 Conclusion
	References

	Testing and Fault Localization
	BPEL Integration Testing

	1 Introduction
	2 Basic Definitions and Test Case Generation
	3 Empirical Evaluation
	4 Related Research
	5 Conclusions
	References

	Facilitating Reuse in Multi-goal Test-Suite
Generation for Software Product Lines

	1 Introduction
	2 Background
	2.1 White-Box Test-Suite Derivation
	2.2 Test-Suite Derivation for Product-Line Implementations

	3 Test-Suite Generation for Product Lines
	3.1 Test-Case Generation Based on Symbolic Model Checking
	3.2 Reuse of Reachability-Analysis Results

	4 Evaluation
	5 Related Work
	6 Conclusion
	References

	Just Test What You Cannot Verify

	1
Introduction
	2
Background
	3
Extraction of Residual Program from Condition
	4
Residual Program via Slicing
	5
Experimental Results
	6
Related Work
	7
Conclusion
	References

	Evaluation of Measures for Statistical Fault
Localisation and an Optimising Scheme

	1 Introduction
	2 Definitions and Notations
	2.1 Definitions
	2.2 Motivating Example
	2.3 Established Measures

	3 New SFL Measures
	3.1 New SFL Measures from the Literature
	3.2 Ranking Equivalent Measures
	3.3 A New Custom Measure

	4 Experiments
	4.1 Experimental Setup
	4.2 Methods of Assessment
	4.3 Results

	5 Conclusions and Future Work
	References

	Modeling
	A Generalized Formal Framework for Partial Modeling
	1 Introduction
	2 Background
	3 A Formal Partial Modeling Framework for Sets
	4 The Generalized Framework
	5 Application
	5.1 Deriving MAVO from GMAVO
	5.2 Deriving May Models from GMAVO
	5.3 Deriving the MTS Formalism from GMAVO

	6 Related Work
	7 Conclusion

	Performance-Based Software Model Refactoring in Fuzzy Contexts
	1
Introduction
	2
Related Work
	3
Probability-Effectiveness Approach
	3.1
Antipatterns Fuzzy Detection
	3.2
Antipatterns Fuzzy Refactoring
	3.3
Refactoring Reasoning

	4
Case Study: E-Commerce System (ECS)
	4.1
ECS: Antipatterns Fuzzy Detection
	4.2
ECS: Antipatterns Fuzzy Refactoring
	4.3
ECS: Refactoring Reasoning

	4
Conclusion
	References

	Analyzing Conflicts and Dependencies of Rule-Based Transformations in Henshin
	1 Introduction
	2 Model Transformation with Henshin
	3 Tooling
	4 Conclusion
	References

	Verification
	Translation Validation for Clock Transformations in a Synchronous Compiler
	1 Introduction
	2 The SIGNAL Language
	3 Clock Model
	3.1 Abstraction
	3.2 Concrete Clock Semantics

	4 Clock Model Translation Validation
	4.1 Clock Refinement
	4.2 Adaptation to SIGNAL Compiler
	4.3 Proving Clock Refinement by SMT

	5 Implementation
	5.1 Towards Certified Compiler
	5.2 Detected Bugs

	6 Related Work and Conclusion

	Symbolic Detection of Assertion Dependencies for Bounded Model Checking
	1 Introduction
	2 Preliminaries
	3 The Assertion Implication Relation
	3.1 Detecting Dependent Variables
	3.2 Finding Assertion Dependencies
	3.3 Finding Assertion Implications
	3.4 Further Optimizations

	4 Applications
	4.1 Optimizing Assertion Checking Order
	4.2 Assertion Implication Checking in Function Summarization

	5 Summary and Future Work
	References

	Verification of Loop Parallelisations

	1
Introduction
	2
Background
	3
Dependence Specifications
	3.1
Iteration Contracts
	3.2
Verification of Iteration Contracts

	4
Soundness of the Approach
	4.1
Semantics of Loop Executions
	4.2
Correctness of Parallel Loops

	3
Tool Support
	4
Compiling Iteration Contracts to Kernel Specifications
	5
Related Work
	6
Conclusion and Future Work
	References

	Model-Based Formal Reasoning about Data-Management Applications
	1
Introduction
	2
Modelling Sequences of States (Step 1)
	2.1
Data Models
	2.2
Object Models
	2.3
Data Invariants
	2.4
Filmstrip Models

	3
Modelling Sequences of Data Actions (Step 2)
	4
Proving Invariants Preservation (Step 3)
	5
Case Study
	6
Related Work
	7
Conclusions and Future Work
	References

	Modeling and Adaptation
	Self-adaptive Software with Decentralised Control Loops
	1 Introduction
	2 Preliminaries
	3 Running Example
	4 Approach
	4.1 DECIDE Stage 1: Local Capability Analysis
	4.2 DECIDE Stage 2: Receipt of Peer Capability Summaries
	4.3 DECIDE Stage 3: Selection of Component Contributions
	4.4 DECIDE Stage 4: Execution of Local Control Loop
	4.5 Major Changes

	5 Evaluation
	6 Related Work
	7 Conclusion
	References

	Model-Based Adaptation of Software Communicating via FIFO Buffers
	1 Introduction
	2 Models
	2.1 Interfaces
	2.2 Adaptation Contracts
	2.3 Adapter Generation
	2.4 Case Study

	3 Synchronizability of Adapted Systems
	4 Asynchronous Adaptation
	4.1 Methodology
	4.2 Application to the Case Study
	4.3 Tool Support

	5 Related Work
	6 Conclusion

	Lazy TSO Reachability
	1 Introduction
	2 Parallel Programs
	2.1 Semantics of Parallel Programs

	3 Lazy TSO Reachability
	3.1 Soundness and Completeness

	4 A Robustness-Based Oracle
	5 Experiments
	5.1 Evaluation
	5.2 Discussion

	References

	A Variability-Based Approach to Reusable and Efficient Model Transformations
	1 Introduction
	2 Motivating Example
	3 Background: Algebraic Graph Transformation
	4 Variability-Based Graph Transformation
	4.1 Variability-Based Graphs and Rules
	4.2 Application of Variability-Based Rules

	5 Variability-Based Matching Algorithm
	6 Implementation
	7 Evaluation
	8 Related Work
	9 Conclusion
	References

	Applications
	Exploring Scenario Exploration
	1 Introduction
	2 Relational Model Finding
	3 Scenario Exploration Operations
	3.1 Generation Operations
	3.2 Iteration Operations

	4 Deployment in the Alloy Analyzer
	4.1 Weighted Kodkod
	4.2 Scenario Exploration in Alloy

	5 Related Work
	6 Conclusion
	References

	Data-Oriented Characterization of Application-Level Energy Optimization
	1 Introduction
	2 Methodology
	2.1 The Open-Source jRAPL Library
	2.2 Experimental Environment

	3 Application-Level Energy Management
	3.1 Data Access Patterns
	3.2 Data Representation Strategies
	3.3 Data Organization
	3.4 Data Precision Choices
	3.5 Data I/O Configurations

	4 Unifying Application-Level Optimization with DVFS
	5 Case Study
	6 Threats to Validity
	7 Related Work
	8 Conclusion

	Resource Specification
for Prototyping Human-Intensive Systems

	1
Introduction
	2
Resource Modeling
	2.1
Resource Characteristics
	2.2
Resource Model
	2.3
Resource Request Model

	3
Process Modeling
	4
JSim Resource-Aware Simulator
	5
Case Study: Emergency Department
	5.1
Emergency Department Characteristics
	5.2
Emergency Department Activity Model
	5.3
Emergency Department Resource Model
	5.4
Simulation Results
	5.5
Discussion

	6
Related Work
	7
Contributions and Future Work
	References

	The Prophecy of Undo
	1
Introduction
	2
Specifications and Refinement Proofs (Review)
	2.1
State Spaces, Behaviors, and Properties
	2.2
State Machines
	2.3
Implementations and Refinement Mappings
	2.4
Very Simple Prophecy Variables

	3
First Example
	3.1
High-Level Specification (No ``undo'')
	3.2
Low-Level Specification (with ``undo'')
	3.3
Prophecy Variable
	3.4
Refinement Mapping
	3.5
Main Result

	4
An Approach to Finiteness
	4.1
Quotients
	4.2
Refinement Mappings via Quotients
	4.3
Very Simple Prophecy Variables via Quotients
	4.4
Invariants and Quotienting

	5
Second Example
	5.1
High-Level Specification (No ``undo'')
	5.2
Low-Level Specification (with ``undo'')
	5.3
Prophecy Variable
	5.4
Refinement Mapping
	5.5
Main Result (via Quotienting)

	6
Conclusion
	References

	Author Index

